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Для консервативных механических систем используется метод нормальных координат
для приведения двух квадратичных форм к сумме квадратов. В этом случае система
дифференциальных уравнений расщепляется на систему независимых осцилляторов.
Линейная диссипативная механическая система с конечным числом степеней свободы
определяется тремя квадратичными формами: кинетической и потенциальной энергией
системы, а также диссипативной функцией Рэлея, которые к сумме квадратов, вооб-
ще говоря, не приводятся. Рассмотрены условия, при которых все три квадратичные
формы одним преобразованием приводятся к сумме квадратов точно или приближен-
но. Показано, что для таких систем можно ввести нормальные координаты, в кото-
рых система расщепляется на независимые системы второго порядка. Это позволяет
построить точные или приближенные аналитические решения в общем виде, причем
в случае приближенного решения — с оценкой относительной погрешности. Преиму-
щества такого подхода показаны для задач теоретической механики и электротехники,
в которых строятся аналитические решения и проводится оптимизационный анализ.
При этом традиционные методы позволяют выполнять лишь численные расчеты при
заданных значениях параметров.

Ключевые слова: метод Лагранжа, квадратичные формы, нормальные координаты,
диссипативные системы, электрическая цепь

Введение. Согласно общей теории малых линейных колебаний систем с конечным
числом степеней свободы для консервативных систем механическая система определяется

двумя квадратичными формами: кинетической и потенциальной энергией системы. В силу

положительной определенности кинетической энергии можно ввести нормальные коорди-
наты, в которых кинетическая энергия приводится к сумме квадратов, а потенциальная
энергия — к сумме квадратов с некоторыми множителями. В нормальных координатах
уравнения расщепляются на независимые осцилляторы, решения которых выражаются че-
рез тригонометрические и показательные функции. Ранее ошибочно предполагалось, что в
случае кратных корней характеристического уравнения нормальные координаты не суще-
ствуют и в окончательные интегралы уравнений движения время входит не только через

тригонометрические и показательные функции (см. работу [1] и библиографию к ней).

Работа выполнена в рамках государственного задания (номер госрегистрации 124012500443-0).
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Многие задачи интегрирования и качественного анализа дифференциальных уравне-
ний значительно упрощаются при переходе к нормальным координатам, которые приме-
няются для исследования колебаний консервативных механических систем [1–3]. Одновре-
менное приведение к диагональной форме двух вещественных симметричных матриц A
и B всегда выполнимо [4, 5], если одна из них соответствует знакоопределенной квадра-
тичной форме.

При анализе вынужденных колебаний диссипативных механических систем помимо

квадратичных форм кинетической и потенциальной энергии возникает третья квадра-
тичная форма — диссипативная функция Рэлея. Аналогично при расчете электрических
цепей методом Лагранжа уравнения записываются с использованием трех квадратичных

форм [4. § 9]. Как известно, три квадратичные формы не всегда можно привести к диаго-
нальным [6–8]. Применение методов Лагранжа и Гамильтона при расчете двухконтурных
электрических цепей [9–14] не упрощает их исследование аналитическими методами, по-
этому используются численные расчеты при частных значениях параметров.

Известно несколько видов условий, при выполнении которых матрицы трех квадра-
тичных форм удается привести к диагональному виду [8]. Общее условие приведения мат-
риц A, B, C к диагональному виду получено в [15]: BA−1C = CA−1B. В этом случае

существуют нормальные координаты, в которых система расщепляется на независимые
системы второго порядка.

Однако использование условия [15] для общей системы с n степенями свободы вслед-
ствие ее громоздкости существенно затруднено. В работе [16] предложен способ упрощения
этого условия, в случае если квадратичные формы зависят от двух переменных (две степе-
ни свободы). Как известно, вынужденные колебания диссипативных механических систем
с двумя степенями свободы сводятся к решению системы дифференциальных уравнений

четвертого порядка. Представить решения таких систем в аналитической форме практиче-
ски невозможно. Возможны лишь численные решения при некоторых значениях парамет-
ров системы. Это существенно затрудняет ее оптимизацию по каким-либо параметрам.
Переход к нормальным координатам позволяет расщепить системы четвертого порядка

на две независимые системы второго порядка. В результате решение можно существенно
упростить и записать в общем виде в элементарных функциях.

Данная методика используется при исследовании задач о вынужденных колебаниях

двойного математического маятника и о течении переменного тока в двухконтурной элек-
трической цепи.

1. Решение уравнений колебаний в нормальных координатах. Система ли-
нейных уравнений для вынужденных колебаний диссипативной механической системы с

двумя степенями свободы под действием сил, меняющихся по гармоническому закону, име-
ет вид

d

dt

∂T

∂ẋi
+
∂R

∂ẋi
+
∂Π

∂xi
=
∂N

∂ẋi
, i = 1, 2, (1.1)

где T , Π, R, N — кинетическая и потенциальная энергия, диссипативная функция Рэлея
и мощность внешних сил:

T =
1

2
(a11ẋ

2
1 + 2a12ẋ1ẋ2 + a22ẋ

2
2), Π =

1

2
(c11x

2
1 + 2c12x1x2 + c22x

2
2),

R =
1

2
(b11ẋ

2
1 + 2b12ẋ1ẋ2 + b22ẋ

2
2), N = (N1ẋ1 +N2ẋ2) sinωt.

(1.2)

Используем следующую теорему [16].
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Теорема. Пусть даны три квадратичные формы двух переменных (1.2) T , R, Π при
∆ = a11a22 − a2

12 > 0. Тогда для существования невырожденного преобразования

X = QY, X =

(
x1

x2

)
, Y =

(
y1
y2

)
, Q =

(
q11 q12

q21 q22

)
, (1.3)

приводящего эти три формы к виду

T =
1

2
(a′11ẏ

2
1 + a′22ẏ

2
2), R =

1

2
(b′11ẏ

2
1 + b′22ẏ

2
2),

Π =
1

2
(c′11y

2
1 + c′22y

2
2), N = (N ′

1ẏ1 +N ′
2ẏ2) sinωt,

(1.4)

необходимо и достаточно, чтобы определитель, составленный из коэффициентов ис-
ходных квадратичных форм, обратился в нуль:

D =

∣∣∣∣∣∣
a11 a12 a22

b11 b12 b22

c11 c12 c22

∣∣∣∣∣∣ = 0. (1.5)

Преобразование (1.3), приводящее указанные три формы к нормальному виду, можно
построить следующим образом. Запишем систему уравнений

MX = 0, M =

(
−Ba11 + c11 −Ba12 + c12

−Ba12 + c12 −Ba22 + c22

)
, X =

(
x1

x2

)
.

Из решения квадратного уравнения для B (равенство нулю определителя)

(−Ba11 + c11)(−Ba22 + c22)− (−Ba12 + c12)
2 = 0 (1.6)

находим два собственных значения B1, B2:

B1,2 =
−b∓

√
D

2a
, D = b2 − 4ac, b = −a11c22 − a22c11 + 2a12c12,

a = a11a22 − a2
12, c = c11c22 − c212.

(1.7)

Эти значения положительны в силу положительной определенности квадратичных форм T
и Π. Поэтому дискриминант D не может быть отрицательным числом. Вырожденный
случай D = 0, в котором оба корня равны, в данной работе не рассматривается.

Таким образом, без ограничения общности считаем, что D > 0 и B1 < B2. Собствен-
ным значениям B1, B2 соответствуют два собственных вектора

X1 =

(
B1a12 − c12

−B1a11 + c11

)
, X2 =

(
B2a12 − c12

−B2a11 + c11

)
.

Нормализующее преобразование можно представить в следующем виде:

x1 = (B1a12 − c12)y1 + (B2a12 − c12)y2, x2 = (−B1a11 + c11)y1 + (−B2a11 + c11)y2. (1.8)

В результате квадратичные формы приводятся к виду (1.4) с коэффициентами

a′ii = a11∆B
2
i − 2∆Bic11 + a22c

2
11 − 2a12c11c12 + a11c

2
12, c′ii = a′iiBi,

(1.9)
N ′

i = N1(Bia12 − c12) +N2(−Bia11 + c11), i = 1, 2, ∆ = a11a22 − a2
12.

Выражения для коэффициентов b′11, b
′
22 не приводятся вследствие громоздкости.

Система уравнений (1.1) в нормальных переменных расщепляется на два независимых
уравнения второго порядка

d2yi

dt2
+ Ai

dyi

dt
+Biyi = Ei sinωt, Ai =

b′ii
a′ii
, Ei =

N ′
i

a′ii
, i = 1, 2. (1.10)
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Решение полученной системы для установившихся колебаний имеет вид

yi = Pi sinωt− Si cosωt, Pi =
Ei(Bi − ω2)

(Bi − ω2)2 + A2
iω

2
, Si =

EiAiω

(Bi − ω2)2 + A2
iω

2
. (1.11)

Амплитуды колебаний равны

ai =
√
P 2

i + S2
i =

Ei√
(Bi − ω2)2 + A2

iω
2
, i = 1, 2.

Переходный процесс от состояния покоя до стационарного состояния описывается реше-
нием уравнения (1.10) с начальными условиями y(0) = 0, ẏ(0) = 0:

yi(t) = Pi sinωt− Si cosωt+ Ji(t),

Ji(t) = e−Ait/2
(Si − 2Piωi

2ωi
sin (ωit) + Si cos (ωit)

)
, ωi =

√
Bi − A2

i /4.

2. Анализ системы уравнений при малых диссипативных силах. Антире-
зонанс. Пусть диссипативные коэффициенты являются малыми величинами порядка ε.
Тогда, если исключить ε-окрестности резонансных частот |B1 − ω2| > ε, |B2 − ω2| > ε, то
решение (1.11) с точностью до малых величин порядка ε упрощается:

yi =
Ei

Bi − ω2
sinωt, xi = ai sinωt, ai =

mi

B1 − ω2
+

ni

B2 − ω2
, i = 1, 2,

m1 = E1(B1a12 − c12), n1 = E2(B2a12 − c12),

m2 = E1(−B1a11 + c11), n2 = E2(−B2a11 + c11).

При некоторой частоте амплитуда ai может обратиться в нуль. В этом случае пере-
менная xi не меняется по времени. Это явление называется антирезонансом [2]. Выясним,
каким условиям должны удовлетворять коэффициенты mi, ni, чтобы существовала часто-
та ω0 антирезонанса. Для этого рассмотрим координатную плоскость переменных m,n
(рис. 1) (индекс i опускаем). Плоскость разобьем на четыре квадранта. В первом и тре-
тьем квадрантах числителиm,n дробей амплитуды ai имеют одинаковый знак (случай 1).
В первом квадранте (случай 1a) m > 0, n > 0, на интервале ω2 ∈ (B1, B2) амплитуда меня-
ется от −∞ до +∞ и обращается в нуль при некотором значении частоты B1 < ω2

0 < B2.
В третьем квадранте (случай 1б) m < 0, n < 0, на интервале ω2 ∈ (B1, B2) амплитуда
меняется от +∞ до −∞ и также обращается в нуль при некотором значении частоты

B1 < ω2
0 < B2. При этих частотах колебаний переменной xi не происходит.

Рассмотрим случай 2: m > 0, n < 0 (четвертый квадрант плоскости m,n). В этом
случае на интервале Ω2 ∈ (B1, B2) амплитуда отрицательна и не может обратиться в нуль.
Однако она может обращаться в нуль вне интервала в случаях 2а, 2б и 2в.

III

IVIII

1à

1á 2à 2á
2â

3à3á

3â

m

n

Рис. 1. Область параметров m и n:
сплошная линия — m+n = 0, штриховая — m/B1 +n/B2 = 0
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Сплошная прямая m + n = 0 и штриховая прямая m/B1 + n/B2 = 0 делят четвер-
тый квадрант на три области. В первой области (случай 2a), расположенной между осью
ординат и штриховой линией, выполняются условия m + n < 0, m/B1 + n/B2 < 0, анти-
резонансная частота находится в интервале ω2

0 ∈ (0, B1).
Во второй области (случай 2б), расположенной между штриховой и сплошной пря-

мыми, выполняются условия m + n 6 0, m/B1 + n/B2 > 0, антирезонансной частоты не
существует: ω2

0 ∈ ∅.
В третьей области (случай 2в), расположенной между сплошной прямой и осью абс-

цисс, выполняются условия m + n > 0, m/B1 + n/B2 > 0, антирезонансная частота нахо-
дится в интервале ω2

0 ∈ (B2,∞).
Случай 3 симметричен по отношению к случаю 2: m < 0, n > 0 (второй квадрант

плоскости m,n). Второй квадрант также делится на три области. В первой области (слу-
чай 3a) m+n > 0, m/B1 +n/B2 > 0, ω2

0 ∈ (0, B1), во второй области (случай 3б) m+n > 0,
m/B1 + n/B2 6 0, ω2

0 ∈ ∅, в третьей области (случай 3в) m+ n < 0, m/B1 + n/B2 < 0.
В отсутствие диссипативных сил коэффициенты Ai равны нулю и при резонансных

частотах амплитуды ai обращаются в бесконечность. При учете малых диссипативных
сил амплитуды имеют максимальные конечные значения

max (ai) =
Ei

Ai
√
Bi
, ω2 = Bi, i = 1, 2.

3. Погрешность решения укороченной системы. Условие (1.5) можно смягчить,
если считать, что оно выполняется не точно, а приближенно. Оценку погрешности такого
приближения можно получить следующим образом.

Пусть линейная замена (1.8) приводит две квадратичные формы T и Π к сумме квад-
ратов:

T =
1

2
(ẏ2

1 + ẏ2
2), Π =

1

2
(B1y

2
1 +B2y

2
2),

при этом третья квадратичная форма R остается не приведенной к такому виду:

R =
1

2
(A1ẏ

2
1 + 2A12ẏ1ẏ2 + A2ẏ

2
2).

Если коэффициент A12 достаточно мал, то его можно не учитывать, но укороченная си-
стема дифференциальных уравнений будет описывать колебания системы с достаточной

точностью.
Укороченная система уравнений имеет вид (1.10), а полная система — вид

d2y1
dt2

+ A1
dy1
dt

+ A12
dy2
dt

+B1y1 = E1 sinωt,

d2y2
dt2

+ A2
dy2
dt

+ A12
dy1
dt

+B2y2 = E2 sinωt, (3.1)

E1 = U1q11 + U2q21, E2 = U1q12 + U2q22.

Наличие A12 вносит погрешность, которую можно оценить следующим образом. Решаем
систему методом комплексных амплитуд. Подставляя в уравнения (3.1) решения в виде
y1 = Y1 eiωt, y2 = Y2 eiωt, получаем

λ1Y1 = E1 − iωA12Y2, λ2Y2 = E2 − iωA12Y1,

E1 = U1q11 + U2q21, E2 = U1q12 + U2q22,

λi = Bi − ω2 + iωAi, i = 1, 2.
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Полагая параметр A12 малым, решаем алгебраическую систему уравнений методом воз-
мущений:

Yi = Y 0
i + ∆Yi, Y 0

i = Ei/λi, ∆Y1 = −iωA12Y
0
2 /λ1, ∆Y2 = −iωA12Y

0
1 /λ2.

Будем называть относительной погрешностью решения без учета A12 величину

δ =
|∆Y1|+ |∆Y2|
|Y 0

1 |+ |Y 0
2 |

= ωA12
(|E1|+ |E2|)/(λ1λ2)

(|E1|λ2 + |E2|λ1)/(λ1λ2)
. (3.2)

Отсюда с помощью неравенства |a+ ib| > (a+ b)/
√

2 для любых a > 0, b > 0 получаем

|λi| > (|Bi − ω2|+ ωAi)/
√

2,

следовательно,

δ 6

√
2ωA12(|E1|+ |E2|)

|E1|(|B1 − ω2|+ ωA1) + |E2|(|B2 − ω2|+ ωA2)
6

√
2A12

A1 + A2
.

Таким образом, величина
√

2 |A12|/(A1 +A2) определяет верхнюю оценку относитель-
ной погрешности (3.2) решения (1.11).

4. Двойной плоский маятник. Рассмотрим малые колебания в окрестности по-
ложения равновесия двойного плоского маятника, точка подвеса которого движется по
горизонтали по гармоническому закону x = a sin (ωt) (рис. 2).

Запишем выражения для T , R, Π, N в виде функций обобщенных координат θ1, θ2 и
скоростей θ̇1, θ̇2 [10]:

T =
1

2
(m1 +m2)l

2
1θ̇

2
1 +

m2

2
l22θ̇

2
2 +m2l1l2θ̇1θ̇2, R =

1

2
r1θ̇

2
1 +

1

2
r2(θ̇2 − θ̇1)

2,

(4.1)

Π =
1

2
(m1 +m2)gl1θ

2
1 +

1

2
m2gl2θ

2
2, N = aω2((m1 +m2)l1θ̇1 +m2l2θ̇2) sin (ωt).

В (4.1) выполняется линейный по относительной угловой скорости закон трения в шарни-
рах с коэффициентами трения r1, r2.

Из равенства нулю определителя (1.5) получаем условия пропорциональности коэф-
фициентов трения и масс r1 = rm1, r2 = rm2. При этих условиях определяется преоб-
разование, приводящее квадратичные формы к сумме квадратов. Сначала путем замены
приведем все характеристические функции к безразмерному виду

t = τ
√
l/g, l1 = l, l2 = lµ, m1 = (1− µ)(m1 +m2), m2 = µ(m1 +m2),

r = ε(m1 +m2)
√
gl3, ω2 = Ω2g/l,

l1

m1

l2

m2

o1

o2

Рис. 2. Схема двойного маятника



А. Г. Петров, В. А. Румянцева 147

где τ , λ, µ, Ω — безразмерные переменные. В этих переменных функции (4.1) принимают
вид

T =
θ̇2
1

2
+ λµθ̇1θ̇2 +

1

2
λ2µ θ̇2

2, R =
1

2
ε((1− µ)θ̇2

1 + µ(θ̇1 − θ̇2)
2),

(4.2)

Π =
θ2
1

2
+

1

2
λµθ2

2, N =
aΩ2

l
(θ̇1 + λµθ̇2) sin Ωτ.

Здесь точки обозначают производные по переменной τ ; множитель (m1 +m2)gl опущен.
Подставляя коэффициенты квадратичных форм (1.2)

a11 = 1, a22 = λ2µ, a12 = λµ, b11 = ε, b22 = εµ, b12 = −εµ,

c11 = 1, c22 = λµ, c12 = 0, N1 = aΩ2/l, N2 = (aΩ2/l)λµ

в характеристическое уравнение (1.6), получаем квадратное уравнение

1−B(3 + λ+ λ2µ) +B2(2 + λ+ 2λ2µ) = 0.

Это уравнение имеет два корня B1, B2:

B1,2 =
1 + λ∓K

2λ(1− µ)
, K =

√
(1− λ)2 + 4λµ ,

через которые определяется преобразование (1.8):

θ1 = y1(B1a12 − c12) + y2(B2a12 − c12) = λµ(y1B1 + y2B2),
(4.3)

θ2 = y1(−B1a11 + c11) + y2(−B2a11 + c11) = y1(−B1 + 1) + y2(−B2 + 1),

приводящее формы (4.2) к каноническому виду

T =
1

2
(a′11ẏ

2
1 + a′22ẏ

2
2), R =

1

2
(b′11ẏ

2
1 + b′22ẏ

2
2),

Π =
1

2
(c′11y

2
1 + c′22y

2
2), N = (N ′

1ẏ1 +N ′
2ẏ2) sinωt.

Коэффициенты форм вычисляются по формулам (1.9) и преобразуются к виду

a′11 =
Kµ(−K + 1 + λ(−1 + 2µ))

2(−1 + µ)
, a′22 = −Kµ(K + 1 + λ(−1 + 2µ))

2(−1 + µ)
,

b′11 = a′11
ε

λ

B1

B2
, b′22 = a′22

ε

λ

B2

B1
, c′11 = a′11B1, c′22 = a′22B2, N ′

1 = N ′
2 =

aΩ2

l
λµ.

Уравнения Лагранжа в новых переменных принимают вид

d2yi

dt2
+ Ai

dyi

dt
+Biyi = Ei sin Ωτ, i = 1, 2,

A1 =
ε

λ

B1

B2
, A2 =

ε

λ

B2

B1
, E1 =

aΩ2

l
e1, E2 =

aΩ2

l
e2, (4.4)

e1 =
2λ(1− µ)

K(K − 1 + λ(1− 2µ))
, e2 =

2λ(1− µ)

K(K + 1− λ(1− 2µ))
.
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Решение уравнений для установившихся колебаний в переменных y1, y2 находится
путем подстановки коэффициентов (4.4) в формулы

yi =
aΩ2

l
(Pi sin Ωτ − Si cos Ωτ),

(4.5)

Pi =
ei(Bi − Ω2)

(Bi − Ω2)2 + A2
i Ω

2
, Si =

eiAiΩ

(Bi − Ω2)2 + A2
i Ω

2
.

В исходных переменных решение получается в результате подстановки формул (4.5)
в (4.3).

5. Нерезонансный случай. В системе имеется две резонансные частоты: Ω2
1 = B1

и Ω2
2 = B2. При малом трении ε � 1 вне окрестностей резонансных частот решение с

погрешностью порядка ε можно получить в рамках консервативной системы по описанной
в п. 1 методике.

Переменные θ1 и θ2 совершают гармонические колебания, которые можно определить
путем подстановки в (4.3) нормальных мод (4.5), при этом малые члены порядка ε опус-
каем:

θ1 = λµ(y1B1 + y2B2), θ2 = y1(−B1 + 1) + y2(−B2 + 1)ai sin Ωτ,

yi =
aΩ2

l

ei
Bi − Ω2

sin Ωτ.

Отсюда c использованием (4.4) находим амплитуду a1 колебаний переменной θ1:

θ1 = a1 sin Ωτ, a1 =
aΩ2

l
a′1, a′1 =

m1

B1 − Ω2
+

n1

(B2 − Ω2)i
,

(5.1)

m1 = e1B1a12 =
λµ(1 + λ−K)

K(−1 + λ− 2λµ+K)
, n1 = e2B2a12 =

λµ(1 + λ+K)

K(1− λ+ 2λµ+K)
.

Коэффициенты m1, n1 в силу неравенств |1− λ(1− 2µ)| < K < 1 + λ положительны.
Поэтому в диапазоне B1 < Ω2 < B2 амплитуда a1 меняется от −∞ до +∞ (случай 1a на
рис. 1). В этом случае существует антирезонансная частота, определяемая из уравнения
a1 = 0:

Ω2 = Ω2
0 =

1

λ(1− µ)
.

На рис. 3 представлена зависимость a′1 от квадрата частоты Ω2 при λ = 1, µ = 1/2.
Амплитуда a1 при λ = 1, µ = 1/2 обращается в нуль при Ω2 = 2.

Аналогично находится амплитуда a2 угловой переменной θ2:

θ2 = a2 sin Ωτ, a2 =
aΩ2

l
a′2, a′2 =

m2

B1 − Ω2
+

n2

(B2 − Ω2)i
,

(5.2)
m2 = e1(−B1a11 + c11) = 1/K, n2 = e2(−B2a11 + c11) = −1/K.

В диапазоне B1 < Ω2 < B2 каждая дробь в выражении для a
′
2 отрицательна и при

любой частоте амплитуда не может обратиться в нуль. Зависимость величины Ω2a′2 от
квадрата частоты Ω2 при λ = 1, µ = 1/2 представлена на рис. 4. На отрезке B1 < Ω2 < B2

амплитуда a2 угловой переменной θ2 при Ω = (λ(1−µ))−1/4 имеет экстремальное значение,
минимальное по абсолютной величине на этом отрезке:

max (a2) = −a
l

√
λ(1− µ)

1 + λ− 2
√
λ(1− µ)

.
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Рис. 3. Коэффициент, пропорциональный амплитуде переменной θ1

Рис. 4. Коэффициент, пропорциональный амплитуде переменной θ2

Определим горизонтальное отклонение нижней массы маятника x = l1θ1+l2θ2. Введем
величину отклонения, отнесенную к суммарной длине маятника:

θ =
x

l1 + l2
=
θ1 + λθ2
1 + λ

.

Отсюда с использованием формул (5.1), (5.2) получаем

θ =
aΩ2

l
α sin Ωτ, α =

m3

B1 − Ω2
+

n3

B2 − Ω2
,

m3 =
(−1 + λ)(1 + λµ) +K(1− λµ)

K(K − 1 + λ− 2λµ)(1 + λ)
, n3 =

(−1 + λ)(1 + λµ)−K(1− λµ)

K(K + 1 + λ(−1 + 2µ))(1 + λ)
.

Из уравнения α = 0 вычисляется частота антирезонанса Ω2 = (1 + 1/λ)/(1− µ).

Таким образом, при частоте Ω =
√

1 + 1/λ/
√
λ(1− µ) нижняя масса маятника оста-

ется неподвижной, а при частоте, в
√

1 + 1/λ раз меньшей 1/
√
λ(1− µ), неподвижной яв-

ляется верхняя масса маятника. Из этих зависимостей следует исключить ε-окрестности
резонансных точек. В указанных окрестностях угловые переменные обращаются в бес-
конечность. В резонансных точках следует учитывать трение. В этих точках угловые

переменные достигают больших значений порядка 1/ε.
6. Случаи резонансов. Рассмотрим асимптотику решения в случае ε → 0 (малое

трение) при резонансной частоте Ω2 = B1. С использованием (4.5) находим

y1 = −S1 cos Ωτ, S1 =
a
√
B1

l

e1
A1

=
a

lε

λ(1 + λ+K)3/2

√
2K(−1 + λ− 2λµ+K)

.

Вторую переменную y2 порядка единицы в формуле (4.5) для угловых переменных
можно не учитывать. Тогда

θ1 = λµB1y1 = − a

lε
k1 cos Ωτ, k1 =

λ2µ
√

2(1 + λ+K)

K(K − 1 + λ− 2λµ)
,

θ2 = (−B1 + 1)y1 = − a

lε
k2 cos Ωτ, k2 =

(1 + λ+K)3/2

2
√

2(1− µ)K
, (6.1)

k2

k1
=
K − (1− λ+ 2λµ)

λµ(1 + λ−K)
.
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Рис. 5. Зависимости максимального амплитудного коэффициента k1 (а) и отно-
шения k2/k1 (б) от параметра µ при значениях отношений длин λ = l2/l1 = 1/4,
1/2, 3/4, 1, 4/3, 2, 4

На рис. 5,а представлены зависимости амплитудных коэффициентов k1 от параметра

масс µ при различных значениях отношения длин λ, на рис. 5,б — зависимости отношения

амплитудных коэффициентов k2/k1 от параметра масс µ при тех же значениях отношения
длин.

6.1. Относительная погрешность при невыполнении условия расщепления. Выше
определено общее аналитическое решение задачи о вынужденных колебаниях двойного ма-
тематического маятника при единственном условии пропорциональности диссипативных

коэффициентов массам мятника: r2/r1 = m2/m1. В случае если это условие не выполня-

ется, диссипативную функцию R = r1θ̇
2
1/2 + r2(θ̇2 − θ̇1)

2/2 можно представить в виде

R =
1

2
r(m1θ̇

2
1 +m2(θ̇2 − θ̇1)

2) +
1

2
∆r (m1θ̇

2
1 −m2(θ̇2 − θ̇1)

2),

r =
m1r2 +m2r1

2m1m2
, ∆r =

m2r1 −m1r2
2m1m2

.

С использованием преобразования (4.3) эта функция приводится к виду

R =
1

2
(b11ẏ

2
1 + 2b12 + b22ẏ

2
2), b11 = rb011 + ∆r b111, b22 = rb022 + ∆r b122, b12 = ∆r b112.

Относительная погрешность решения уравнений без учета b12 при малых ∆r вычис-
ляется по формуле

∆a

a
=

2b12

b11 + b22
≈ ∆r

r
k, k =

2b112

b011 + b022

=
4λ3(1− µ)2µ

(1 + λ2 + λ(−2 + 4µ))(1 + 2λµ+ λ2µ)
.

При фиксированном и достаточно малом значении параметра ρ границей области
изменения параметров λ, µ с относительной погрешностью менее 1 % является контур

k(λ, µ) = 0,01/ρ, ρ = ∆r/r. Параметры λ, µ, находящиеся вне контура, удовлетворяют
неравенству k(λ, µ) 6 0,01/ρ. В этой области переменных λ, µ относительная погреш-
ность решения без учета ∆r составляет менее 1 %. На рис. 6 представлены границы этих
областей при ρ = 0,020; 0,023; 0,026; 0,030.

6.2. Маятник со стержнями одинаковой длины. Для маятника со стержнями одина-
ковой длины при λ = 1 формулы упрощаются:

K = 2
√
µ, B1,2 =

1

1±√µ
, A1,2 = ε

1∓√µ
1±√µ

, E1,2 =
aΩ2

l

1±√µ
2µ

,
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Рис. 6. Границы областей изменения переменных λ, µ, для которых относи-
тельная погрешность решения составляет менее 1 %, при различных значениях
параметра ρ:
1 — ρ = 0,02, 2 — ρ = 0,023, 3 — ρ = 0,026, 4 — ρ = 0,03

y1 =
aΩ2

l

(1 +
√
µ)2 sin Ωτ

2(µ− (1 +
√
µ)µΩ2)

, y2 =
aΩ2

l

(1−√µ)2 sin Ωτ

2(µ− (1−√µ)µΩ2)
,

θ1 =
aΩ2

l

1− (1− µ)Ω2 sin Ωτ

1− 2Ω2 + (1− µ)Ω4
, θ2 =

aΩ2

l

sin Ωτ

1− 2Ω2 + (1− µ)Ω4
.

При частоте Ω2 = (1 − µ)−1 угловая переменная θ1 = 0, а при частоте Ω2 = 2(1 − µ)−1

переменная θ = (θ1 + θ2)/2 = 0.

7. Двухконтурная электрическая цепь. Рассмотрим двухконтурную электриче-
скую цепь (рис. 7).

Используем метод электромеханической аналогии [4]. Для этого введем вспомогатель-
ные функции q1(t), q2(t), q3(t). На участках электрической цепи, на которых имеются кон-
денсаторы, эти функции соответствуют их зарядам. На остальных участках производные
по времени от указанных функций соответствуют силе тока. Поэтому связь между ни-
ми определяется первым законом Кирхгофа q3(t) = q1(t) − q2(t). Это выражение верно с
точностью до постоянной, которую в случае нулевых начальных условий принимаем рав-
ной нулю. Для упрощения формул рассмотрим случай равных значений индуктивностей
L1 = L2 = L3 = L и равных достаточно малых сопротивлений R1 = R2 = R3 = ε.

i2

i3

C3

R3

L3i1

e1(t)

C1 L1 R1 L2 R2 C2

Рис. 7. Двухконтурная электрическая цепь



152 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2024. Т. 65, N-◦ 5

Запишем выражения для энергий данной системы и диссипативную функцию:

T =
L

2
(q′21 + q′22 + (q′1 − q′2)

2), Π =
1

2
(γ1q

′2
1 + γ2q

′2
2 + γ3(q

′
1 − q′2)

2),
(7.1)

R =
ε

2
(q′21 + q′22 + (q′1 − q′2)

2), N = q1U sin (ωt), γi =
1

Ci
, i = 1, 2, 3.

Здесь значения емкостей выражены через параметры γi. Найдем силу тока в цепи при
произвольных значениях индуктивности L, сопротивления ε и произвольных емкостях C1,
C2, C3. В этом случае выполняется условие (1.5) расщепления системы уравнений на два
независимых уравнения второго порядка.

Вследствие громоздкости расчетов решение данной задачи будем искать с использо-
ванием метода нормальных координат в общем виде. Для этого выразим коэффициенты
квадратичных форм (1.2) через параметры электрической системы:

a11 = a22 = 2L, a12 = −L, b11 = b22 = 2ε, b12 = −ε,
(7.2)

c11 = γ1 + γ3, c22 = γ2 + γ3, c12 = −γ3.

Запишем характеристическое уравнение (1.6):

aB2 + bB + c = 0, a = 3L2, b = −2L(γ1 + γ2 + γ3), c = γ2γ3 + γ1γ2 + γ1γ3

и найдем его корни:

B1,2 =
(γ1 + γ2 + γ3)∓K

3L
, K =

√
D, D = γ2

1 + γ2
2 + γ2

3 − c. (7.3)

В силу тождеств

4D = (2γ1 − γ2 − γ3)
2 + 3(γ2 − γ3)

2 = (2γ2 − γ3 − γ1)
2 + 3(γ3 − γ1)

2 =

= (2γ3 − γ1 − γ2)
2 + 3(γ1 − γ2)

2

дискриминант D равен нулю только при равенстве всех емкостей: γ1 = γ2 = γ3. Этот
вырожденный случай, когда корни характеристического уравнения равны B1 = B2, рас-
смотрен ниже. Полагая D > 0, имеем B1 < B2.

C использованием (7.2) нормализующее представление (1.8) и формы (7.1) приводятся
к виду

q1 = y1(−B1L+ γ3) + y2(−B2L+ γ3),
(7.4)

q2 = y1(−2LB1 + γ1 + γ3) + y2(−2LB2 + γ1 + γ3);

T =
L

2
(α1ẏ

2
1 + α2ẏ

2
2), R =

ε

2
(α1ẏ

2
1 + α2ẏ

2
2), Π =

1

2
(α1B1y

2
1 + α2B2y

2
2),

α1,2 =
2

3
(2K2 ± (γ1 + γ3 − 2γ2)K), (7.5)

N = q̇1U sin(ωt) = (ẏ1(−LB1 + γ3) + ẏ2(−LB2 + γ3))U sin (ωt).

Соответствующие уравнения Лагранжа сводятся к двум уравнениям второго порядка

d

dt

∂T

∂ẏi
+
∂R

∂ẏi
+
∂Π

∂yi
=
∂N

∂ẏi
, ⇒ ÿi + Aiẏi +Biy = Ei sinωt,

(7.6)

Ai = ε, Ei =
U(−LBi + γ3)

Lαi
, i = 1, 2,

а их решение имеет вид (1.11).
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Силы тока I1, I2 в первом и втором контурах находятся с помощью (7.4):

I1 =
dq1
dt

=
dy1
dt

(−LB1 + γ3) +
dy2
dt

(−LB2 + γ3),

(7.7)
I2 =

dq2
dt

=
dy1
dt

(−2LB1 + γ1 + γ3) +
dy2
dt

(−2LB2 + γ1 + γ3).

Рассмотрим амплитуды колебаний при малых диссипативных силах. Для перемен-
ных yi в (7.6) вне ε-окрестностей резонансов получаем следующие уравнения:

ÿi +Biy = Ei sinωt.

Их установившиеся решения имеют вид

yi =
Ei

Bi − ω2
sinωt.

С помощью (7.7) находим силы тока I1, I2 и их амплитуды a1, a2 в первом и втором

контурах:

Ii =
dqi
dt

= ai cosωt, i = 1, 2,

a1 =
E1ω

B1 − ω2
(−LB1 + γ3) +

E2ω

B2 − ω2
(−LB2 + γ3), (7.8)

a2 =
E1ω

B1 − ω2
(−2LB1 + γ1 + γ3) +

E2ω

B2 − ω2
(−2LB2 + γ1 + γ3).

С использованием (7.6) для амплитуд сил тока в первом и втором контурах получаем

a1 = Uω
( m1

B1 − ω2
+

n1

B2 − ω2

)
, a2 = Uω

( m2

B1 − ω2
+

n2

B2 − ω2

)
,

m1 =
(−B1L+ γ3)

2

α1
, n1 =

(−B2L+ γ3)
2

α2
,

m2 =
(−B1L+ γ3)(−2B1L+ γ1 + γ3)ω

α1
, n2 =

(−B2L+ γ3)(−2B2L+ γ1 + γ3)ω

α2
.

Коэффициенты m1 и n1 положительны, поэтому, как показано в п. 2, существует антире-
зонансная частота B1 < ω2

0 < B2, при которой ток в первом контуре не течет. Эта частота
вычисляется из уравнения a1 = 0 с помощью (7.8), (7.3) и (7.6):

ω2
0 =

γ2 + γ3

2L
.

Аналогично из уравнения a2 = 0 с использованием (7.8), (7.3) и (7.6) находим антирезо-
нансную частоту

ω2
0 =

γ3

L
.

8. Резонансы. В системе имеется две резонансные частоты: ω1 =
√
B1 и ω2 =

√
B2.

С помощью (7.3) для B1 и B2 > B1 получаем формулы

B1 =


γ1

L
+
γ2 − γ1

3L
(1 + ξ − z), γ2 > γ1,

γ1

L
− γ1 − γ2

3L
(1 + ξ + z), γ2 < γ1,

B2 =


γ1

L
+
γ2 − γ1

3L
(1 + ξ + z), γ2 > γ1,

γ1

L
− γ1 − γ2

3L
(1 + ξ − z), γ2 < γ1,

z =
√

1− ξ + ξ2.
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Рис. 8. Зависимости ϕ1(ξ) (1) и ψ1(ξ) (2)

Если не учитывать сопротивления, то при частоте ω1 обращается в бесконечность соб-
ственная функция y1, а при частоте ω2 — собственная функция y2. При малых сопро-
тивлениях собственные функции и их производные при соответствующих резонансных

частотах принимают большие значения:

yi = − Ei

ωiε
cosωit,

dyi

dt
=
Ei

ε
sinωit.

Силы тока I1, I2 и их амплитуды в первом и втором контурах при резонансной частоте ω1

вычисляются с помощью (7.7):

I1 = (−LB1 + γ3)
dy1
dt

= a1 sinω1t, a1 = U
(−LB1 + γ3)

2

Lα1ε
,

(8.1)

I2 = (−2LB1 + γ1 + γ3)
dy1
dt

= a2 sinω1t, a2 = U
(2LB1 − γ1 − γ3)(LB1 − γ3)

Lα1ε
.

Формула (8.1) для максимальной амплитуды силы тока в первом контуре при резо-
нансной частоте ω1 приводится к виду a1 = (U/ε)F1(γ1, γ2, γ3), где безразмерная функция
трех аргументов с помощью выражений для B1 (7.3) и для α1 (7.5) выражается через одну
безразмерную переменную ξ = (γ1 − γ3)/(γ1 − γ2) следующим образом:

F1(γ1, γ2, γ3) =


ϕ1(ξ) =

(1− 2ξ − z)2

6(2z2 − 2z + ξz)
, γ2 − γ1 > 0,

ψ1(ξ) =
(1− 2ξ + z)2

6(2z2 + 2z − ξz)
, γ2 − γ1 < 0.

(8.2)

Зависимости ϕ1(ξ) и ψ1(ξ) (8.2) представлены на рис. 8. При ξ = 1 функция ϕ1(ξ) прини-
мает наибольшее значение ϕ1(1) = 2/3, а функция ψ1(ξ) — значение ψ1(1) = 0.

Для амплитуды силы тока во втором контуре получаем зависимость a2 =
(U/ε)F2(γ1, γ2, γ3), где безразмерная функция трех аргументов F2(γ1, γ2, γ3) с помощью
выражений для B2 (7.3) и для α2 (7.5) также выражается через одну безразмерную пере-
менную ξ:

F2(γ1, γ2, γ3) =


ϕ2(ξ) =

1

6

(
1 +

−1 + 2ξ

z

)
, γ2 − γ1 > 0,

ψ2(ξ) =
1

6

(
1− −1 + 2ξ

z

)
, γ2 − γ1 < 0.

(8.3)

На рис. 9 представлены зависимости для двух ветвей функции F2(γ1, γ2, γ3) (8.3).
Функция ϕ2(ξ) достигает максимального значения, равного 1/2, при ξ → +∞, а функ-
ция ψ2(ξ) принимает максимальное значение, равное 1/2, при ξ → −∞.
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Рис. 9. Зависимости ϕ2(ξ) (1) и ψ2(ξ) (2)

При второй резонансной частоте ω2 максимальные амплитуды сил тока в первом

и втором контурах определяются аналогичными формулами a1 = (U/ε)F̃1(γ1, γ2, γ3),
a2 = (U/ε)F̃2(γ1, γ2, γ3). Функции F̃1 и F̃2 отличаются от функций F1 и F2 только заменой

неравенств γ2 − γ1 > 0 и γ2 − γ1 < 0 на противоположные.
Таким образом, при L1 = L2 = L3 = L, R1 = R2 = R3 = ε наибольшая амплитуда

силы тока, равная a1 = 2U/(3ε), достигается при одинаковых емкостях конденсаторов.

В этом случае резонансные частоты совпадают: ω1 = ω2 = 1/
√
LC. Данный предельный

вырожденный случай реализуется при равных емкостях γ1 = γ2 = γ3 = γ. В этом случае
неприменимо преобразование (7.4), так как его определитель равен нулю. Квадратные
формы (7.1) и уравнения Лагранжа имеют вид

T =
L

2
(q′21 + q′22 + (q′1 − q′2)

2), Π =
γ

2
(q′21 + q′22 + (q′1 − q′2)

2),

R =
ε

2
(q′21 + q′22 + (q′1 − q′2)

2), N = q′1U sin (ωt),

2Lq̈1 − Lq̈2 + 2εq̇1 − εq̇2 + 2γq1 − γq2 = U sin (ωt),

−Lq̈1 + 2Lq̈2 − εq̇1 + 2εq̇2 − γq1 + 2γq2 = 0.

Отсюда для сил тока получаем систему уравнений

2LÏ1 − LqÏ2 + 2εqİ1 − εqİ2 + 2γI1 − γI2 = ωU cos (ωt),

−LÏ1 + 2LÏ2 − εİ1 + 2εİ2 − γI1 + 2γI2 = 0.

Выполняя прямую проверку, нетрудно показать, что функции I1 = (2U/(3ε)) sin (ωt), I2 =
(U/(3ε)) sin (ωt) являются точным решением этой системы. Найденная амплитуда силы
тока в первом контуре для случая трех равных емкостей является наибольшей.

Заключение. Представлена методика аналитического исследования вынужденных
колебаний механических систем с двумя степенями свободы путем перехода к нормаль-
ным координатам. Показано, что в механической задаче существует система координат,
в которой дифференциальные уравнения движения и их решение имеют простой вид. Это
достигается путем одновременной диагонализации трех матриц: кинетической, потенци-
альной энергии и диссипативной функции. С использованием упрощенных предложенным
способом уравнений движения проведен полный анализ вынужденных малых колебаний

двойного маятника с горизонтальной вибрацией точки подвеса. В задаче имеются четы-
ре произвольных параметра: две длины и две массы. Представлен полный анализ этой
системы. Наиболее простой вид имеют выражения для антирезонансных частот маятни-
ка

√
(g(l1 + l2)/(l1l2))(m1 +m2)/m1 и

√
(g/l2)(m1 +m2)/m1, при которых остаются непо-

движными нижняя и верхняя массы маятника соответственно. Достаточно простой вид
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имеют выражения для частот вибрации, при которых соответствующие угловые коорди-
наты имеют максимальные амплитуды.

Проведено исследование более сложной задачи о течении переменного тока в двух-
контурной электрической цепи с пятью произвольными параметрами: индуктивностью,
сопротивлением и тремя различными емкостями. С помощью предложенной методики мак-
симальная амплитуда силы тока выражена через функцию одного аргумента. Доказано,
что при фиксированной мощности источника переменного тока U и сопротивлении ε мак-
симальная амплитуда силы тока равна 2U/(3ε) и достигается при равных емкостях. Най-

дены антирезонансные частоты
√

(C2 + C3)/(2LC2C3) и
√

1/(LC3). При первой частоте
ток не течет в первом контуре, при второй — во втором контуре.
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