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В постановке Лейбензона – Ишлинского в осесимметричном случае решается задача о потере 

устойчивости выработки, имеющей первоначальную форму кругового цилиндра. Предпола-

гается, что в момент потери устойчивости образуются выпучины, обращенные внутрь выра-

ботанного пространства. Массив пород вокруг выработки рассматривается в одном из трех 

состояний: упругом, упругопластическом, в состоянии запредельного деформирования. Опре-

деляется критическая нагрузка, зависящая от длины выработки, радиуса и физико-механи-

ческих свойств массива пород. 
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In the axisymmetric case of Leibenson – Ishlinsky formulation, the problem of stability loss in a 

mine working with initial circular cylindrical shape is solved. It is assumed that at the moment of 

stability loss bulges are formed, facing the inside of the mined-out space. The rock mass around the 

mine working is considered in one of three states: elastic, elastoplastic and post-limiting deformation. 

The critical load depending on the length of working, radius and physical/mechanical rock properties 

is determined. 
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Вопросы потери устойчивости горных выработок являются принципиальными для оценки 

безопасного состояния горных работ. В некоторых работах ее связывают с разрушением 

массива пород вокруг выработок [1 – 6], в других вводят коэффициенты устойчивости массива 

пород [7 – 10]. Исторически сложилось так, что потеря устойчивости рассматривалась как 

изменение формы конструкции за счет достижения определенных условий. Если говорить о 

потере устойчивости стержней при сжатии, то существует критическая нагрузка по Эйлеру, 

критическая нагрузка по Карману [11], есть критическая нагрузка по Шенли [11]. Аналогичные 

нагрузки рассматриваются и для других конструкций. 
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Из всех постановок, относящихся к исследованию потери устойчивости массивных конструк-

ций, выделяется постановка задач теории устойчивости, предложенная Л. С. Лейбензоном [12] 

и А. Ю. Ишлинским [13]. Суть ее заключается в рассмотрении двух возможных продолжений 

процессов деформирования конструкций — основного процесса, при котором не происходит 

изменение формы нагружаемой конструкции и другого, бесконечно близкого к основному,  

с изменением геометрии конструкции в момент потери устойчивости. Этот подход получил 

развитие в [14, 15]. В данной работе он применяется для оценки устойчивости массива пород  

с цилиндрической выработкой длиной H  и радиусом R . Предполагается, что до момента потери 

устойчивости выработка была цилиндрической формы, в момент потери устойчивости наряду  

с цилиндрической формой образуются другие формы с выпучинами, направленными во внутрь 

выработанного пространства. 

Основные уравнения задачи. Рассматривается массив горных пород с цилиндрической 

выработкой радиуса R и длиной H.  

Предполагается, вокруг выработки до момента потери устойчивости имеется однородное 

напряженно – деформированное состояние, описываемое тензорами ,T T   вида: 
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где 0r rz      , r   , 0rz  , z P    (Р > 0). 

Для формулировки определяющих соотношений среды при продолжающемся нагружении 

введем тензорный базис с ортами 
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Здесь T1 соответствует шаровому тензору, остальные тензоры-орты — девиатору. 

Состоянию (1) в базисе (2) соответствуют координаты 
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Из (3) следует, что до момента потери устойчивости нагружение происходило вдоль ортов 

T1 и T4, причем вдоль орта T1 деформация изменялась упруго в силу закона упругого изменения 

объема, справедливого для первоначально изотропной среды. Основное нагружение происхо-

дит здесь вдоль орта T4 с усилием S4, и с ростом деформации на величину 4. В других направ-

лениях никаких деформаций не происходит. 

Это означает следующее. Если за счет одноосного сжатия среды будет достигнуто 

пластическое состояние, то оно будет продолжиться в направлении орта T4, а в направлениях 

других ортов T2 и T3 возможны лишь приращения упругих деформаций. Учитывая это обстоя-

тельство, запишем определяющие соотношения для дополнительных напряжений и деформа-

ций, характеризующих возмущенное состояние массива пород аналогично [12, 13]: 
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где / (1 2 )K E   ; E  — модуль Юнга;   — коэффициент Пуассона, 
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где 2  — модуль упругого сдвига; 2 p  — касательный модуль сдвига на диаграмме дефор-

мирования ( )z zf     , полученной при одноосном сжатии образцов породы вдоль их об-

разующих, где f — функция переменной z   . Представленные уравнения соответствуют 

теории пластического течения [11]. Для деформационной теории пластичности 2 2 c  , где 

2 c  — секущий модуль сдвига на указанной диаграмме. 

Определяющие соотношения перепишем как 
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Используем соотношения Коши 
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уравнения равновесия 
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Подставим (6) и (7) в (8), как результат получаем следующую систему уравнений для отыс-

кания приращений смещений u и   в цилиндрической системе координат: 
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где для упрощения записи символы приращений со значком убраны. 

Дальше, согласно [12, 13] требуется найти общее решение системы (9), чтобы затем по ним 

найти деформации (7), напряжения (6), затем удовлетворить граничным условиям задачи и 

найти критическую нагрузку. 

Решение системы (9) разыскиваем в виде 

 1 0[ ch( ) sh( )] ( ), [ ch( ) sh( )] ( )u A pz pz Z r B pz pz Z r          , (10) 

где A, B, ,  — произвольные постоянные,   — характеристическое число, подлежащее опре-

делению, 1( )Z r  — цилиндрическая функция первого порядка, 1( )Z r — цилиндрическая функ-

ция нулевого порядка. 

Вычисляя производные от функции u,  по координате r на основании известных свойств 

цилиндрических функций: 1 1 0
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    , 0 1( ) ( )Z r Z r    , получаем систему 

двух однородных линейных уравнений для определения двух неизвестных констант A и B: 
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Для существования ненулевого решения (11) ее определитель должен обратиться в нуль, 

т. е. должно быть выполнено условие 

 4 2( 3 ) ( / ) (3 8 )( / ) ( 4 ) 0p p p pK p K K p K                 . (12) 

Кроме этого получаем общее решение системы (11) в виде  

 B L A  ,  (13) 
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; A  — произвольная константа. 

Чтобы получить корни (12), введем обозначение  

 
2( / )p y  . (14)  

Тогда величина y на основании (12) должна удовлетворять квадратному уравнению 
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Корнями (15) служат в общем случае два комплексных числа: 
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где i  — мнимая единица. 

Зная y, с применением (14) находим корни  / p. Для их формулировки введем вспомога-

тельные обозначения: 
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Тогда на этой основе получаем выражения корней характеристического уравнения (12): 
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Корни характеристического уравнения (12) получаются кратными, если 
p  . Тогда  = 1 

 = 0 и получаем две пары совпадающих корней: 
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Во всех других случаях корни разные. 

Исходя из этого обстоятельства, в случае разных корней характеристического уравнения (12), 

общее решение (9) записываем как сумму четырех слагаемых: 

 
4 4

1 0

1 1

( )( ch( ) sh( ), ( )( ch( ) sh( ),i i i i

i i

u A Z r pz pz B Z r pz pz      
 

      (19) 

где между коэффициентами iA  и iB  выполняется соотношение типа (13), справедливое для 

всех 1,..., 4i  . 
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Исследуем теперь характер изменения величин u и  по координатам r и z. Будем считать, 

что  — нечетная функция координаты z, где / 2 / 2H z H   , H — длина выработки. Это 

означает, что ( / 2) ( / 2)H H    , т. е. смещения  на концах выработки разнонаправлены. 

Отсюда следует, что коэффициент  в (19) можно положить равным нулю, а коэффициент  

тогда в силу произвольности констант Bi и Ai ( 1,..., 4i  ) полагаем равным 1. Далее функции u  

и  по координате z должны быть ограниченными. Для этого необходимо, чтобы величина р 

была величиной чисто мнимой. Если положить 

 p i
H


 , (20) 

тогда смещение u на концах выработки будет нулевым. Это происходит в силу определения 

косинусов и синусов, поскольку 

  sh( ) sin ,   ch( ) cos .
z z

pz i pz
H H

 
   (21) 

С учетом (20) находим, что корни характеристического уравнения (12) связаны условиями: 

 1 4 2 3( ) ,   ( ) .i i
H H

 
                 (22) 

Учтем, что функция  должна быть четной функцией координаты r, т. е. (r) = (– r). Отсюда 

следует, что должны совпадать по величине коэффициенты 

 1 4B B ,   2 3B B . (23) 

Обратимся к зависимостям между коэффициентами Аk (k = 1, …, 4) в выражении для u. 

Поскольку справедливы соотношения (13), (22), (23), то из них вытекает, что коэффициенты A1 

и A4 должны удовлетворять условию A1 = – A4. Точно также A3 = – A2, потому что 1 = – 4,  

3 = – 2. Далее, так как функция Z0(r) — четная функция своего аргумента, то функция 

1 0( ) ( )Z r Z r    — нечетная. По этой причине получаем следующие представления для функ-

ций u и : 

 1 0 1 2 0 22[ ( ) ( )]sh( ),B Z r B Z r pz       1 1 1 2 1 22[ ( ) ( )]ch( ),u A Z r A Z r pz    (24) 

Применим выражения (24) для определения критической нагрузки в случае потери устой-

чивости массива пород с выработкой. На ее поверхности имеем краевые условия [12, 13] 

 0,r r R



     * ,rz r R

u
P

z





  


 (25) 

где *z P    — критическое значение нагрузки, при которой возможна потеря устойчивости 

массива пород с выработкой. 

Согласно (6), (7), (9) получаем выражения: 

1 1
1 0 1 1

3( )
2 ( )

2 3

pr
KZ r

Z r A
r

 
  

   
      

 
 

 1 2
2 0 2 2 1 0 1 2 0 2

3 2( )
2 ( ) ( ) ( ) cos ,

3 3

p pK KZ r i z
Z r A B Z r B Z r

r H H

    
    

      
             

 (26) 

  1 1 1 2 1 2( ) ( ) sh
2

r z u u z
A Z r A Z r

z r H H

  
   

   
       

  
 

  1 1 1 1 2 2 1 2( ) ( ) sin .
z

B Z r B Z r i
H


        (27) 

Вычисляем производную  

    1 1 1 2 1 2

1
( ) ( ) sin .

2

zu A Z r A Z r
z H H

 
     


 (28) 
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Подставляя (26) – (28) в (25), находим линейную алгебраическую систему уравнений при  

r = R, связывающую неизвестные константы 1 2 1 2, , ,A A B B . Определитель системы 

 
11 12

21 22

 

 
  , (29) 

где  

arctg

11 1 0 1 0

1

3 2
2

3 3

i
p pK KR H R R

e Z i i Z i L Z i
H R p H H




     

    


 
  

 
           

            
          

, 

arctg

12 1 0 2 0

2

3 2
2

3 3

i
p pK KR H R R

e Z i i Z i L Z i
H R p H H




     

    


 
   

 
           

            
          

, 

arctg arctg

21 1 1 1

1

1
i iP R R

Z i e L Z i e
H p H

 

   
  



   
    

    

   
                           

   

, 

arctg arctg

22 1 2 1

2

1
i iP R R

Z i e L Z i e
H p H

 

   
  



   
      

    

   
                     

   

. 

Параметры L1, L2 определяются (13). Отсюда находим критическую нагрузку P = P*. Что 

касается выбора цилиндрических функций, то они, как и дополнительные смещения, должны 

убывать на бесконечности, стремясь к нулю. Это означает, что их надо искать в классе моди-

фицированных функций вида ( )nK z . Это означает, что 

arctg arctg

0 0

2i iR i R
Z i e K e

H H

 

  
 



   
    

   

    
     
    
    

,   
arctg arctg

1 1

2i iR R
Z i e K e

H H

 

  
 



   
    

   

    
     
    
    

. 

С учетом указанной замены получаем значения критической нагрузки. 

Результаты моделирования. На рис. 1 представлены зависимости предельной нагрузки 

P* / 2 от безразмерного параметра H / R, характеризующего форму выработки. 

 

Рис. 1. Зависимость предельной нагрузки P
*
 от безразмерного параметра, характеризующего 

форму образца. Модуль Юнга E = 6107: а — р = 0; б — р = – 10  

На рис. 2 представлены зависимости предельной нагрузки P*/
 
2 от безразмерного параметра 

H / R, характеризующего форму выработки, в случае упругости р = , модуль Юнга E = 6107.  
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Рис. 2. Зависимость предельной нагрузки P* от безразмерного параметра, характеризующего форму 

образца (E = 6107, р = )  

ВЫВОДЫ 

Решена задача о потере устойчивости массива пород с цилиндрической выработкой. При 

этом решение для смещений u и  стремится к нулю при возрастании радиальной координаты r. 

Приведены результаты расчетов критической нагрузки в зависимости от значений касатель-

ного модуля 2р и коэффициента Пуассона . 
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