ВЗАИМОДЕЙСТВИЕ С ПРЕГРАДОЙ СЛЕДА ЗА ПЛЮСООБТЕКАЕМЫМ ТЕЛОМ

И. А. Белов

(Ленigrad)

В продолжение исследований, начатых в [1], рассмотрим задачу об отсутствии плоского вихревого течения в идеальной несжимаемой жидкости вблизи плоской преграды, установленной под ним. Появление неуправляемого из-за внешнего потока вызвано формированием следа за плоскоообтекаемым телом, расположенным перед преградой. Решение поставленной задачи иллюстрируем на примере течения, возникающего при симметричном обтекании равномерным потоком со скоростью \(U \) двух параллельных пластин, одна из которых имитирует тело, а другая — преграду.

В качестве расчетной модели обтекания пластин использована нестационарная вихревая модель, практическая реализация которой с помощью метода дискретных вихрей осуществлялена в [2] для случая двух пластин одного размера (течение Рябушкинского). В отличие от указанной работы здесь исследуется обтекание разновеликих пластин. Полуширина второй по потоку пластины обозначена \(R \), а первой — \(H \), причем \(H < R \).

Соотношение между размерами пластин \(H/R \) и \(L/R \), где \(L \) — расстояние между пластинами, приняты за варьируемые параметры.

Анализ вихревых структур и полей направлений вектора скорости потока в следе за пластинами для \(H/R = 0,1-1,0 \) и \(L/R = 0,4-2,2 \) показывает, что вследствие срыва потока на первой пластине в пространстве между пластинами формируется развитое циркуляционное течение (вихрь), интенсивность и габариты которого определяются величинами варьируемых параметров. Максимальная скорость потока в вихре достигает величины порядка 0,5 \(U \). Как результат из-за значительного разрежения в пространстве между пластинами при определенных \(H/R \) и \(L/R \) реализуется
последующее действие потока, которое в свою очередь оказывает су-
щественное влияние на величину сопротивления пластин.
На фигуре, а, б приведены результаты расчета в момент, близкий к уста-
новленному решению (t/R ≈ 10, где t — время), коэффициентов норм-
альной силы (сопротивления) c_{n1} (кривая 1), c_{n2} (кривая 2) для первой
и второй пластин в паре, а также суммарного коэффициента нормальной
сили пластины c_n = c_{n1} + c_{n2} (отнесены к ρ U^2 R/2, где ρ — плотность
жидкости) (кривая 3). При фиксированном расстоянии между пластинами,
как следует из результатов расчета, сопротивление первой пластины рас-
тет по мере увеличения отношения H/R. В то же время за счет пониже-
ния давления перед второй пластиной ее сопротивление существенно
уменьшается и при некоторой величине (H/R ≈ 0.65) при L/R = 1, фи-
гура, а) становится равным нулю, а затем отрицательным. Наличие эф-
фекта тянувшей силы для второй пластины приводит к тому, что для опре-
deledной величины H/R, которую назовем оптимальной (H/R ≈ 0.55 при
L/R = 1, фигура, а), суммарное сопротивление пласти за заданного
L/R минимально. Аналогичным образом ведет себя зависимость c_n(L/R)
для фиксированного отношения H/R. Суммарное сопротивление пласти-
на в этом случае уменьшается по величине по мере увеличения расстояния
меж деми пластинами вплоть до оптимального отношения (L/R ≈ 1.9 при
H/R = 0.5, фигура, б), характеризуемого минимумом c_n. Значительное
уменьшение L/R сверх оптимальной величины приводит к тому, что вместо
одного вихря в пространстве между пластинами вначале образуется пара
вихрей меньшего размера и интенсивности, а затем за первой пластиной
формируется след, который не замывается на поверхность второй пласти-
ны. Взаимное влияние пластин друг на друга при этом ослабевает, так
что суммарное сопротивление пласти стремится по величине к сумме
сопротивлений изолированных пластин, как в случае течения Рябуш-
шинского.
Сопоставление минимальных расчетных величин c_n для пласти в па-
ре с соответствующими величинами для изолированных пластин и пласти-
ной одного размера в паре позволяет сделать несколько интересных замеч-
ний. При L/R = 1 и H/R = 0.55 минимальное сопротивление пласти
с_n ≈ 0.8 практически совпадает с величиной c_n = 2π/4 (1 + 4) для изоли-
рованной пластины характерного размера R [3]. Сумма сопротивлений
изолированных пластин заданной генералии при этом составляет величи-
ну 2πR/4 (1 + H/R)/(1 + R) = 1.382. При H/R = 0.5 и L/R = 2 (величины, близкие к оптимальным для пласти в паре) коэффициент сопротивления
c_n ≈ 0.35, Данная величина почти в 2.5 раза отличается от сопротивления
изолированной пластины характерного размера R и более чем в 3 раза от
суммы сопротивлений рассматриваемых изолированных пластин. Отметим,
что для каждой пластины из пары пластин равного размера имеем c_n =
= 2πR/4 (1 + Q)/(1 + 4), где Q — коэффициент разведения к сопротивлению
в следе или так называемый коэффициент кавитации (при L/R = 5 Q = 1.4; при L/R ≈
≈ 85 Q = 0.25 [3]). По данным расчета симметричного обтекания двух
пластин одного размера [2] при L/R = 14 величини коэффициентов норм-
альной силы для обеих пластин практически равны и совпадают по ве-
личине с коэффициентом c_n изолированной пластины. При уменьшении
расстояния между пластинами нормальная сила на первой пластине воз-
растает, а на второй — падает и при L/R < 10 становится отрицательной.
Минимальная величина c_n в этом случае достигается примерно при L/R ≈
≈ 2. Результаты настоящего исследования также дают оптимальную по
сопротивлению величину отношения L/R ≥ 2, однако при значительно
более низких величинах минимального сопротивления.

Источник: 1 X 1979
ЛИТЕРАТУРА

2. Белоцерковский С. М., Нищет М. И. Отрывное и безотрывное обтекание тонких крыльев идеальной жидкостью. М., Наука, 1978.

ЛОКАЛЬНЫЕ СИЛОВЫЕ НАГРУЗКИ ОТ СВЕРХЗВУКОВОЙ НЕДОРАСПИРЕННОЙ СТРУИ НА ПЛОСКУЮ ПОВЕРХНОСТЬ, ПАРАЛЛЕЛЬНУЮ ОСИ СТРУИ

С. Н. Абросимов, Г. А. Поляков

(Ленинград)

Проведено экспериментальное исследование силового воздействия струи большой вязкости \((\nu = 2 \cdot 10^{-10} - 2 \cdot 10^{-9}) \) на плоскую поверхность, отстоящую от оси струи. Расстояние \(h / \delta_0 = 2 - 10 \), в области взаимодействия струи с плоской поверхностью при числах Рейнольдса \(Re_a = 1.7 \cdot 10^9 - 2.1 \cdot 10^9 \) (число Рейнольдса определялось по параметрам в критическом сечении). В качестве рабочих тел использовались аргон, воздух и пропан, испытывающие из конических сопел с полууглом раствора выходной части \(\theta_a = 10^\circ \) и отношением диаметров выходного и критического сечений \(\xi = d_x / d_a = 1.0 - 4.8 \). В результате исследования установлены простые эмпирические зависимости для определения местоположения 2-го максимума силовых нагрузок и его максимальной величине. Представлена эквивалентный профиль давлений вдоль линии ядерных ячеек.

Взаимодействие сверхзвуковой недораспирированной струи с плоской поверхностью, параллельной ее оси, сопровождается образованием сложной ударной волной структуры с наличием большого числа гидродинамических разрывов, областей дозарядов и сверхзвукового течения. Строгое аналитическое решение указанной задачи даже с помощью возможным. В то же время решение для таких задач осуществляется по двум направлениям, используемым численными \([1-4]\) и приближенными методами \([5-9]\).

Погрешности этих методов могут достигать значительных величин при достаточной трудоемкости вычислений. Вместе с тем в инженерной практике часто возникает необходимость оперативных оценок величины силовых нагрузок на плоскую поверхность при взаимодействии с ней сверхзвуковой недораспирированной струи, параметры которой варьируются в широких диапазонах значений. В данной работе на основании результатов экспериментальных исследований получены простые зависимости для расчета силовых нагрузок вдоль линии ядерных ячеек в области взаимодействия.

Экспериментальные исследования проводились в стационарном режиме на газодинамической трубе низкой плотности, оснащенной автоматическим криогенным насосом \([10]\). Остаточное давление в рабочем объеме вакуумной камеры в диапазоне 1.10^{-3} - 1.10^{-2}мм рт. ст. (1.33-10^{-1}-1.33 Па) и измерялось преобразователем ПМТ-2 вакуумметра ВТ-3. Источником сверхзвуковых струй являлись подогретые сопла, со смешными коническими соплами, имеющими угол полууглов выходной части \(\theta_a = 10^\circ \) и отношение диаметров выходного и критического сечений \(\xi = d_x / d_a = 1.0; 1.3; 2.0; 3.25; 4.8 \).

В качестве рабочих тел использовались аргон, воздух и пропан. Изменение массового расхода в диапазоне 0.07 - 0.75 г/с. Давление торможения \(p_a \) варьировалось в диапазоне 0.25 кг/см^2 (2.45 \cdot 10^4 Па) - 2.1 кг/см^2 (2.06 \cdot 10^8 Па), температура торможения \(T_a = 400 - 1000 \) К, при этом число Рейнольдса, определенное по параметрам в критическом сечении...