УДК 532.61:546.442

Фазовый состав, микроструктура, теплофизические и диэлектрические свойства мультиферроика Bi_{1-x}Dy_xFeO₃*

С.В. Хасбулатов¹, А.А. Павелко¹, Л.А. Шилкина¹, Л.А. Резниченко¹, Г.Г. Гаджиев², А.Г. Бакмаев², М.-Р.М. Магомедов², З.М. Омаров², В.А. Алёшин¹

¹Научно-исследовательский институт физики Южного федерального университета, Ростов-на-Дону

²Институт физики им. Х.И. Амирханова Дагестанского научного центра РАН, Махачкала

E-mail: said_vahaevich@mail.ru

Проведены комплексные исследования и установлены корреляционные связи между кристаллической структурой, зеренным строением, диэлектрическими и теплофизическими свойствами высокотемпературных мультиферроиков вида Bi_{1-x} Dy_x FeO₃ (x = 0.05-0.20). Показано, что при x = 0.10 в объектах достигается оптимальное соотношение макрооткликов, что позволяет их рекомендовать для практического использования.

Ключевые слова: мультиферроики, редкоземельные элементы, феррит висмута, керамика, структура, микроструктура, диэлектрические и теплофизические свойства.

Введение

Мультиферроики, представляющие собой обширный класс материалов, сочетающих в себе сегнетоэлектрические, ферромагнитные и сегнетоэластические свойства, в настоящее время подробно изучаются в связи с потенциальной возможностью их применения в новых устройствах, основанных на взаимном контроле магнитного и электрического полей [1, 2]. Феррит висмута BiFeO₃ и его твердые растворы являются удобными объектами для создания магнитоэлектрических материалов благодаря высоким значениям температур электрического (температура Кюри, $T_c \sim 1083$ K) и магнитного (температура Нееля, $T_N \sim 643$ K) упорядочений [2]. С фундаментальной точки зрения эти соединения привлекательны тем, что в них наблюдается сильная взаимосвязь структуры с магнитными и электрическими свойствами [3]. Было показано, что эта взаимосвязь возможна лишь при условии подавления пространственно модулированной магнитной структуры, чего, в свою очередь, можно добиться путем деформации кристаллической решетки за счет замещения Bi редкоземельными элементами [4]. Указанные деформации решетки

^{*} Работа выполнена при финансовой поддержке МОН РФ (темы №№ 1927, 213.01-2014/012-ВГ, 3.1246.2014/К (базовая и проектная части госзадания)), грант Президента РФ № МК-3232-2015-2.

[©] Хасбулатов С.В., Павелко А.А., Шилкина Л.А., Резниченко Л.А., Гаджиев Г.Г., Бакмаев А.Г., Магомедов М.-Р.М., Омаро в З.М., Алёшин В.А., 2016

на их мезоскопическом, зеренном строении. Как известно, методами теплофизического эксперимента в мультиферроидных материалах возможно достаточно точно указать локализацию областей протекания фазовых переходов, сопровождающихся экстремумами физических свойств. Учитывая практически полное отсутствие в научной литературе данных о теплофизических характеристиках подобных материалов, тем более в сочетании с другими эксплутационными макрооткликами, а также с формирующими их особенностями кристаллической структуры и микроструктуры, актуальным представляется восполнение этого пробела на примере Dy-модифицированного BiFeO₃.

Объекты изучения. Методы получения и исследования образцов

Объектом выступили керамики состава $Bi_{1-x}Dy_xFeO_3$ (где x = 0,05-0,20, $\Delta x = 0,05$). Образцы получены по обычной керамической технологии, включающей двухстадийный синтез из оксидов Bi_2O_3 , Fe_2O_3 , Dy_2O_3 высокой степени чистоты (чистый для анализа, особый чистый) при температурах $T_1 = 1073$ К в течении 10 ч и $T_2 = (1073-1123)$ К в течении 5 ч (в зависимости от состава) и последующее спекание без приложения давления при температурах $T_{cпекания} = (1163-1203)$ К в течении 5 ч (в зависимости от состава) [5].

Рентгенографические исследования проводились при комнатной температуре методом порошковой дифракции с помощью дифрактометра ДРОН-3 с использованием отфильтрованного Со_{ка}-излучения и схемы фокусировки по Брэггу–Брентано. Высокотемпературные исследования проводилось в интервале 300–1000 К на автоматическом дифрактометре АДП-1 с гониометром фирмы VEB Freiberger Präzisionsmechanik с фокусировкой по Брэггу–Брентано и с использованием СО_{ка}-излучения. Шаг по температуре был переменным и лежал в промежутке 10–20 град., изотермическая выдержка равнялась 10 минутам, точность стабилизации температуры в камере составляла ±1 К. Изменение фазового состава образца и поведение структурных параметров с температурой контролировалось по дифракционным отражениям (111)_к, (200)_к и (220)_к¹, расположенным в интервалах углов 2 θ 45°–48°, 55°–58°, 77°–81° соответственно. Линейные, угловые параметры и объем перовскитной ячейки рассчитывались по стандартной методике [6]², концентрация ромбической (P) фазы вычислялась по формуле:

$$m_{\rm P} = I_{200}^{\rm P} / (I_{200}^{\rm P} + I_{200}^{\rm P3}) \cdot 100,$$

где $I_{200}^{P_3}$, $I_{200}^{P_3}$ — интенсивности в максимуме рентгеновских линий (200)_к ромбической и ромбоэдрической (Pэ) фаз. Погрешности измерений имели следующие величины: для линейных параметров ячейки — $\Delta a = \Delta b = \Delta c = \pm (0,003-0,004)$ Å, для угловых — $\Delta \alpha = \Delta \beta = 0,05^{\circ}$, для объема — $\Delta V = \pm 0,05$ Å³.

Зёренное строение объектов изучалось на оптических микроскопах Neophot 21, Leica DMI 5000M в отраженном свете при комнатной температуре.

Теплопроводность λ измерялась абсолютным компенсационным методом в стационарном режиме [7], погрешность измерений при 300 К составляла ±3 %, при 1000 К — ±6 %; температуропроводность χ измерялась на установке LFA-457 "MicroFlash" с погрешностью ±5 %; образцы имели следующие размеры: диаметр — 26 мм, высота — 3 мм. Измерения теплоемкости ($C_{\rm P}$) проводились на дифференциальном сканирующем калориметре DSK-204, погрешность измерений составляла ±3 %. Коэффициент теплового расширения α определялся с помощью емкостного дилатометра, разработанного в ИФ ДНЦ РАН [8], во всем интервале температур погрешность составляла ±(3–5) %.

Относительная диэлектрическая проницаемость ($\varepsilon/\varepsilon_0$), тангенс угла диэлектрических потерь (tg δ) в диапазоне частот 20–2·10⁶ Гц и удельная электропроводность (σ) исследовались на специальном стенде с использованием прецизионного LCR-метра

¹ Индексы линий относятся к перовскитным осям.

² Для удобства сравнения в фазах с различной симметрией рассчитывались параметры перовскитных ячеек.

Теплофизика и аэромеханика, 2016, том 23, № 3

Рис. 1. Зависимости $I_{\text{прим}}/I_{\text{пер}}(1)$, $\sigma(2)$, $\varepsilon/\varepsilon_0(3)$ и tg $\delta(4)$ керамики состава $\text{Bi}_{1-x}\text{Dy}_x\text{FeO}_3$ от концентрации Dy, измеренные при комнатной температуре.

Agilent E4980A в интервалах температур 300–900 К в условиях равномерного нагрева и охлаждения со скоростью 5 К/мин. Измерение *о* проводилось при комнатной температуре с помощью измерителя больших сопротивлений Agilent 4339B. Погрешность

измерений вышеуказанных параметров не превышала ±3 %. Перед проведением высокотемпературных исследований образцы подвергались отжигу при температуре 700 К в течение 30 мин.

Экспериментальные результаты и обсуждение

Рентгенофазовый анализ, проведенный при комнатной температуре, показал, что все исследованные керамики (с плотностью выше 90 % от теоретической) содержат примесные фазы $Bi_{25}FeO_{40}$ (симметрия кубическая), $Bi_2Fe_4O_9$ (симметрия ромбическая), обычно сопутствующие образованию $BiFeO_3$, и фазы со структурой типа граната — $Ln_3Fe_5O_{12}$, (симметрия кубическая) [9], концентрация которых минимальна при x = 0,10 и увеличивается при x > 0,10 (рис. 1). При x = 0,10 в изучаемых твердых растворах происходит переход из ромбоэдрической фазы, свойственной ферриту висмута [2], в область морфотропного перехода, содержащую смесь ромбоэдрической (Рэ) и ромбической (Р) с моноклинной подъячейкой (М) фаз (последняя имеет структуру типа GdFeO₃ [10], реализуемую в соединениях $LnFeO_3$). Эти результаты в определенной степени согласуются с данными, приведенными в работе [11].

Микроструктура исследованных керамик включает в себя основную связную «светлую» фазу и одну или несколько неосновных локальных «серых» фаз (примеси), характеризующихся увеличением среднего размера кристаллитов при возрастании *x* и накоплении примесей (рис. 2). Это приводит к ослаблению диэлектрических свойств за счет увеличения внутренних электромеханических потерь, накопления пространственного заряда на границах раздела микро- и мезоскопических областей, обладающих различными электрическими свойствами, что коррелирует с результатами исследований электропроводности (σ), относительной диэлектрической проницаемости ($\varepsilon/\varepsilon_0$) и тангенса угла диэлектрических потерь (tg δ) (рис. 1). Как видно из рис. 1, при *x* = 0,10 достигается оптимальное соотношение макрооткликов: минимумы $I_{прим}/I_{пер}$ ($I_{прим}$ — интенсивность сильной линии, $I_{пер}$ — интенсивность сильной линии фазы перовскита), σ , tg δ и максимум $\varepsilon/\varepsilon_0$.

Рис. 2. Микроструктуры образцов керамики Bi_{1-x}Dy_xFeO₃.

На рис. 3 представлены зависимости σ , $\varepsilon/\varepsilon_0$, λ , χ , C_P , α и m_P (здесь m_P — количество Р-фазы в %) керамики состава $\text{Bi}_{0,90}\text{Dy}_{0,10}\text{FeO}_3$ от температуры. Видно, что в области наиболее резкого изменения σ (460–510) K, влекущего за собой формирование сильно

Рис. 3. Зависимости $\sigma(a)$, $\varepsilon/\varepsilon_0(b)$, λ , χ , $m_P(c)$, C_P и $\alpha(d)$ керамики $\operatorname{Bi}_{0,90}\operatorname{Dy}_{0,10}\operatorname{FeO}_3$ от температуры. *a*—нагрев (*1*), охлаждение (*2*), аппроксимация (*3*); *b*—частоты $10^2(1)$, $10^3(2)$, $10^4(3)$, $10^5(4)$, $10^6(5)$ Гц, нагрев (*6*), охлаждение (*7*); *c*— $m_P(T)(1)$, $\lambda(T)(2)$, $\chi(T)(3)$; *d*— $C_P(T)(1)$, $\alpha(T)(2)$.

релаксационных максимумов $\varepsilon/\varepsilon_0(T)$, обусловленных Максвелл–Вагнеровскими процессами и связанных с накоплением свободных зарядов на поверхностях раздела фаз на фоне межслоевых, межфазных и внутрифазных перестроек, наблюдается излом кривых зависимостей λ (*T*) и χ (*T*) при ~510 К. Ниже этой температуры λ изменяется как $\lambda \sim T^{-0.58}$, что отличается от известной для идеальных полупроводников и диэлектриков формулы: $\lambda \sim T^{-1}$. Такое несоответствие может быть связано с появлением дополнительного рассеяния фононов, обусловленного изменением массы и упругих параметров реальных объектов. Этими же факторами объясняется и уменьшение λ при комнатной температуре представленной модифицированной керамики по сравнению с чистым BiFeO3 от значения λ, равного 3,5 Вт/(м·К) (BiFeO₃), до ~2,4 Вт/(м·К) (Bi_{0.90}Dy_{0,10}FeO₃). Еще одной причиной снижения λ может быть появление дополнительного рассеяния на парамагнитных заряженных ионах Dy. Теплоемкость керамики Bi_{0.90}Dy_{0.10}FeO₃ с температурой растет, и до 600 К экспериментальные данные удовлетворительно согласуются с данными, рассчитанными по формуле Меера–Келли: $C_{\rm P}(T) = a + bT - cT^{-2}$, где a, b и c постоянные, которые определяются из температурной зависимости Ср при температурах (290-320) К. В области температур (610-640) К наблюдается интенсивный рост С_Р, после чего при переходе в более упорядоченное (однофазное) состояние характер его изменений приобретает вид, свойственный данным системам. В интервале (640-670) К, охватывающем область антиферромагнитного перехода, «поведение» теплофизических характеристик становится экстремальным (минимумы λ, χ и максимум $C_{\rm P}$). Особый интерес представляет температурная зависимость коэффициента теплового расширения. В указанной температурной области $\alpha(T)$ проходит через ноль, далее принимает отрицательные значения, проходя через глубокий минимум при 750 К. При дальнейшем увеличении температуры $\alpha(T)$ резко, но монотонно растет, принимая положительные значения выше 820 К. Следует отметить, что широкий минимум α расположен в температурной области интенсивного увеличения концентрации Р-фазы вплоть до исчезновения Рэ-фазы (563–853) К (рис. 3). Наименьшее значение $\alpha = (-30 \cdot 10^{-6})$ К⁻¹ соответствует содержанию Р-фазы на уровне 74 %.

Заключение

Установленные корреляционные связи позволяют на стадии теплофизических исследований довольно точно определять области структурных неустойчивостей различной природы, что может быть использовано при разработке устройств спинтроники.

Список литературы

- 1. Звездин К., Пятаков А. Фазовые переходы и гигантский магнитоэлектрический эффект в мультиферроиках // Успехи физических наук. 2004. Т. 174, № 4. С. 465–470.
- 2. Смоленский Г.А., Чупис И.Е. Сегнетомагнетики // Успехи физических наук. 1982. Т. 137, № 3. С. 415-448.
- 3. Звездин А.К., Звездин К.А. Суперпарамагнетизм сегодня: магниты-карлики на пути в мир квантов // Природа. 2001. № 9. С. 9–18.
- **4.** Залесский А.В., Фролов А.А., Химич Т.А., Буш А.А. Концентрационный переход спин-модулированной структуры в однородное антиферромагнитное состояние в системе Bi_{1-x}La_xFeO₃ по данным ЯМР на ядрах ⁵⁷Fe // Физика твердого тела. 2003. Т. 45, № 1. С. 134–138.
- 5. Разумовская О.Н., Вербенко И.А. и др. Фазовые превращения и магнитодиэлектрический эффект в бинарных и тройных системах на основе ниобата натрия, феррита висмута и титана свинца // Фундаментальные проблемы радиоэлектронного приборостроения. 2009. Т. 9, № 2. С. 126–131.
- 6. Фесенко Е.Г. Семейство перовскита и сегнетоэлектричество. М.: Атомиздат, 1972. 348 с.

- 7. Магомедов Я.Б., Гаджиев Г.Г. Прибор для измерения высокотемпературной теплопроводности твердых тел и их расплавов // Теплофизика высоких температур. 1990. Т. 28. С. 185–186.
- 8. Магомедов Я.Б., Гаджиев Г.Г. Устройство для измерения теплопроводности полупроводников при высоких температурах // Приборы и техника эксперимента. 2004. № 4. С. 142–245.
- 9. Смит Я., Вейн Х. Ферриты. М.: Изд-во иностр. литература, 1962. 504 с.
- Powder Diffraction File. Data Card. Inorganic Section. Set 47, card 67. JCPDS. Swarthmore, Pennsylvania, USA, 1948.
- Khomchenko V.A., Karpinsky D.V., Kholkin A.L., Sobolev N.A., Kakazei G.N., Araujo J.P., Troyanchuk I.O., Costa B.F.O., Păixao J.A. Rhombohedral-to-orthorhombic transition and multiferroic properties of Dysubstituted BiFeO₃ // J. Appl. Phys. 2010. Vol. 108, No.7. P. 074109-1–074909-5.

Статья поступила в редакцию 24 декабря 2014 г., после доработки — 28 апреля 2015 г.