УДК 519.245

Модифицированный алгоритм статистического моделирования систем со случайной структурой с распределенными переходами^{*}

Т.А. Аверина^{1,2}

¹Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, просп. Акад. М.А. Лаврентьева, 6, Новосибирск, 630090

²Новосибирский государственный университет, ул. Пирогова 2, Новосибирск, 630090 E-mail: ata@osmf.sscc.ru

Аверина Т.А. Модифицированный алгоритм статистического моделирования систем со случайной структурой с распределенными переходами // Сиб. журн. вычисл. математики / РАН. Сиб. отд-ние. — Новосибирск, 2013. — Т. 16, № 2. — С. 97–105.

Построен алгоритм статистического моделирования систем со случайной структурой с распределенными переходами. Предложенный алгоритм основан на численных методах решения стохастических дифференциальных уравнений и использует модифицированный метод максимального сечения, когда интенсивность перехода зависит от вектора состояния.

Ключевые слова: численные методы, стохастические дифференциальные уравнения, системы со случайной структурой.

Averina T.A. A modified algorithm for statistical simulation of multistructural systems with distributed change of structure // Siberian J. Num. Math. / Sib. Branch of Russ. Acad. of Sci. — Novosibirsk, 2013. — Vol. 16, N° 2. — P. 97–105.

An algorithm for statistical simulation of random-structure systems with distributed transitions has been constructed. The proposed algorithm is based on numerical methods for solving stochastic differential equations, and uses a modified maximum cross-section method when the transition intensity depends on the vector of state.

Key words: numerical methods, stochastic differential equations, systems with random structure.

1. Введение

Радиоизотопные измерительные системы являются примером системы со случайной структурой с распределенными переходами. Среди различных способов применения радиоизотопных измерителей большое место занимают локационные системы, предназначенные для измерения параметров, определяющих пространственное положение объекта таких, как угловые координаты, дальность, углы ориентации. Если в течении времени эти параметры изменяются и система измеряет их с заданной степенью точности, она называется следящей. Радиоизотопные локационные следящие системы используются в космической технике в задачах стыковки сближающихся аппаратов, в робототехнике, при управлении атомными энергетическими установками и в ряде других случаев. Особенность таких систем связана с дискретным характером радиоактивного излучения,

^{*}Работа выполнена при финансовой поддержке грантов Р
ФФИ (проекты № 11-01-00282, № 12-01-00490).

[©] Аверина Т.А., 2013

что приводит к дискретному поступлению информации об измеряемом параметре. Изза этого локационная система становится непрерывно-дискретной со случайным квантованием, так как последовательность квантов излучения образует случайный поток сигналов. Системы со случайной структурой с распределенными переходами рассмотрены в работах [1, 2]. Характерными особенностями таких систем являются: структурная неопределенность (смена структуры в случайные моменты времени в процессе функционирования) и стохастичность процессов в них.

В работе [3] был построен алгоритм статистического моделирования динамических систем с независимой марковской структурой при распределенных переходах. В работе [4] алгоритм был обобщен для систем с условной марковской структурой при распределенных переходах. В данной работе будет построена менее трудоемкая модификация этого алгоритма, использующая модифицированный метод "максимального сечения" [5–7].

2. Системы со случайной структурой

Система со случайной структурой характеризуется вектором состояния Y(t) и номером структуры $L(t) = 1, \ldots, N_0$; N_0 — число детерминированных структур. Номер L(t) является случайным дискретным скалярным процессом, принимающим целочисленные значения $1, \ldots, N_0$. Достаточно общая математическая модель динамической непрерывной нелинейной стохастической системы со случайной структурой записывается как задача Коппи для стохастических дифференциальных уравнений (СДУ) [1]. Векторное уравнение для фиксированной *l*-й структуры имеет вид СДУ в смысле Стратоновича:

$$dY(t) = a^{(l)}(Y,t) dt + \sigma^{(l)}(Y,t) dW(t), \quad t \in [t_0,T], \quad Y(t_0) = Y_0, \quad l = 1, \dots, N_0.$$
(1)

Для каждой *l*-й структуры вектор состояния системы Y(t) является непрерывным случайным процессом размерности n; W(t) - m -мерный стандартный винеровский процесс; a(Y,t) - n-мерная вектор-функция; $\sigma^{(l)}(Y,t)$ — матричная функция размера $n \times m$. Начальное состояние системы задается случайным вектором Y_0 . Случайный дискретный процесс L(t) может быть произвольным немарковским, марковским или условно марковским, зависящим от вектора Y(t). Пусть процесс L(t) является условно марковским процессом и зависимость от Y(t) проявляется статистически: моменты перехода из одного состояния в другое случайным образом зависят от изменения фазовых координат. Переходы от одной структуры к другой могут происходить при любых значениях Y(t), но с различной вероятностью. Системы, обладающие подобными свойствами, называются системами с распределенных переходами или системами с условной марковской структурой при распределенных переходах [1]. Условные вероятности перехода из l-й структуры к r-й для малых временных интервалов выражаются через условные интенсивности переходов и имеют вид:

$$p_{lr}(r, t + \Delta t \mid l, t, Y) = \nu_{lr}(Y, t)\Delta t + o(\Delta t), \quad l \neq r;$$

$$p_{ll}(l, t + \Delta t \mid l, t, Y) = 1 - \nu_{ll}(Y, t)\Delta t + o(\Delta t), \quad \nu_{ll}(Y, t) = \sum_{n=1}^{N_0} \nu_{lr}(Y, t),$$

где $o(\Delta t)$ является малой величиной порядка $(\Delta t)^2, \nu_{lr} \ge 0.$

Компоненты функций поглощения v_{lr}^* и восстановления u_{lr}^* имеют вид:

$$v_{lr}^{*}(Y,t) = \nu_{lr}(Y,t)p_{1}^{*(l)}(Y,t), \quad l,r = 1,\dots,N_{0}; \quad l \neq r, \\ u_{lr}^{*}(Y,t) = p_{1}^{*(l)}(Y',t)q_{lr}(Y,t|Y',t)\,dY', \qquad v_{ll}^{*}(Y,t) = u_{ll}^{*}(Y,t) = 0,$$

$$(2)$$

где $q_{lr}(Y,t \mid Y',t)$ — условная функция плотности вероятности восстановления *r*-й реализаций из *l*-й (звездочка означает, что речь идет о непоглощенных реализациях, т.е. отсутствует нормировка).

Условная плотность $f_{\tau_{lr}}(t,\tau)$ распределения временных интервалов τ перехода из l-й структуры в r-ю имеет вид

$$f_{\tau_{lr}}(t,\tau) = \nu_{lr}(Y,t+\tau) \exp\bigg(-\int_0^\tau \nu_{lr}(Y,t+t_1) \, dt_1\bigg).$$

Обобщенное уравнение Фоккера–Планка–Колмогорова для одномерной функции плотности вероятности для каждого *l*-го состояния системы с учетом поглощения и восстановления реализаций имеет вид

$$\frac{\partial p_1^{*(l)}(Y,t)}{\partial t} = -\operatorname{div} \pi^{*(l)}(Y,t) - \sum_{r=1 \neq l}^{N_0} \nu_{lr}^*(Y,t) + \sum_{r=1 \neq l}^{N_0} u_{rl}^*(Y,t), \quad p_1^{*(l)}(Y_0,t_0) = \psi_0^{(l)}(Y_0),$$

где $\psi_0^{(l)}$ — функция плотности вероятности распределения фазовых координат Y_0 в начальный момент времени t_0 , $\pi^{*(l)}(Y,t)$ — вектор плотности потока вероятности непоглощенных реализаций с компонентами:

$$\pi_k^{*(l)}(Y,t) = \left[a_k^{(l)}(Y,t) + \frac{1}{2}\sum_{i=1}^{n^{(l)}}\sum_{j=1}^{m^{(l)}}\frac{\partial\sigma_{kj}^{(l)}}{\partial y_i}\sigma_{ij}^{(l)}\right]p_1^{*(l)}(Y,t) - \frac{1}{2}\sum_{j=1}^{n^{(l)}}\frac{\partial}{\partial y_j}\left[B_{kj}^{(l)}p_1^{*(l)}(Y,t)\right],$$

 $B^{(l)} = \sigma^{(l)} \sigma^{(l)^{\top}}$. Дифференциальные уравнения для функции $P^{(l)}(t)$ — вероятности нахождения системы в *l*-й структуре в момент времени t — имеют вид:

$$\dot{P}^{(l)}(t) = -\sum_{r=1}^{N_0} \int_{-\infty}^{\infty} v_{lr}^*(Y,t) \, dY + \sum_{r=1}^{N_0} \int_{-\infty}^{\infty} u_{rl}^*(Y,t) \, dY.$$

Вид функции q_{lr} в (2) определяется физическим содержанием задачи и характеризует начальные условия при восстановлении процесса в *r*-м состоянии при переходе из *l*-го состояния. Могут иметь место различные условия восстановления, определяемые функциями q_{lr} . В частности, если

$$q_{lr}(Y,t \mid Y',t) = \delta(Y - Y'),$$

то восстановление точное ("жесткое", "без потерь"), т. е. конечные условия процесса в l-м состоянии совпадают с начальными в r-м состоянии. Если условная плотность восстановления

$$q_{lr}(Y,t \mid Y',t) = \delta(Y - \gamma^{(r)}(t)),$$

то имеют место несвязанные условия восстановления. При восстановлении процесс всегда начинается с заданной функции времени $\gamma^{(r)}$. Если условная плотность вероятности не зависит от предыдущего состояния

$$q_{lr}(Y,t \mid Y',t) = \psi^{(r)}(Y),$$

то имеет место общий случай процесса с несвязанными условиями восстановления.

В общем случае условная плотность вероятности $q_{lr}(Y,t \mid Y',t)$ может задавать произвольный закон распределения фазового вектора Y(t) в состоянии r при заданном Y'(t) в состоянии l.

3. Алгоритм статистического моделирования неоднородных пуассоновских процессов

Неоднородный пуассоновский процесс $\xi(t) = \xi([0, t]), t \ge 0$, можно рассматривать как неоднородный пуассоновский ансамбль в одномерном случае. Поэтому алгоритмы статистического моделирования, предложенные в [6], можно использовать для моделирования неоднородного пуассоновского процесса.

Известно, что плотность вероятности временного интервала между соседними значениями точечного пуассоновского процесса распределена экспоненциально. По этой причине пуассоновский процесс интенсивности $\lambda(t)$ обычно моделируют, используя показательное распределение.

Метод "максимального сечения" [8] для моделирования неоднородного пуассоновского процесса при условии $\lambda(t) \leq \lambda_0, t \geq 0$, если t_1, \ldots, t_{k-1} — упорядоченная последовательность точечного пуассоновского процесса с интенсивностью $\lambda(t)$, то для моделирования t_k конструируются две последовательности независимых выборочных значений: $\{\theta_i\}$ с плотностью распределения $\lambda_0 \exp(-\lambda_0 t)$ и $\{\alpha_i\}$ — равномерно распределенные в $(0,1); \zeta_n = \sum_{i=1}^n \theta_i$. Пусть

$$N = \min\{n : \alpha_n \le \lambda(t_{k-1} + \zeta_n)/\lambda_0\}.$$

Torda $t_k = t_{k-1} + \zeta_N \ u \ \xi(t_k) = k.$

Этот алгоритм ранее был строго обоснован для случая постоянной мажоранты в работе [9] и полуэвристически для переменной мажоранты в [10].

В работе [5] была построена модификация метода максимального сечения. В работе [6] построен новый экономичный способ моделирования последовательности независимых дискретных случайных величин с помощью лишь одного случайного числа, равномерно распределенного в интервале (0,1). Использование этого способа моделирования, а также лемм, доказанных в работе [7], позволило построить еще более экономичную модификацию метода "максимального сечения".

Модифицированный метод "максимального сечения" для моделирования неоднородного пуассоновского процесса при условии $\lambda(t) \leq \lambda_0(t), t \geq 0, ec.u t_1, \ldots, t_{k-1}$ — упорядоченная последовательность точечного пуассоновского процесса с интенсивностью $\lambda(t)$, то для моделирования t_k конструируется последовательность независимых выборочных значений $\{\theta_i\}$ с плотностью распределения $\lambda_0 \exp(-\lambda_0 t)$. Пусть $\zeta_n = \sum_{i=1}^n \theta_i u$

$$N = \min\left\{n: 1 - \alpha > \prod_{i=1}^{n} \left(1 - \frac{\lambda(t_{k-1} + \zeta_i)}{\lambda_0(t_{k-1} + \zeta_i)}\right)\right\},\$$

где α — случайное число, равномерно распределенное в (0,1). Тогда $t_k = t_{k-1} + \zeta_N u$ $\xi(t_k) = k$.

Этот метод более эффективен, чем метод "максимального сечения". Результаты статистического моделирования модифицированным методом "максимального сечения" представлены в [6]. Результаты показывают, что трудоемкость модифицированного метода меньше, чем трудоемкость метода "максимального сечения".

4. Модифицированный алгоритм численного моделирования для систем с условной марковской структурой при распределенных переходах

Каждая структура описывается системой стохастических дифференциальных уравнений, поэтому численный алгоритм включает в себя численный метод решения СДУ [11], а также моделирование моментов смены структуры и номера новой структуры.

В работе [4] был построен алгоритм статистического моделирования динамических систем с условной марковской структурой при распределенных переходах. Построим менее трудоемкую модификацию этого алгоритма, используя модифицированный метод максимального сечения, предполагая, что для всех интенсивностей, входящих в (2), выполняется

$$\nu_{li}(Y,t) \le \nu_{li}^m, \quad Y \in \mathbb{R}^n, \quad t \in [t_0,T], \quad \nu_{li}^m < \infty.$$

Модифицированный алгоритм численного моделирования перехода из *l*-го состояния для систем с условной марковской структурой при распределенных переходах:

- 1) пусть в момент t_k система находилась в l-м состоянии, и вектор состояния равен Y_k .
- 2) моделируем вспомогательную случайную величину α_1 , равномерную на интервале (0,1), и заводим счетчик, полагая z = 1.
- 3) моделируем возможный момент выхода из *l*-го состояния: $t_{k+1} = t_k + \tau$, где τ случайная величина с плотностью распределения $p(x) = \nu_l^m \exp(-\nu_l^m x), \nu_l^m = \sum_{i \neq l} \nu_{li}^m$ (по формуле $\tau = -ln\alpha/\nu_l^m, \alpha$ равномерная на интервале (0, 1) случайная величина).
- 4) вычисляем возможный *r*-й номер новой структуры, распределенный с вероятностью p_r = ^{ν_{lr}^m}/_{ν_l^m}, r ≠ l, r = 1,..., N₀.
 5) на интервале [t_k, t_{k+1}] численным методом для СДУ [11] решаем уравнения (1) для
- 5) на интервале $[t_k, t_{k+1}]$ численным методом для СДУ [11] решаем уравнения (1) для *l*-й структуры, находим Y_{k+1} — вектор состояния системы в момент времени t_{k+1} (шаг численного метода должен быть согласован с интенсивностью перехода, например $h \leq 0.1/\nu_l^m$).
- 6) полагаем $t_k := t_{k+1}, Y_k := Y_{k+1}$.
- 7) полагаем $z := z * (1 \nu_{lr}(Y_k, t_k) / \nu_{lr}^m)$. Проверяем условие смены структуры: если $1 \alpha_1 > z$, то идем на 8), иначе на 3).
- 8) меняем номер структуры на r-й; вычисляем Y_k согласно заданной условной плотности восстановления q_{lr} .

Следует отметить, что данный алгоритм построен для произвольных систем с условной марковской структурой при распределенных переходах. В более простом, частном случае, когда интенсивности перехода постоянны $\nu_{lr}(Y,t) = \nu_{lr} = \text{const}$ (такие системы называются системами с независимой марковской структурой при распределенных переходах), в алгоритме будут отсутствовать пункты 2) и 7). Обозначим через \tilde{Y}_t кусочнолинейный процесс, полученный по значениям Y_k , а также введем обозначения для функционалов от решения:

$$f(h) := f(\tilde{Y}_t), \quad J(h) := \mathrm{E}\tilde{f}(h), \quad J := \mathrm{E}f(Y).$$

Для оценки некоторого функционала J от решения (1) численным алгоритмом моделируется N траекторий процесса Y(t) и величина J(h) оценивается средним арифметическим полученных выборочных значений f(h):

$$J_N(h) = \frac{1}{N} \sum_{i=1}^N f^{(i)}(h), \quad EJ_N(h) = J(h).$$

Погрешность оценки $J_N(h)$ определяется величиной

$$|E|J - J_N(h)| \le |J - J(h)| + E |J(h) - J_N(h)| \le Ch^p + \frac{Vf(h)}{\sqrt{N}},$$

где Е — математическое ожидание, V — дисперсия, а p — порядок слабой сходимости используемого численного метода решения стохастических дифференциальных уравнений (в пункте 5) алгоритма). Таким образом, для уравнивания статистической и детерминированной погрешностей целесообразно полагать $N = O(h^{-2p})$.

Испытание построенного алгоритма проведем на примерах из [2], для которых удалось записать аналитические формулы для математического ожидания решения. В работе [2] в качестве примеров систем со случайным периодом квантования приведены скачкообразные СДУ с пуассоновской случайной мерой, зависящей от вектора состояния (в этом случае в СДУ (1) добавится пуассоновская составляющая, заменяющая условную функцию плотности вероятности восстановления). Чтобы продемонстрировать влияние пуассоновской составляющей на поведение решения СДУ, рассмотрим простейшее уравнение первого порядка

$$dy(t) = \int_{\Gamma} \theta \nu \left(d\theta \times d\tau \right), \tag{3}$$

где характеристическая мера П, задающая пуассоновскую случайную меру ν , определяется через неотрицательную функцию π следующим образом:

$$\Pi(B,t,y(t^{-})) = \int_{B} \pi(\theta,t,y(t^{-})) \, d\theta, \quad B \in \Gamma.$$

$$\mu(t,y) = \int_{B} \pi(\theta,t,y) \, d\theta, \quad h(\theta,t,y) = \pi(\theta,t,y)/\mu(t,y)$$
(4)

Обозначим

функции, характеризующие пуассоновскую случайную меру ν . Пусть эти функции не зависят от y. Тогда, задавая по-разному функцию $h(\theta)$, можно получить скачкообразные процессы с различными размерами скачков. Так, если $h(\theta) = \delta(\theta - \lambda)$, то все скачки одинаковы. При $\lambda > 0$ процесс y(t) возрастающий, а при $\lambda < 0$ — убывающий. При

$$h(\theta) = \sum_{i=1}^{N} p_i \delta(\theta - \lambda_i), \quad \sum_{i=1}^{N} p_i = 1,$$

где λ_i — некоторые числа, можно получить модель случайного процесса с дискретным числом состояний, но более сложной структуры. Рассмотрим СДУ (3), когда функции (4), характеризующие пуассоновскую меру ν , зависят от y.

Пример 1. Рассмотрим СДУ (3) при

$$h(heta,y) = egin{cases} \delta(heta-\lambda) & ext{при} & ext{y} < 0, \ \delta(heta+\lambda) & ext{при} & ext{y} > 0, \end{cases} \quad \lambda > 0.$$

Получаем процесс с двумя возможными состояниями: y_0 и $y_1 = y_0 + \lambda$, если $-\lambda < y_0 < 0$; y_0 и $y_1 = y_0 - \lambda$, если $0 < y_0 < \lambda$.

Пример 2. Рассмотрим СДУ (3), когда $h(\theta, y)$ задана, как в примере 1, но функция μ также зависит от y:

$$\mu(y) = egin{cases} lpha & ext{при} & ext{y} < 0, \ eta > 0, \ lpha > 0, \ eta > 0, \ lpha, eta > 0. \end{cases}$$

В этом случае, если $-\lambda < y_0 < 0$, получаем процесс y(t) с двумя возможными состояниями: y_0 и $y_1 = y_0 + \lambda$. При $\alpha < \beta$ в среднем процесс y(t) будет чаще принимать значение y_0 , а при $\alpha > \beta$ — значение y_1 . При $\beta = 0$ процесс y(t), приняв значение y_1 , далее не меняется. Точные значения первого m(t) и второго d(t) моментов имеют вид:

$$m(t) = y_0 p_1(t) + y_1 p_2(t), \quad d(t) = y_0^2 p_1(t) + y_1^2 p_2(t),$$

где

$$p_1(t) = \frac{\alpha}{\alpha + \beta} + \left(p_1(0) - \frac{\alpha}{\alpha + \beta}\right)e^{-(\alpha + \beta)t}, \quad p_2(t) = \frac{\beta}{\alpha + \beta} - \left(p_1(0) - \frac{\alpha}{\alpha + \beta}\right)e^{-(\alpha + \beta)t}.$$

При приближенном вычислении математического ожидания Е ξ случайной величины ξ с конечной дисперсией D $\xi = \sigma^2$ по формуле

$$\bar{\xi}_N = \frac{1}{N} \sum_{i=1}^N \xi_i$$

при заданном уровне доверия $(1 - \epsilon)$ имеет место соотношение

$$P\left(|\bar{\xi}_N - \mathcal{E}\xi| \le \gamma(\epsilon)\frac{\sigma}{N}\right) = \frac{1}{\sqrt{2\pi}} \int_{\gamma(\epsilon)}^{\gamma(\epsilon)} e^{-y^2/2} \, dy = 1 - \epsilon,$$

где $\gamma(\epsilon)$ — константа, определяемая выбором величины ϵ . При $\epsilon = 0.003$ имеем $\gamma(\epsilon) = 3$, а при $\epsilon = 0.3$ получаем $\gamma(\epsilon) = 1$.

Рассмотренные примеры являются примерами систем со случайным периодом квантования с интенсивностями переходов, зависящими от вектора состояния системы. В уравнении (3), соответствующем уравнению модели (1), отсутствуют коэффициенты сноса и диффузии. Поэтому при численной реализации построенного алгоритма пункт 5) отсутствует, и погрешность численного решения состоит только из статистической составляющей.

Примеры были просчитаны при следующих значениях параметров для примера 1:

a) $\lambda = 2, y_0 = 1, \mu = 10;$

6) $\lambda = 4, y_0 = 3, \mu = 10;$

для примера 2:

a) $\lambda = 2, y_0 = 1, \alpha = 5, \beta = 10;$

6) $\lambda = 4, y_0 = 3, \alpha = 5, \beta = 10;$

B) $\lambda = 4, y_0 = 3, \alpha = 1, \beta = 10.$

Результаты, полученные модифицированным алгоритмом, приводятся в строках, обозначенных "MA". Оба примера были просчитаны предложенным алгоритмом, использующим модифицированный метод максимального сечения. Оценивалось математическое ожидание решения в узлах временной сетки с шагом h = 0.1 на интервале [0, T]. Моделировалось $N = 10^6$ траекторий и полагалось $p_1(0) = 1$. При численных расчетах использовался "генератор" псевдослучайных чисел RAND [8] с модулем 2^{40} и множителем 5^{12} . Длина периода данного датчика составляет 2^{38} . Данный датчик рекомендуется для численных расчетов, в которых требуется последовательность псевдослучайных чисел не длинее чем 2^{37} . Расчеты проводились на PC Intel Celeron, 2 ГГц, 768 Мбайт.

В таблице приводятся точные стационарные значения оцениваемых функционалов, их оценки в момент времени T = 20 и время счета. Результаты примера 1 приведены в строках 1а и 16. Из таблицы видно, что модифицированный алгоритм считает быстрее.

Примеры	Параметры	m	\tilde{m}	d	\tilde{d}	t(c)
1a	$\lambda = 2, y_0 = 1, \mu = 10$	0	0.00118	1	1	80.14
1б	$\lambda = 4, y_0 = 3, \mu = 10$	1	1.00235	5	5.0047	80.73
2a	$\lambda = 2, y_0 = 1, \alpha = 5, \beta = 10$	-1/3	-0.3343	1	1	99.68
MA	$\lambda = 2, y_0 = 1, \alpha = 5, \beta = 10$	-1/3	-0.3324	1	1	90.53(<на $9%)$
2б	$\lambda = 4, y_0 = 3, \alpha = 5, \beta = 10$	1/3	0.33141	11/3	3.6628	97.21
MA	$\lambda = 4, y_0 = 3, \alpha = 5, \beta = 10$	1/3	0.33512	11/3	3.6702	91.17(<на $6%)$
2в	$\lambda = 4, y_0 = 3, \alpha = 1, \beta = 10$	-0.63(63)	0.63661	1.72(72)	1.7227	101.72
MA	$\lambda = 4, y_0 = 3, \alpha = 1, \beta = 10$	-0.63(63)	0.63604	1.72(72)	1.7228	83.3(<на18%)

Таблица

Временные графики точных и вычисленных значений первых двух моментов не приводятся ввиду их сильного совпадения.

Основные достоинства построенного алгоритма состоят в следующем:

- использование модифицированного метода "максимального сечения" позволило уменьшить вычислительное время за счет уменьшения числа обращений к "генератору" псевдослучайных чисел;
- кроме уменьшения трудоемкости вычислений, уменьшение количества используемых значений псевдослучайных чисел снизило конструктивную размерность алгоритма, связанную с многомерной равномерностью используемых псевдослучайных чисел [12];
- статистическое соответствие оценок метода из [4] и модифицированного метода является дополнительным критерием удовлетворительности используемого "генератора" псевдослучайных чисел.

В дальнейшем предполагается решить построенным алгоритмом системы со случайным периодом квантования сигналов во времени из работ [1, 2]. Так как точное решение этих задач неизвестно, то полученное решение будет сравниваться с решением, полученным либо методом линеаризации, либо спектральным методом.

Литература

- 1. Казаков И.Е., Артемьев В.М., Бухалев В.А. Анализ систем случайной структуры. М.: Наука, 1993.
- 2. Артемьев В.М., Ивановский А.В. Управление дискретными системами со случайным периодом квантования. М.: Энергоатомиздат, 1986.

- 3. Averina T.A. Algorithm for statistical simulation of two types of random-structure systems // Russ. J. Numer. Anal. Math. Modelling. 2001. Vol. 16, № 6. P. 467-482.
- 4. Averina T.A. Algorithm of statistical simulation of dynamic systems with distributed change of structure // Monte Carlo Methods and Appl. 2004. Vol. 3-4. P. 221-226.
- 5. Михайлов Г.А., Аверина Т.А. Алгоритм "максимального сечения" в методе Монте-Карло // ДАН. – 2009. – Т. 428, № 2. – С. 163–165.
- 6. Аверина Т.А. Новые алгоритмы статистического моделирования неоднородных пуассоновских ансамблей // Журн. вычисл. матем. и мат. физики. — 2010. — Т. 50, № 1. — С. 16–23.
- 7. Аверина Т.А., Михайлов Г.А. Алгоритмы точного и приближенного статистического моделирования пуассоновских ансамблей // Журн. вычисл. матем. и мат. физики. 2010. Т. 50, № 6. С. 1005–1016.
- 8. Ермаков С.М., Михайлов Г.А. Статистическое моделирование. М.: Наука, 1982.
- Coleman W.A. Mathematical verification of a certain Monte Carlo sampling technique and applications of the techniques to radiation transport problems // Nucl. Sci. and Eng. - 1968. -Vol. 32, № 1. - P. 76-81.
- 10. Михайлов Г.А. Метод моделирования длины свободного пробега частиц // Атомная энергия. — 1970. — Т. 28, № 2. — С. 175–180.
- 11. Artemiev S.S., Averina T.A. Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations. 1997. VSP: Utrecht, The Netherlands.
- 12. Соболь И.М. Численные методы Монте-Карло. М.: Наука, 1973.

Поступила в редакцию 26 декабря 2011 г., в окончательном варианте 27 января 2012 г.