2014. Том 55, № 2

Март – апрель

C. 339 – 347

УДК 541.49:548.736:539.19

СТРУКТУРА СОЛЬВАТА Dy(Phen)(C₄H₈NCS₂)₃·3CH₂Cl₂. МАГНИТНЫЕ СВОЙСТВА И ФОТОЛЮМИНЕСЦЕНЦИЯ КОМПЛЕКСОВ Ln(Phen)(C₄H₈NCS₂)₃ (Ln = Sm, Eu, Tb, Dy, Tm)

Ю.А. Брылёва¹, Л.А. Глинская¹, И.В. Корольков¹, А.С. Богомяков², М.И. Рахманова¹, Д.Ю. Наумов¹, Т.Е. Кокина^{1,3}, С.В. Ларионов¹

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск E-mail: tapzu_bryleva@mail.ru ²Институт "Международный томографический центр" СО РАН, Новосибирск ³Новосибирский государственный университет

Статья поступила 17 мая 2013 г.

Найдено, что дифрактограммы комплексов I—V состава Ln(Phen)(C₄H₈NCS₂)₃ (Ln = Sm, Eu, Tb, Dy и Tm соответственно) подобны. Выращены монокристаллы соединения Dy(Phen)(C₄H₈NCS₂)₃·3CH₂Cl₂ (VI). По данным PCA в структуре VI элементарная ячей-ка содержит две кристаллографически независимые молекулы комплекса [Dy(Phen)× \times (C₄H₈NCS₂)₃] и шесть молекул CH₂Cl₂. Координационный полиэдр N₂S₆ атома Dy — искаженная антипризма. В интервале 2—300 К изучены магнитные свойства комплексов I—V. Установлено, что комплекс III переходит в магнитно-упорядоченное состояние, величина спонтанной намагниченности при 2 К составляет 24 600 Гс · см³/моль. Соединения I—IV при 300 К обладают фотолюминесценцией в видимой области спектра. Найдено, что интенсивность фотолюминесценции комплекса I в несколько раз больше интенсивности ФЛ комплексов II—IV.

Ключевые слова: лантаниды, пирролидиндитиокарбамат, Phen, разнолигандный комплекс, структура, магнитные свойства, фотолюминесценция.

Важную роль в создании люминесцентных устройств играют комплексы лантанидов (Ln) с органическими лигандами [1-5]. Опубликованные работы обычно посвящены изучению люминесценции комплексов Ln с О- и N-донорными лигандами. Лишь недавно начато исследование строения и люминесценции комплексов Ln с S-содержащими лигандами. Получены люминесцирующие соединения Ln с монотиолатным реагентом 2-меркаптобензтиазолом, анионы которого по данным PCA координируются через атомы S и N [6]. Внимание привлечено к комплексам Ln с 1,1-дитиолатными лигандами (дитиокарбаматами, дитиофосфинатами, дитиофосфатами). Показано, что комплекс Na[Eu(S₂CNMe₂)₄]·3,5H₂O обладает фотолюминесценцией (ФЛ) при температуре < 100 К [7]. Известно, что введение в состав комплексов Ln флуорофоров — азотистых гетероциклов 1,10-фенантролина (Phen) и 2,2'-бипиридила (2,2'-Віру) увеличивает интенсивность люминесценции соединений. В [8,9] описаны синтез и структура комплексов $[Eu(L)(Et_2NCS_2)_3]$ (L = Phen, 2,2'-Bipy), имеющих координационный узел EuN₂S₆. Найдено, что комплексы [Eu(L)(Et₂NCS₂)₃] и Eu(Phen)(Ph₂NCS₂)₃ проявляют ФЛ при 300 К [10]. Авторы [11] исследовали при 300 К ФЛ разнолигандных комплексов Ln (La, Pr, Sm, Eu, Gd, Tb, Dy), содержащих различные дитиокарбаматные лиганды $R_2NCS_2^-$ (R = Et, *i*-Bu и Bz) и азотистые гетероциклы L и 5-Cl-Phen. Интенсивность ФЛ зависит от типа заместителей в ли-

[©] Брылёва Ю.А., Глинская Л.А., Корольков И.В., Богомяков А.С., Рахманова М.И., Наумов Д.Ю., Кокина Т.Е., Ларионов С.В., 2014

ганде $R_2NCS_2^-$ и изменяется в ряду: Bz > Et > i-Bu. Кроме того, эти авторы определили кристаллические структуры комплексов [Sm(Phen)(*i*-Bu₂NCS₂)₃], [Pr(Phen)(Et₂NCS₂)₃] и [Pr(Phen)× (i-Bu₂NCS₂)₃] [11]. Представлялось интересным изучить строение и свойства разнолигандных комплексов Ln с дитиокарбаматным лигандом, имеющим фрагмент азотистого гетероцикла. В качестве такого лиганда доступным является пирролидиндитиокарбамат-ион (C₄H₈NCS₂). Синтез разнолигандных комплексов Ln(Phen)(C₄H₈NCS₂)₃ (Ln = Sm, Eu, Tb, Dy, Tm) описан в [12—14].

Цель данной работы — исследование строения, магнитных свойств и ФЛ этих комплексов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза комплексов использовали $Sm(NO_3)_3 \cdot 6H_2O$ квалификации ЧДА, $Eu(NO_3)_3 \cdot 6H_2O$, $Tm(NO_3)_3 \cdot 4H_2O$ квалификации XЧ, $Tb(NO_3)_3 \cdot 5H_2O$, $Dy(NO_3)_3 \cdot 5H_2O$ квалификации Ч, Phen · H₂O ЧДА, C₄H₈NCS₂NH₄ фирмы Aldrich. Растворители: *i*-PrOH OCЧ, CH₂Cl₂ XЧ.

Синтез *трис*(пирролидиндитиокарбамато)(1,10-фенантролин)самария(III) Sm(Phen)× ×(C₄H₈NCS₂)₃ (I). К раствору 0,11 г (0,25 ммоля) Sm(NO₃)₃·6H₂O в 2 мл *i*-PrOH при перемешивании добавляли раствор 0,16 г (1,0 ммоль) C₄H₈NCS₂NH₄ в 25 мл смеси *i*-PrOH—CH₂Cl₂ (2:3 по объему). Выпавший осадок NH₄NO₃ отфильтровывали на бумажном фильтре, затем к фильтрату добавляли раствор 0,05 г (0,25 ммоля) Phen·H₂O в 2 мл *i*-PrOH. Смесь перемешивали в течение 1 ч. Осадок отфильтровывали и сушили в эксикаторе над ангидроном. Продукт перекристаллизовывали из 8 мл CH₂Cl₂, растворитель испаряли до минимального объема под вентилятором. Выход 0,13 г (70 %). Найдено, %: С 42,1, Н 4,0, N 9,1. Вычислено для C₂₇H₃₂N₅S₆Sm, %: С 42,2, Н 4,2, N 9,1. Молекулярная масса в растворе (CHCl₃): найдено — 781; для C₂₇H₃₂N₅S₆Sm вычислено — 769.

Синтез *трис*(пирролидиндитиокарбамато)(1,10-фенантролин)европия(III) Eu(Phen)× ×(C₄H₈NCS₂)₃ (II), *трис*(пирролидиндитиокарбамато)(1,10-фенантролин)тербия(III) Tb(Phen)(C₄H₈NCS₂)₃ (III), *трис*(пирролидиндитиокарбамато)(1,10-фенантролин)диспрозия(III) Dy(Phen)(C₄H₈NCS₂)₃ (IV), *трис*(пирролидиндитиокарбамато)(1,10-фенантролин)тулия(III) Tm(Phen)(C₄H₈NCS₂)₃ (V) проводили по вышеописанной методике. Выход 70, 70, 80 и 40 % соответственно. Для II найдено, %: C 42,3, H 4,7, N 9,1. Вычислено для C₂₇H₃₂N₅S₆Eu, %: C 42,1, H 4,2, N 9,1. Для III найдено, %: C 42,0, H 4,1, N 8,9. Вычислено для C₂₇H₃₂N₅S₆Tb, %: C 41,7, H 4,1, N 9,0. Для IV найдено, %: C 40,8, H 4,1, N 8,8. Вычислено для C₂₇H₃₂N₅S₆Dy, %: C 41,1, H 4,1, N 9,0. Для V найдено, %: C 41,1, H 4,4, N 8,8. Вычислено для C₂₇H₃₂N₅S₆Tm, %: C 41,2, H 4,1, N 8,9.

Микроанализы на содержание С, Н, N выполнены на анализаторе Euro EA 3000. Молекулярную массу комплекса I в растворе (CHCl₃) определяли методом парафазной осмометрии на приборе фирмы Knauer. Рентгенофазовый анализ (РФА) поликристаллов комплексов I—V проводили на дифрактометре Shimadzu XRD-7000 (Cu K_{α} -излучение, Ni фильтр, диапазон 5—60° 2 θ , шаг 0,03° 2 θ , накопление в точке 1 с). Для проведения РФА осадки комплексов I—V получали при перекристаллизации путем медленного испарения растворителя (без применения вентилятора). Образцы для исследования готовили следующим образом: поликристаллы истирали в агатовой ступке в присутствии гептана, полученную суспензию наносили на полированную сторону стандартной кварцевой кюветы. После испарения гептана образец представлял собой тонкий ровный слой (толщина ~100 мкм).

При медленном испарении раствора комплекса IV в CH₂Cl₂ вырастили монокристаллы соединения **Dy(Phen)(C₄H₈NCS₂)₃·3CH₂Cl₂ (VI)**, пригодные для PCA. Для монокристалла соединения VI параметры элементарной ячейки и интенсивности рефлексов измеряли при низкой температуре (150 K) на автодифрактометре Bruker X8 Арех CCD, оснащенном двухкоординатным детектором, по стандартной методике (Мо K_{α} -излучение, $\lambda = 0,71073$ Å, графитовый монохроматор). Кристаллографические характеристики, детали рентгеновских дифракционных экспериментов и уточнение структуры VI приведены в табл. 1. Структура расшифрована прямым ЖУРНАЛ СТРУКТУРНОЙ ХИМИИ. 2014. Т. 55, № 2

Таблица 1

$C_{30}H_{38}Cl_6DyN_5S_6$
1036,21
150(2)
Триклинная
<i>P</i> (-1)
10,5611(3), 19,5411(8), 20,0794(8);
88,890(1), 79,545(1), 87,668(1)
4071,4(3)
4; 1,690
2,567
0,25×0,08×0,08
2068
1,96—26,37
26946 / 16313; 0,0353
11945
864
1,059
0,0495, 0,1082
0,0781, 0,1171
1,878 / -1.543

Кристаллографические характеристики, детали эксперимента и уточнения структуры для соединения Dy(Phen)(C₄H₈NCS₂)₃·3CH₂Cl₂ (VI)

методом и уточнена полноматричным МНК в анизотропном для неводородных атомов приближении по комплексу программ SHELXL-97 [15]. Позиции всех атомов Н определены из разностных синтезов Фурье и включены в уточнение в модели "наездника". Значения основных межатомных расстояний и валентных углов приведены в табл. 2. Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджской базе структурных данных (ССDС № 939347) и могут быть получены у авторов.

Магнитную восприимчивость χ образцов комплексов **I**—V измеряли на SQUID-магнетометре MPM*SXL* фирмы Quantum Design в температурном интервале 2—300 К при напряженности магнитного поля 5 кЭ. Парамагнитные составляющие магнитной восприимчивости определяли с учетом диамагнитного вклада, оцененного из констант Паскаля. Эффективный магнитный момент μ_{eff} вычисляли по формуле $\mu_{eff} = [3k\chi T/(N_A \mu_B^2)]^{1/2}$, где N_A , μ_B и k—число Авогадро, магнетон Бора и постоянная Больцмана соответственно.

Спектры возбуждения люминесценции и ФЛ твердых образцов комплексов **I**—IV регистрировали на флуоресцентном фотометре Cary Eclipse Varian при 300 K, V = 600 B (I, III), V = 800 B (II, IV), щель = 5 нм. Спектры ФЛ для комплексов I—IV записаны при $\lambda_{воз6} = 330$ нм.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Комплексы **I**—V мы получили по методике, отличающейся от методики [14]. Исходными солями служили нитраты, а не хлориды Ln. Вместо абсолютного EtOH использовали смесь *i*-PrOH—CH₂Cl₂; осадок NH₄NO₃ отфильтровывали. В отличие от [14] приведены выходы комплексов.

По данным PCA кристаллическая структура соединения VI состоит из кристаллографически независимых молекул 1 и 2 одноядерного комплекса [Dy(Phen)(C₄H₈NCS₂)₃] и молекул CH₂Cl₂, расположенных в общих позициях. Элементарная ячейка содержит две молекулы ком-

Таблица 2

Связь	<i>d</i> , Å	Связь	Связь <i>d</i> , Å		d, Å
Dy(1)—N(11F)	2,508(5)	N(31)—C(31)	1,325(7)	S(51)—C(51)	1,713(6)
Dy(1)—N(12F)	2,535(4)	N(31)—C(35)	1,465(8)	S(52)—C(51)	1,705(6)
Dy(1)—S(22)	2,788(2)	N(31)—C(32)	1,478(7)	S(61)—C(61)	1,732(5)
Dy(1)—S(11)	2,797(2)	Cl(1)—C(1S)	1,735(8)	S(62)—C(61)	1,730(6)
Dy(1)—S(31)	2,798(2)	Cl(2)—C(1S)	1,747(7)	N(41)—C(41)	1,321(8)
Dy(1)—S(21)	2,830(1)	Cl(3)—C(2S)	1,627(9)	N(41)—C(42)	1,457(8)
Dy(1)—S(12) 2,857(2)		Cl(4)—C(2S)	1,763(9)	N(41)—C(45)	1,473(8)
Dy(1)—S(32)	2,870(2)	Cl(5)—C(3S)	1,751(9)	N(51)—C(51)	1,316(7)
S(11)—C(11)	1,732(6)	Cl(6)—C(3S)	1,735(9)	N(51)—C(52)	1,464(8)
S(12)—C(11)	1,705(6)	Dy(2)—N(32F)	2,524(5)	N(51)—C(55)	1,483(8)
S(21)—C(21)	1,694(7)	Dy(2)—N(31F)	2,563(5)	N(61)—C(61)	1,301(7)
S(22)—C(21)	1,730(6)	Dy(2)—S(61)	2,779(2)	N(61)—C(65)	1,464(7)
S(31)—C(31)	1,715(6)	Dy(2)—S(42)	2,810(2)	N(61)—C(62)	1,473(7)
S(32)—C(31)	1,714(6)	Dy(2)—S(51)	2,817(2)	Cl(7)—C(4S)	1,740(9)
N(11)—C(11)	1,324(7)	Dy(2)—S(52)	2,838(2)	Cl(8)—C(4S)	1,753(10)
N(11)—C(12)	1,474(8)	Dy(2)—S(62)	2,847(1)	Cl(9)—C(5S)	1,775(9)
N(11)—C(15)	1,477(8)	Dy(2)—S(41)	2,857(2)	Cl(10)—C(5S)	1,685(9)
N(21)—C(21)	1,318(8)	S(41)—C(41)	1,706(6)	Cl(11)—C(6S)	1,766(11)
N(21)—C(25)	1,470(9)	S(42)—C(41)	1,723(6)	Cl(12)—C(6S)	1,715(13)
N(21)—C(22)	1,478(8)				
Угол	ω, град.	Угол	ω, град.	Угол	ω, град.
N(11F)—Dy(1)—N(12F)	65,9(2)	N(12F)—Dy(1)—S(21)	134,8(1)	N(32F)—Dy(2)—S(51)	144,7(1)
N(11F)—Dy(1)—S(22)	144,5(1)	S(22)—Dy(1)—S(21)	63,1(1)	N(31F)— $Dy(2)$ — $S(51)$	81,2(1)
N(12F)—Dy(1)—S(22)	83,6(1)	S(11)—Dy(1)—S(21)	85,2(1)	S(61)—Dy(2)—S(51)	95,4(1)
N(11F)—Dy(1)—S(11)	85,9(1)	S(31)—Dy(1)—S(21)	86,1(1)	S(42)—Dy(2)—S(51)	111,0(1)
N(12F)—Dy(1)—S(11)	72,8(1)	N(11F)—Dy(1)—S(12)	79,2(1)	N(32F)— $Dy(2)$ — $S(52)$	152,4(1)
S(22)—Dy(1)—S(11)	102,8(1)	N(32F)—Dy(2)—N(31F)	65,1(2)	N(31F)— $Dy(2)$ — $S(52)$	136,7(1)
N(11F)—Dy(1)—S(31)	86,5(1)	N(32F)—Dy(2)—S(61)	84,5(1)	S(61)—Dy(2)—S(52)	87,64(5)
N(12F)—Dy(1)—S(31)	133,3(1)	N(31F)—Dy(2)—S(61)	72,4(1)	S(42)—Dy(2)—S(52)	83,88(5)
S(22)—Dy(1)—S(31)	103,1(1)	N(32F)—Dy(2)—S(42)	87,1(1)	S(51)—Dy(2)—S(52)	62,40(5)
S(11)—Dy(1)—S(31)	145,0(1)	N(31F)—Dy(2)—S(42)	133,6(1)	N(32F)— $Dy(2)$ — $S(62)$	78,9(1)
N(11F)—Dy(1)—S(21)	152,4(1)	S(61)—Dy(2)—S(42)	144,1(1)		

Основные межатомные расстояния и валентные углы в структуре соединения VI

плекса (1 и 2), а также шесть молекул CH₂Cl₂, одна из которых разупорядочена. Молекулярная структура комплекса, содержащего атом Dy(1) (молекула 1), показана на рис. 1. Комплекс, содержащий атом Dy(2) (молекула 2), имеет аналогичную структуру с незначительно отличающимися межатомными расстояниями (см. табл. 2). В координационную сферу атома Dy входят два атома N бидентатно-хелатообразующего лиганда Phen с интервалом расстояний Dy—N 2,508(5)—2,563(5) Å и шесть атомов S трех бидентатно-хелатообразующих лигандов $C_4H_8NCS_2^$ с интервалом расстояний Dy—S 2,779(2)—2,870(2) Å. Координационный полиэдр N_2S_6 атома Dy (KЧ = 8) — искаженная антипризма. При координации лигандов образуются три 4-членных хелатных цикла DyS₂C и 5-членный хелатный цикл DyN₂C₂. В плоскостях, проходящих через атомы хелатных циклов DyS₂C, максимальное значение отклонения атомов равно 0,034(2) Å

Рис. 1. Строение молекулы [Dy(Phen)(C₄H₈NCS₂)₃] в кристалле VI с обозначениями неводородных атомов

в молекуле 1 и 0,048(2) Å — в молекуле 2. Двугранные углы между плоскостями SDyS и SCS равны 4,0(1), 1,7(5), 6,5(5)° (молекула 1) и 9,0(4), 6,0(5), 2,3(1)° (молекула 2). Следовательно, наблюдается значительная деформация циклов DyS₂C. Хелатные циклы DyN₂C₂ практически плоские, среднее отклонение от среднестатистической плоскости равно 0,010(4) Å для 1 и 0,029(4) Å для 2. Все пирролидиновые циклы C₄H₈N лигандов C₄H₈NCS₂⁻ имеют конформация циклов C отклоняется от плоскости из четырех других атомов циклов, максимальное отклонение составило 0,56(1) Å. Кольца молекул Phen имеют практически плоское строение. Среднее отклонение атомов от их среднеквадратичной плоскости равно 0,021(5) Å в молекуле 1 и 0,025(6) Å в молекуле 2.

На рис. 2 представлен фрагмент взаимного расположения соседних молекул [Dy(Phen)× $(C_4H_8NCS_2)_3$] в кристалле. Пары параллельных плоскостей около центров симметрии, в которых расположены молекулы Phen, имеют расстояние d = 3,406 Å, расстояния между центрами колец Phen r(1) = 4,688 Å (молекула 1), r(2) = 4,827 Å (молекула 2). Эти значения, согласно работе [16], соответствуют π — π -взаимодействиям между циклами Phen, что приводит к образованию ансамбля из двух молекул (1 или 2) комплекса. Молекулы 1, размноженные центром (0,5, 0,5, 0,5), имеют расстояние Dy(1)... Dy(1), равное 8,484(4) Å. Расстояние Dy(2)...Dy(2) в молекулах 2 (0, 0, 0) равно 8,735(6) Å. Молекулы CH₂Cl₂ располагаются в полостях между молекулами комплекса и соединены с ними слабыми H-связями. Минимальные расстояния Cl...C, S...C, N...C составляют 3,608, 3,675, 3,422 Å соответственно и превышают суммы ван-дерваальсовых радиусов атомов. Наличие контактов C...C, N...C, слабых H-связей S...H—C позволяет отнести соединение VI к сольватам. По-видимому, включение молекул CH₂Cl₂ способствует образованию монокристаллов соединения VI.

Дифрактограммы комплексов I—V, имеющих аналогичный состав $Ln(Phen)(C_4H_8NCS_2)_3$, изображены на рис. 3. Все дифрактограммы подобны. Положения пяти наиболее сильных дифракционных линий (20) комплексов I—V приведены в табл. 3. Незначительные отличия в ин-

Рис. 2. Фрагмент упаковки молекул [Dy(Phen)(C₄H₈NCS₂)₃] в проекции на плоскость (100), иллюстрирующий *π*—*π*-взаимодействия

Рис. 3. Дифрактограммы комплексов I—V

Таблица 3

Положение пяти наиболее сильных дифракционных линий (20) комплексов **I—V**

Комплекс	20, град.				
Sm(Phen)($C_4H_8NCS_2$) ₃ (I)	9,02	11,22	13,23	18,09	21,08
$Eu(Phen)(C_4H_8NCS_2)_3$ (II)	9,02	11,24	13,23	18,12	21,10
$Tb(Phen)(C_4H_8NCS_2)_3$ (III)	9,00	11,24	13,23	18,18	21,10
$Dy(Phen)(C_4H_8NCS_2)_3$ (IV)	9,04	11,24	13,25	18,18	21,14
$Tm(Phen)(C_4H_8NCS_2)_3(V)$	9,02	11,24	13,28	18,20	21,16

Рис. 4. Зависимости $\mu_{eff}(T)$ для комплексов I (♦), II (▲), III (○), IV(■) и V(●)

Рис. 5. Полевая зависимость намагниченности для комплекса **III**

тенсивностях и положениях линий могут быть обусловлены преимущественной ориентацией кристаллитов и небольшим различием в параметрах элементарных ячеек. Таким образом, фазовый состав образцов I—V одинаков. Можно предположить, что комплексы I—V изоструктурны. Определение молекулярной массы комплекса I показало, что в $CHCl_3$ это соединение одноядерное. По-видимому, комплексы I—V являются одноядерными, а молекулярные структуры этих комплексов аналогичны структуре одноядерного комплекса IV в сольвате VI.

Зависимости $\mu_{\text{eff}}(T)$ для комплексов I—V представлены на рис. 4. При 300 К значения μ_{eff} составляют 1,69, 3,40, 9,89, 10,35 и 7,77 µв для комплексов I-V соответственно. Значения µен при 300 К хорошо согласуются с типичными значениями для комплексов ионов Sm³⁺, Eu³⁻ [17]. Зависимости $\mu_{eff}(T)$ для комплексов I и II существенно отличаются от таковых для комплексов III—V. Для I, II при понижении температуры µ_{eff} постепенно уменьшается до 0,59 и 0,58 µ_в при 5 К, что обусловлено наличием близко расположенных по энергии к основному состоянию (${}^{6}H_{5/2}$, g = 2/7 для Sm³⁺ и ${}^{7}F_{0}$ для Eu³⁺) возбужденных уровней, заселенность которых сильно меняется с температурой. В случае комплексов III-V возбужденные состояния находятся гораздо выше по энергии и магнитные свойства определяются основным состоянием. Величины µ_{eff} для комплексов III—V практически не меняются при понижении температуры до 50 К и хорошо согласуются с теоретическими значениями для основного состояния (9,72 $\mu_{\rm B}$ — ⁷ F_6 , g = 3/2 для Tb³⁺; 10,66 $\mu_{\rm B}$ — ⁶ $H_{15/2}$, g = 4/3 для Dy³⁺; 7,56 $\mu_{\rm B}$ — ³ H_6 , g = 7/6 для Tm³⁺) [17]. Небольшое уменьшение µ_{eff} при понижении температуры ниже 50 К для комплексов III—V обусловлено типичным для лантанидов расщеплением в нулевом поле. Для комплекса III при 2 К наблюдается нелинейная зависимость намагниченности образца от величины внешнего магнитного поля (рис. 5). Величина спонтанной намагниченности о, полученная из анализа зависимости $\sigma = \sigma_0 + \chi H$ при H > 20 кЭ, где χ — магнитная восприимчивость образца и H напряженность приложенного магнитного поля, составляет 24600 Гс · см³/моль. Таким образом, комплекс III переходит в магнитно-упорядоченное состояние ниже $T_{\rm C} \sim 2.5$ K.

При облучении УФ светом комплексы **I**—IV проявляют ФЛ в видимой области спектра. Для записи спектров ФЛ комплексов выбрана длина волны возбуждающего света 330 нм, соответствующая максимуму в спектрах возбуждения люминесценции комплексов. Спектр краснооранжевой ФЛ комплекса I содержит четыре полосы при 565, 601, 646 и 706 нм, отвечающие переходам ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$, $\rightarrow {}^{6}H_{7/2}$, $\rightarrow {}^{6}H_{9/2}$, $\rightarrow {}^{6}H_{1/2}$ соответственно (рис. 6). Максимальной интенсивностью I обладает полоса при 646 нм, по отношению к которой I полос с $\lambda_{\text{max}} = 565$, 601 и 706 нм составляют около 20, 70 и 10 % соответственно. Значения λ_{max} полос совпадают с данными для Sm(Phen)(Et₂NCS₂)₃ [11]. В спектре ФЛ комплекса II наблюдаются полосы при 593

Рис. 6. Спектры ФЛ комплексов I и III $(V = 600 \text{ B}, \text{ щель} = 5 \text{ нм}, \lambda_{возб} = 330 \text{ нм})$

и 616 нм, которые отвечают переходам ${}^{5}D_{0} \rightarrow {}^{7}F_{1}, \rightarrow {}^{7}F_{2}$ (рис. 7). Интенсивность красной полосы при 616 нм примерно в 6 раз больше *I* полосы с $\lambda_{max} = 593$ нм. Спектр ФЛ комплекса III содержит полосы при 490, 546, 585 и 621 нм, соответствующие переходам ${}^{5}D_{4} \rightarrow {}^{7}F_{6}, \rightarrow {}^{7}F_{5}, \rightarrow$ $\rightarrow {}^{7}F_{4}, \rightarrow {}^{7}F_{3}$. Наибольшей *I* в спектре комплекса III обладает зеленая полоса

с $\lambda_{max} = 546$ нм, по отношению к которой *I* полос с $\lambda_{max} = 490$, 585 и 621 нм составляют около 35, 15 и 10 % соответственно (см. рис. 6). В спектре ФЛ комплекса IV наблюдается полоса с $\lambda_{\text{max}} = 573$ нм, соответствующая переходу ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ (см. рис. 7). Зарегистрировать спектр ФЛ комплекса V не удалось, что связано с очень низкой I ФЛ этого комплекса.

Интересно, что I ФЛ комплекса иона Sm³⁺ в несколько раз больше I ФЛ комплексов ионов Eu^{3+} , Tb^{3+} , и Dy^{3+} . Ранее авторы [11] обнаружили необычно более высокую $I \Phi Л$ комплексов ионов Sm³⁺ в ряду комплексов Ln(Phen)(R_2NCS_2)₃ по сравнению с $I \Phi Л$ комплексов ионов Tb³⁺ и Eu³⁺. Считается, что эффективность ФЛ комплексов Ln зависит от величины энергетической щели между энергией нижнего триплетного возбужденного уровня органического лигандафлуорофора $E(T_1)$ и энергией нижнего излучающего уровня иона Ln^{3+} [4, 5]. Так, для комплексов иона Tb^{3+} этот промежуток должен быть не менее 1850 см⁻¹ [18]. В результате исследования ФЛ комплексов Gd(Phen)(R_2NCS_2)₃ (R = Et, *i*-Bu, Bz) найдены близкие величины $E(T_1)$ для флуорофора Phen [11], среднее значение $E(T_1)$ равно 22050 см⁻¹. Изучение комплексов $(NH_2Et_2)[Ln(Et_2NCS_2)_4]$ (Ln = La, Gd) позволило оценить величину $E(T_1)$ для $Et_2NCS_2^-$ -иона, равную ~ 23100 см $^{-1}$ [11]. Мы полагаем, что замена фрагмента R_2N в $R_2NCS_2^-$ -ионе на гетероциклический фрагмент C₄H₈N не должна привести к существенному изменению величины $E(T_1)$. Для разнолигандных комплексов Ln, содержащих Phen и дитиокарбаматные лиганды, в процессе внутримолекулярного переноса энергии на излучающий уровень ионов Ln³⁺ основную роль играет перенос энергии с уровня T₁ Phen. Энергии низших излучающих уровней ионов Ln³⁺ изменяются в ряду [1,4,5,11]: Eu³⁺(17300 см⁻¹) < Sm³⁺ (17700 см⁻¹) < Tb³⁺ (20500 см⁻¹) < Dy³⁺ (21000 см⁻¹) ~ Tm³⁺ (21200 см⁻¹). Для комплекса I энергетическая щель имеет большую величину ($\Delta E = 4350$ см⁻¹), что способствует эффективной ФЛ. Для комплексов III—V величина $\Delta E < 1600 \text{ см}^{-1}$, что может приводить к обратному переносу энергии с иона Ln^{3+} на лиганды и уменьшению $I \Phi \Pi$ [11]. В случае комплекса иона Eu^{3+} меньшую $I \Phi \Pi$ по сравнению с комплексом I связывают с возможностью переноса заряда дитиокарбаматный лиганд $\rightarrow Eu^{3+}$ [10, 11]. Известно, что дитиолатные лиганды обладают восстановительными свойствами, которые коррелируют с энергиями верхних заполненных МО этих лигандов, соответствующих "неподеленным парам" Зр-5 60 -

электронов атомов S [19]. В ряду лигандов $(MeO)_2 PS_2^-$, $MeOCS_2^-$ и $Me_2 NCS_2^-$ ион $Me_2NCS_2^-$ обладает наибольшей энергией, равной -1,91 эВ.

Рис. 7. Спектры ФЛ комплексов II и IV $(V = 800 \text{ B}, \text{щель} = 5 \text{ нм}, \lambda_{возб} = 330 \text{ нм})$

Авторы выражают благодарность В.П. Фадеевой за определение молекулярной массы методом парофазной осмометрии, А.П. Зубаревой и О.С. Кощеевой за данные элементного анализа.

СПИСОК ЛИТЕРАТУРЫ

- 1. De Sa G.F., Malta O.L., de Mello Donega C. et al. // Coord. Chem. Rev. 2000. 196. P. 165 195.
- 2. Bünzli J.-C. G. // Acc. Chem. Res. 2006. 39. P. 53 61.
- 3. *Метелица А.В., Бурлов А.С., Безуглый С.О. и др. //* Координац. химия. 2006. **32**, № 12. С. 894 905.
- 4. Armelao L., Quici S., Barigelletti E. et al. // Coord. Chem. Rev. 2010. 254. P. 487 505.
- 5. Бочкарев М.Н., Витухновский А.Г., Каткова М.А. Органические светоизлучающие диоды (OLED). - Нижний Новгород: Деком, 2011.
- 6. Katkova M.A., Borisov A.V., Fukin G.K. et al. // Inorg. Chim. Acta. 2006. 359, N 13. P. 4289 4296.
- 7. Kobayashi T., Naruke H., Yamase T. // Chem. Lett. 1997. N 9. P. 907 908.
- 8. Su C.G., Tan M.Y., Tang N. et al. // J. Coord. Chem. 1996. 38, N 3. P. 207 218.
- 9. Варанд В.Л., Глинская Л.А., Клевцова Р.Ф., Ларионов С.В. // Журн. структур. химии. 1998. **39**, № 2. – С. 300 – 309.
- 10. Faustino W.M., Malta O.L., Teotonio E.E.S. et al. // J. Phys. Chem. A. 2006. 110. P. 2510 2516.
- 11. Regulacio M.D., Publico M.H., Vasquez J.A. et al. // Inorg. Chem. 2008. 47, N 5. P. 1512 1523.
- 12. Meng X.-X., Gao S.-L., Chen S.-P. et al. // Acta Chim. Sinica. 2004. 62, N 22. P. 2233 2238.
- 13. Chen S.P., Meng X.X., Shuai Q. et al. // J. Therm. Anal. Cal. 2006. 86, N 3. P. 767 774.
- 14. *Chen S.P., Gao S.L., Yang X.W. et al.* // Координац. химия. 2007. **33**, № 3. С. 231 238.
- 15. Sheldrick G.M. //Acta Crystallogr. A. 2008. 64, N 1. P. 112 122.
- 16. Hanter C.A., Sanders J.K.M. // J. Amer. Chem. Soc. 1990. 112, N 14. P. 5525 5534.
- 17. Cotton S. Lanthanide and actinide chemistry. Chichester: John Wiley and Sons, 2006. P. 65.
- 18. Latva M., Takalo H., Mukkala V.-M. et al. // J. Luminescence. 1997. 75, N 2. P. 149 169.
- 19. Ларионов С.В., Войтюк А.А., Мазалов и др. // Изв. АН СССР. Сер. хим. 1985. № 5. С. 998 1002.