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С использованием теоремы Дюамеля и конечных интегральных преобразований разра-
ботан метод построения аналитического решения задачи теплопроводности, моделиру-
ющего температурное поле, возникающее в процессе сварки под флюсом. Исследуется
температурное поле, возникающее при сварке толстых пластин из стали марки EH36.
Предполагается, что движущийся источник тепла имеет эллипсоидальную форму. Воз-
никающее тепловое поле исследовано при различных значениях параметров процесса,
таких как скорость перемещения источника тепла, количество подводимого тепла, вре-
мя задержки движения источника тепла, участвующего в процессе сварки.

Ключевые слова: интегральное преобразование, теорема Дюамеля, температурное
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Введение. Толстостенные стальные пластины широко используются в нефтяной, га-
зовой, химической промышленности, а также в ветроэнергетике и судостроении. В част-
ности, в судостроении применяется сталь марки EH36, обладающая высокой прочностью
на разрыв [1]. Результаты исследования температурного поля, возникающего при сварке
различных конструкций, используются при определении в конструкции температурных и
остаточных напряжений и деформаций, а также усталости конструкции [2].

При сварке толстых стальных листов в случаях, когда необходимы длинные свар-
ные швы, применяется дуговая сварка под флюсом — процесс формирования сварного

шва между стальными пластинами с помощью электрической дуги, погруженной в слой
зернистого флюса [3].

В работе [4] приведены результаты экспериментального и численного исследований

температурного поля и напряженного состояния в двусторонних угловых соединениях, сва-
ренных под флюсом. В [5] предложена аналитическая модель распределения неустановив-
шейся температуры в двух стальных пластинах, сваренных под флюсом. Математическое
моделирование температурного поля, возникающего при сварке под флюсом, выполнено
в работе [6]. В [7] на основе метода конечных элементов разработана трехмерная модель
теплопередачи в случае двухдуговой сварки под флюсом при соединении стальных труб.
В работе [8] приведены результаты численного и экспериментального исследований про-
цесса сварки под флюсом при использовании нестационарного источника тепла. В работе
[9] найдено численное решение задачи о теплопередаче при сварке под флюсом и проведено
сравнение полученных результатов с экспериментальными данными. Результаты экспери-
ментального исследования температурного поля в пластинах из мягкой стали и влияния
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на это поле геометрии сварного шва и микроструктуры зон термического воздействия

приведены в [10].
В настоящее время известно небольшое количество работ [5, 6], в которых строятся

аналитические решения, описывающие температурное поле, возникающее при сварке под
флюсом. Данная работа посвящена построению аналитического решения, описывающего
двумерное температурное поле, возникающее при сварке под флюсом пластин из стали
марки EH36.При этом использовалась модель двойного эллипсоидального источника тепла
гауссова типа.

1. Математическая модель. Ниже приводятся дифференциальные уравнения, кра-
евые и начальные условия задачи теплопроводности для нестационарного температурного

поля, возникающего при дуговой сварке под флюсом, описан метод решения задачи.
1.1. Формулировка дифференциальных уравнений задачи. Решаются уравнения дву-

мерной задачи о неустановившейся теплопроводности [11]

∂2T

∂x2
+

∂2T

∂y2
+

Qg

k
=
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∂T

∂t
, 0 < x < L, 0 < y < L, (1)

где T — локальная температура, ◦C; Qg(x, y, t) — мощность эллипсоидального источника

тепла гауссова типа, движущегося в виде факела при сварке под флюсом [9]:
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6
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k — теплопроводность; α — коэффициент термодиффузии; L — длина области в направле-
нии координаты x, м; ff — количество тепла, излучаемого передней частью эллипсоидаль-
ного источника (x > 0); af — длина полуоси в направлении x, м; b — длина эллипсоида,
м; c — ширина эллипсоида, м; v — скорость движения источника тепла, м/с; τ — время

запаздывания движущегося источника тепла.
Для уравнения (1) ставятся краевые условия
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и начальные условия

t = 0: T = Ti.

С учетом (2) уравнение (1) в безразмерных переменных записывается в виде
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где θ = (T − Ti)/Ti; X = x/L; Y = y/L; C = 6
√

3 ff/π3/2; Q∗ = QL2/(kafbcTi); Af = af/L;

B = b/L; F = αt/L2; U = vL/α; ξ = ατ/L2.
1.2. Метод решения на основе теоремы Дюамеля и конечных интегральных преобра-

зований. В силу теоремы Дюамеля [11] уравнение (3) сводится к уравнению
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где

θ(X, Y, F ) =

F∫
F̄=0

θ̄(X, Y, F ; F̄ ) dF̄ , (5)
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а начальные условия приводятся к виду

θ̄
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f
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Применяя к уравнению (4) интегральное косинус-преобразование по X [11]:
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получаем
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где

θ̄′(m, Y, F ) =

1∫
X=0

θ̄(X, Y, F ) cos (mπX) dX.

Применяя к уравнению (7) интегральное косинус-преобразование по Y , имеем

(m2π2 + n2π2)θ̄′′ +
dθ̄′′

dF
= 0, m = 0, 1, 2, 3, . . . , n = 0, 1, 2, 3, . . . , (8)

где

θ̄′′(m, n, F ) =
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θ̄(X, Y, F ) cos (mπX) cos (nπY ) dX dY.

Решение уравнения (8) записывается в следующем виде:

θ̄′′(m, n, F ) = CXY exp [−(m2π2 + n2π2)F ]. (9)

Применяя к (9) обратное интегральное преобразование, получаем
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∞∑
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CXY exp [−(m2π2 + n2π2)F ] cos (mπX) cos (nπX). (10)

Используя начальное условие (6), из (10) находим соотношение для констант CXY :
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Умножая левую и правую части равенства (11) на cos (mπX) cos (nπY ) и интегрируя по X,
Y , имеем
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Из условия ортогональности функций cos (mπX) cos (nπY ) находим
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Следовательно,
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С учетом (5) из (12) получаем
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Используя обратное преобразование Фурье, из (13) можно получить распределение
температуры. Интегралы можно аппроксимировать с помощью квадратурной форму-
лы [13]. В результате получаем
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Рис. 1. Схема эллипсоидального источника тепла в толстой пластине (стрел-
ка — направление сварки)
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Рис. 2. Полученная в данной работе теоретическая (1) и эксперименталь-
ная [9] (2) зависимости температуры от времени

2. Результаты исследования и их обсуждение. В судостроении используются
толстые пластины из стали марки EH36 (температура плавления Tm = 1425 ◦C, теп-
лопроводность k = 52 Вт/(м · ◦C), плотность ρ = 7800 кг/м3, удельная теплоемкость
Cp = 470 Дж/(кг · ◦C) [12]). В данной работе исследуется распределение температурно-
го поля в пластине длиной 100 мм и толщиной 30 мм (рис. 1).

В работе [9] приведены результаты экспериментального исследования сварки под флю-
сом пластин из мягкой стали. Рассматривался источник тепла эллипсоидальной формы (по
осям x, y) [9] и использовались следующие значения параметров процесса: Q = 14 000 Вт,
y = 0,025 м, x = 0,3 м, v = 0,5 м/мин, ff = 0,42, k = 31,3 Вт/(м · ◦C), ρ = 7850 кг/м3.

На рис. 2 приведены экспериментальная [9] и полученная в данной работе теоретиче-
ская зависимости температуры от времени. Видно, что характер кривых один и тот же.
Максимальное значение температуры в эксперименте равно 462,28 ◦C, а теоретическое
значение температуры равно 460,88 ◦C. На обеих кривых имеются участок быстрого на-
грева и участок постепенного охлаждения. Такое поведение зависимостей T (t) характерно
при сварке под флюсом [6–8]. Имеется некоторое различие углов наклона кривых.
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Рис. 3 Рис. 4

Рис. 3. Зависимость температуры от времени при различных значениях мощ-
ности источника:
1 — Q = 20 000 Вт, 2 — Q = 25 000 Вт

Рис. 4. Зависимость температуры от времени при различных значениях скоро-
сти движения дуги:
1 — v = 0,0045 м/с, 2 — v = 0,0050 м/с

На рис. 3 показана зависимость температуры от времени при y = 0,03 м, x = 0,01 м,
v = 0,005 м/с, ff = 0,42, k = 52 Вт/(м · ◦C), ρ = 7850 кг/м3, Cp = 470 Дж/(кг · ◦C),
τ = 20 с, af = 0,03 м, b = 0,005 м, δ = 0,008 м, Ti = 30 ◦C и различных значениях

мощности источника Q. С увеличением Q максимальная температура увеличивается.

На рис. 4 представлена зависимость температуры от времени при y = 0,03 м, x =
0,01 м, Q = 25 000 Вт, ff = 0,42, k = 52 Вт/(м · ◦C), ρ = 7850 кг/м3, Cp = 470 Дж/(кг · ◦C),
τ = 25 с, af = 0,03 м, b = 0,005 м, δ = 0,008 м и различных значениях скорости движения
дуги. При увеличении скорости с 0,0045 до 0,0050 м/с максимальная температура умень-
шается. Увеличение скорости движения дуги означает, что источник перемещается по
поверхности пластины с большей скоростью. При этом уменьшается энергия (количество
теплоты), выделяемая на поверхность пластины.

На рис. 5 показана зависимость температуры от времени при значениях парамет-
ров процесса y = 0,03 м, x = 0,01 м, Q = 25 000 Вт, ff = 0,42, k = 52 Вт/(м · ◦C),

ρ = 7850 кг/м3, Cp = 470 Дж/(кг · ◦C), v = 0,005 м/c, af = 0,03 м, b = 0,005 м, δ = 0,008 м
и различных значениях времени τ задержки нагрева источником тепла. Видно, что с уве-
личением времени задержки с τ = 20 c до τ = 25 c температура уменьшается.

На рис. 6 показано распределение температуры по длине пластины из стали марки
ЕН36 при y = 0,03 м, x = 0,01 м, Q = 25 000 Вт, v = 0,005 м/с, ff = 0,42, k = 52 Вт/(м · ◦C),

ρ = 7850 кг/м3, Cp = 470 Дж/(кг · ◦C), af = 0,03 м, b = 0,005 м, δ = 0,008 м, τ = 20 с и
различных значениях времени нагрева. Видно, что с увеличением времени нагрева с 10 до
30 с температура уменьшается и кривая зависимости T (x) постепенно становится плоской
(угол наклона кривой уменьшается). Из приведенных на рис. 6 зависимостей следует, что
при x = 0 и x = 0,1 м граничные условия выполняются.

Поскольку в основе математического моделирования лежит преобразование Фурье,
решения получаются как в физической, так и в комплексной области. Однако температуру
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Рис. 5. Зависимость температуры от времени при различных значениях вре-
мени задержки нагрева τ :
1 — τ = 20 с, 2 — τ = 25 с

Рис. 6. Распределение температуры по длине пластины при различных значе-
ниях времени нагрева:
1 — t = 10 с, 2 — t = 20 с, 3 — t = 30 с
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Рис. 7. Распределение температуры при различном числе пространственных

гармоник N :
а — N = 5, б — N = 15, в — N = 25, г — N = 35
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Рис. 8. Изолинии температуры при различных значениях времени нагрева:
а — t = 5 с, б — t = 15 с, в — t = 20 с

в физической области можно получить путем преобразования температуры в комплексной

области за счет выбора подходящих пространственных гармоник (см. уравнение (14)).

На рис. 7 показано распределение температуры при v = 0,005 м/с, af = 0,03 м,
b = 0,005 м, δ = 0,008 м, Q = 25 000 Вт, ff = 0,42 и различном числе пространствен-
ных гармоник. Из результатов, приведенных на рис. 7, следует, что в зависимости от
числа гармоник (5, 15, 25 и 35) тепловой поток изменяется. При числе гармоник N = 5,
15 в тепловом потоке наблюдаются изолинии температуры различной формы. Однако при
числе гармоник N = 25, 35 различие потоков незначительно. Таким образом, для адекват-
ного описания процесса распространения тепла с использованием предлагаемого метода

достаточно 35 гармоник.

На рис. 8 приведены изолинии температуры при различных значениях времени на-
грева. По распределению изолиний температуры на рис. 8 можно судить о направлении
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распространения энергии в физической области. Приведенные результаты соответствуют
наблюдаемым при дуговой сварке под флюсом процессам быстрого нагрева и постепенного

охлаждения.
Заключение. В работе предложен метод построения аналитического решения задачи

теплопроводности, моделирующего теплопередачу в процессе сварки под флюсом. Прове-
дено сравнение результатов моделирования предложенным методом температурного поля,
возникающего при сварке под флюсом пластин из стали марки EH36, с экспериментальны-
ми данными. Полученные результаты могут быть использованы при выборе оптимальных
параметров процесса сварки под флюсом.
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