2015. Том 56, № 3

Май – июнь

C. 572 – 581

УДК 539.194

УЛЬТРАФИОЛЕТОВЫЕ, РЕНТГЕНОВСКИЕ ФОТОЭЛЕКТРОННЫЕ СПЕКТРЫ И ЭЛЕКТРОННАЯ СТРУКТУРА β-ДИКЕТОНАТНЫХ КОМПЛЕКСОВ Eu(III) И Lu(III)

А.В. Шурыгин, В.В. Короченцев, И.С. Осьмушко, А.И. Чередниченко, В.А. Яшин, В.И. Вовна

Дальневосточный федеральный университет, Владивосток, Россия E-mail: vovna.vi@dvfu.ru

Статья поступила 12 января 2014 г.

Методами ультрафиолетовой, рентгеновской фотоэлектронной спектроскопии и квантовой химии (DFT) исследованы *трис*-β-дикетонаты редкоземельных металлов — европия и лютеция. Получена новая информация об электронном строении комплексов: рассчитаны геометрическая структура и электронное строение соединений, установлена природа химической связи данных соединений. Квантово-химические исследования позволили установить закономерности изменений электронного строения в зависимости от комплексообразователя, а также влияние замещения в лигандах CH₃-групп на C(CH)₃ и CF₃. Идентифицированы полосы ультрафиолетовых (в газовой фазе) и рентгеноэлектронных (в конденсированном состоянии) спектров *трис*-дибензоилметанатов Еи и Lu.

DOI: 10.15372/JSC20150322

Ключевые слова: фотоэлектронная спектроскопия, теория функционала плотности, хелаты редкоземельных элементов, La, Eu, Lu, электронное строение.

Хелатные комплексы трехвалентных ионов лантаноидов с β -дикетонатными лигандами находят все более широкое применение в различных областях науки и техники как светотрансформирующие материалы, люминофоры, в оптоэлектронике, в источниках света и др. [1—7]. Квантовый выход люминесценции в видимой и ближней ИК области в значительной степени зависит от лигандов и может изменяться на 2—3 порядка в зависимости от эффективности безызлучательных переходов с лигандов на металл. Процессы переноса энергии возбуждения зависят, во-первых, от интервала энергии между нижним триплетным состоянием лигандов и возбужденным состоянием *f*-электронов; во-вторых, от локализации возбуждения на функциональных группах лигандов. Исследования взаимосвязи спектрально-люминесцентных свойств комплексов с их электронной структурой и орбитальной природой химических связей позволяют планировать синтез новых соединений с необходимыми оптическими свойствами.

Наиболее информативными методами при изучении электронной структуры химических соединений являются УФЭ спектроскопия паров, рентгеноэлектронная спектроскопии конденсированной фазы и рентгеновская эмиссионная спектроскопия в сочетании с квантово-химическими расчетами [8—11]. Работы по УФЭ спектроскопии паров *mpuc*- β -дикетонатных комплексов лантаноидов немногочисленны. Изучение УФЭ спектров паров *mpuc*-ацетилацетонатов Ln(Acac)₃ и других координационно-ненасыщенных комплексов с дикетонатными лигандами ограничивается возможностью перевода их в газовую фазу без заметной деструкции. Недавно опубликовано краткое сообщение [12] об исследовании с источником излучения He(I) спектров трех комплексов Ln(Acac)₃ (Ln = Pr, Nd, Tm) и фторсодержащего Nd(Tfac)₃, но только

[©] Шурыгин А.В., Короченцев В.В., Осьмушко И.С., Чередниченко А.И., Яшин В.А., Вовна В.И., 2015

в спектре комплекса тулия отсутствуют интенсивные полосы продуктов деструкции. С целью определения вклада АО редкоземельных металлов в МО лигандов в работе [13] исследованы УФЭ спектры с источниками излучения He(I) и He(II) комплексов M(Dpm)₃ (M = Y, Gd, Yb), в [14] опубликованы ФЭ спектры с излучением He(I) и aбсорбционные спектры в вакуумном УФ паров двенадцати комплексов Ln(Fot)₃ (в лиганде $R = C_3F_7$, $R_2 = C(CH_3)_3$). РФЭ спектры *трис*-дибензоилметанатов M(Dbm)₃ (M = Sc, Y, La) с выполненным квантово-химическим моделированием, используя теорию DFT, недавно опубликованы в [15]. Ранее мы получили УФЭ спектры с излучением He(I) Ln(Acac)₃ [16] и *трис*-дипивалоилметанатов Ln(Dpm)₃ [17, 18], где Ln — элементы второй половины ряда. Первые РФЭ спектры валентных и остовных уровней Eu(Acac)₃ и ряда замещенных опубликованы в [19, 20]. Отсутствие доступных программ квантово-химических расчетов не позволило в первых работах теоретически исследовать закономерности в электронной структуре *трис*-β-дикетонатов металлов и обосновать идентификацию полос.

В настоящей работе методами УФЭС, РФЭС и квантово-химического моделирования (в рамках DFT) исследована электронная структура $Ln(OC_{\beta}(R)C_{\gamma}HC_{\beta}(R)O)_3$. Спектры относительно легколетучих комплексов с заместителями $R = CH_3$, $C(CH_3)_3$, CF_3 исследованы в парах с излучением He(I), а комплексы $Ln(Dbm)_3$ — в конденсированной фазе с излучением Mg K_{α} . Вместе с Eu(Dbm)₃ и Lu(Dbm)₃ рассматриваются опубликованные в [15] спектр и структура La(Dbm)₃.

 $Ln = La, Eu, Lu; R = CH_3, C(CH_3)_3, CF_3, C_6H_5$

МЕТОДИКА ЭКСПЕРИМЕНТА И КВАНТОВО-ХИМИЧЕСКИХ РАСЧЕТОВ

Эксперимент проводили в лаборатории электронного строения и квантово-химического моделирования кафедры теоретической и экспериментальной физики Школы естественных наук Дальневосточного федерального университета. Рентгеновские фотоэлектронные спектры получены на сверхвысоковакуумном фотоэлектронном спектрометре фирмы Omicron (Германия) с полусферическим электростатическим анализатором (радиус кривизны 125 мм). В качестве источника излучения использовали X-гау источник с магниевым анодом (линия MgK_α 1253,6 эВ). УФЭ спектры паров комплексов получены на электронном спектрометре ЭС-3201 [16—18] с прямой системой ввода образца с монохроматическим источником излучения He(I) (21,2 эВ). В ампуле-испарителе температуру образцов варьировали от 50 до 150 °C (с целью избежать деструкцию соединений и выпаривания воды). Рабочее давление в камере энергоанализатора спектрометра составляло 10⁻⁶ мбар, пара образов в ионизационной кювете достигало значений 10⁻¹—10⁻² мбар. Калибровку энергетической шкалы спектрометра проводили по линиям внутреннего стандарта (линии ${}^{2}P_{3/2}$ и ${}^{2}P_{1/2}$ криптона с энергией 14,00 и 14,67 эВ), разрешающая способность прибора ±0,08 эВ, погрешность измерения ≤0,08 эВ, воспроизводимость положения центра полосы ±0,03 эВ [16].

Обработку спектров проводили с использованием программы CASA XPS [21]. Калибровка шкалы энергии связи электронов выполнена по методике внутреннего стандарта, в качестве которого был выбран уровень C1s (285,0 эВ). Анализ химических состояний атомов проводили с разложением линий на компоненты с контурами, составленными комбинацией гауссова и лоренцева типов.

Квантово-химические расчеты выполнены методом теории функционала плотности с использованием пакета программ FireFly 8.1.0 [22], частично основанный на исходном коде GAMESS (US) [23]. Использовали гибридный обменно-корреляционный функционал B3LYP5. Для атомов Еи и Lu был выбран базисный набор с добавлением эффективного квазирелятивистского остовного потенциала, разработанный группой Stuttgart/Cologne [24]. Остовный потенциал для Eu включает 52 электрона в остов (ECP52MWB), а для Lu — 60/28 электронов (ECP60MWB/ECP28MWB). Для остальных атомов, входящих в рассматриваемые соединения, использовали базис 6-311G*, эффективный остовный потенциал не применяли. Для проверки соответствия оптимизированных структур точкам локального минимума на поверхности потенциальной энергии проводили расчет Гессиана.

Для сопоставления экспериментальных значений вертикальных энергий ионизации (ЭИ) с энергиями орбиталей Кона—Шэма є, применяли расширенный вариант теоремы Купманса:

$$\exists M_i = -\varepsilon_I + \delta_i,$$

где ЭИ_{*i*} — величина энергии ионизации; -ε_{*i*} — одноэлектронная энергия Кона—Шэма; δ_{*i*} — дефект Купманса, постоянная для данного типа МО энергетическая поправка.

Величина ЭИ_{*i*} соответствует энергиям максимумов гауссианов ЭИ_g. Полосы в УФЭ спектрах, соответствующие нескольким орбиталям, разложены на гауссианы с учетом интервалов энергии между рассчитанными электронными уровнями и их вырождением. При учете зависимости поправки δ_i к орбитальной энергии от характера электронного уровня теорема Купманса позволяет получить хорошее соответствие экспериментальных ЭИ_{*i*} расчетным энергиям ε_i молекулярных орбиталей (МО) Кона—Шэма [25].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для нахождения оптимальной геометрии комплексов европия и лютеция был выполнен расчет без симметрии (C_1). После оптимизации структура комплексов Eu и Lu была близка к симметрии D_3 . Из полученных геометрических данных (табл. 1) мы наблюдаем уменьшение длины связи Ln—O в ряду La—Eu—Lu, вызываемое эффектом лантаноидного сжатия, что согласуется с табличными данными для ионных радиусов. Остальные геометрические параметры не испытывают значительных изменений.

При исследовании замещения La на Eu и Lu в комплексах Ln(Dbm)₃ наблюдаются структурные изменения, при которых лантаноидное сжатие приводит к увеличению межлигандного взаимодействия, что вызывает появление угла между осью C_3 и плоскостями хелатных циклов от $\phi = 0^\circ$ (La) до 32° (Eu) и 35° (Lu). Для четырех исследованных комплексов Eu угол "скручивая" ϕ изменяется от 32 до 38°. Плоскости фенильных групп в каждом лиганде комплексов Ln(Dbm)₃ образуют двугранный угол с хелатным циклом 15° для Eu и 12°для Lu.

Газофазные ультрафиолетовые спектры. На рис. 1 приведены сглаженные УФЭ спектры двух комплексов лютеция с рассчитанными энергиям орбиталей Кона—Шэма со сдвигом расчетной шкалы на усредненные δ по трем первым парам уровней 2,21 эВ (Lu(Acac)₃) и 2,18 эВ (Lu(Dpm)₃). Для Lu(Acac)₃ в области верхних 10 МО (от 7,5 до 12,5 эВ) выполнено разложение полос (см. рис. 1, δ). Электроны трех верхних пар *a* и вырожденных *e* МО, в соответствии с расчетными результатами, формируют в спектре Lu(Acac)₃ три первые полосы с последовательностью ЭИ: $a_2(\pi_3) < e(\pi_3) < a_2(n_-) < e(n_-) < e(n_+) < a_1(n_+)$. Двум нижним орбиталям π_2 и π_1 соответствуют две перекрывающиеся полосы в области 11—12,5 эВ.

T		~					1
	а	0	Л	И	П	а	
-	~	~	•••		~	•••	

10		Ln(Acac)	3		Ln(Dpm)	3	Ln(Dbm) ₃			
Комплекс	Ln—O	$O - C_{\beta}$	C_{γ} — C_{β}	Ln—O	$O - C_{\beta}$	C_{γ} — C_{β}	Ln—O	$O - C_{\beta}$	C_{γ} — C_{β}	
La	2,45	1,27	1,41	2,44	1,28	1,41	2,47	1,27	1,42	
Eu	2,32	1,27	1,41	2,32	1,28	1,41	2,34	1,27	1,42	
Lu	2,23	1,27	1,43	2,23	1,28	1,41	2,23	1,27	1,41	

574

Рис. 1. УФЭ спектры Lu(Acac)₃ и Lu(Dpm)₃ (a) и информативный участок спектра Lu(Acac)₃ от 7,5 до 12,5 эВ с разложением полос на гауссианы (δ)

Рассчитанные орбитальные энергии и локализация МО на Ln, атомах O и заместителях R приведены в табл. 2. ВЗМО $a_2(\pi_3)$ локализована преимущественно на углеродах в γ -положениях, а вклад атомов O в орбитали n_{-} и n_{+} достигает 70 %. Обращает на себя внимание незначительный вклад металла в орбиталь $e(n_{-})$ в сравнении с $e(n_{+})$ и $a_1(n_{+})$. Принято рассматривать стабилизацию $e(n_{-})$ относительно $a_2(n_{-})$ на 0,2—0,3 эВ как свидетельство ее участия в ковалентном связывании вследствие $e(n_{-})$ —e(d) взаимодействия [8, 18], но метод DFT для *d*-металлов начала переходного периода, как и для комплексов лантаноидов (см. табл. 2), показывает значительно больший вклад *d* и *s* AO металла в обе MO n_{+} [26]. По расчетным данным значения энергии Lu 4*f*-орбиталей в комплексе Lu(Acac)₃ на 5 эВ ниже энергии B3MO (см. рис. 1, *a*), но низкое сечение ионизации 4*f*-орбиталей при излучении He(I) [27] не позволяет однозначно обнаружить полосу этих уровней на интенсивной полосе σ -орбиталей. Принимая во внимание расчетные и экспериментальные данные для Lu(Dbm)₃ (см. ниже), к полосе 4*f*-электронов можно отнести плечо при 13 эВ.

При замещении метильных групп в Lu(Dpm)₃ на *трет*-бутильные вклады заместителей R в MO σ типа n_- и n_+ увеличились в 1,5 и 2 раза соответственно, что привело к "выталкиванию" MO связывающими орбиталями σ (C—C) и σ (C—H). Дестабилизация двух пар n орбиталей хорошо проявляется в расчетных результатах (см. табл. 2, рис. 2) и в спектрах (см. рис. 1, a). Группа σ орбиталей *трет*-бутильных групп в области 9 эВ понизила энергию π_2 MO, интен-

Таблица 2

Lu(Acac) ₃						Lu(Dpm) ₃				Lu(Dbm) ₃				
MO			Вклады, %				Вклады, МО, %				Вклады, %			
101	0	–ε+2,21 / ЭИ _g , эВ	Lu	60	(C ₅ H ₇) ₃ / (CH ₃) ₆	-ε, эВ	Lu	60	$(C_{11}H_{19})_3 / (C_2H_3)_6$	-ε, эВ	Lu	60	$(C_{15}H_{11})_3$ / $(C_6H_5)_6$	
π3	a_2	8,24 / 8,01	0	37	63 / 2	6,14	0	38	62 / 3	6,07	0	25	74 / 21	
5	е	8,41 / 8,35	2	32	66 / 3	6,30	2	34	65 / 3	6,17	1	19	79 / 28	
n_	a_2	9,04 / 8,92	0	71	28 / 15	6,70	0	62	38 / 23	7,06	0	52	47 / 39	
	е	9,22 / 9,31	1	70	29 / 14	6,89	2	59	39 / 23	7,30	1	56	32 / 10	
n_+	е	10,22 / 10,10	3	70	26 / 10	7,86	3	61	36 / 21	8,23	4	65	31 / 16	
	a_1	10,40 / 10,56	4	69	27 / 10	8,04	4	58	38 / 21	8,42	5	65	30 / 14	
π_2	е	11,79 / 11,3	0	58	41 / 27	9,78	0	26	74 / 31	9,92	0	28	71 / 61	
	a_1	11,80 / 11,59	2	58	42 / 26	9,82	0	26	74 / 29	9,95	0	29	70 / 60	

Энергия (β B) и локализация верхних π и п MO для LuL₃ (L = Acac, Dpm, Dbm)

Примечание. Для Lu(Acac)₃ расчетные энергии приведены с поправкой на усредненное значение б; в знаменателе — положение максимумов полос разложения.

Puc. 2. Корреляционная диаграмма для валентных уровней Lu(Acac)₃, Lu(Dpm)₃ и Lu(Dbm)₃, рассчитанных методом DFT (эВ)

Таблица З

Eu(Acac) ₃						Eu(Dpm) ₃		Eu(Hfac) ₃			
MO R=CH ₃				R=CMe ₃		R=CF ₃					
		$-\varepsilon, \Im B \qquad \Im H_g, \Im B \qquad \delta, \Im B$			-ε, эВ	ЭИ _g , эВ	δ, эВ	-ε, эВ	ЭИ _g , эВ	δ, эВ	
π3	a_2	6,06	7,93	1,87	6,02	7,67	1,65	8,11	9,67	1,56	
-	е	6,21	8,26	2,05	6,17	8,07	1,9	8,25	10,05	1,8	
n_	a_2	6,59	8,81	2,22	6,53	8,47	1,94	8,91	10,57	1,66	
	е	6,78	9,17	2,39	6,70	8,78	2,08	9,05	10,92	1,87	
n_+	е	7,67	9,89	2,22	7,62	9,48	1,86	9,95	11,56	1,61	
	a_1	7,83	10,24	2,41	7,79	9,87	2,08	10,04	12,04	2	
π_2	е	9,09	—		8,76	—		11,96	—		
	a_1	9,15		—	8,79			12,00			
			$\tilde{\delta} =$	2,19		$\tilde{\delta} =$	1,91		$\tilde{\delta} =$	1,75	

Вертикальные ЭИ и энергии орбиталей Кона—Шэма для Eu(Acac)₃, Eu(Dpm)₃ и Eu(Hfac)₃

сивная полоса в спектре Lu(Dpm) $_3$ выше 10 эВ не позволяет установить значения ЭИ π_2 уровней.

Замещение в Ln(Acac)₃ атома Lu на Eu не приводит к значительным изменениям ни в расчетных результатах для энергий и характера верхних пар π и *n* лигандных орбиталей (см. табл. 2 и 3), ни в УФЭ спектре в области от 7 до 12 эВ (см. рис. 1, *б*, рис. 3).

Несмотря на включение в расчет комплекса Lu заполненной 4*f* орбитали, энергия B3MO $a_2(\pi_3)$ совпадает с точностью 0,03 эВ (6,03 эВ для Lu и 6,06 эВ для Eu). Положения максимумов трех первых полос в спектре Lu(Acac)₃ относительно спектра Eu(Acac)₃ смещены в сторону увеличения ЭИ на 0,08 (π_3 , n_-) и 0,10 эВ (n_+). Наблюдаемый сдвиг полос, принимая во внимание лантаноидное сжатие и увеличение эффективного заряда атома металла (табл. 4), обусловлен, преимущественно, изменением молекулярного потенциала для лигандных уровней. Выполненное нами разложение лигандных полос на компоненты *a* и *e* уровней в спектрах Lu(Acac)₃ и трех комплексов европия приводит к величине *a*—*e* расщепления, превышающей расчетные результаты. Очевидно, расчет неправильно передает эффективность межлигандного взаимодействия.

Рис. 3. УФЭ спектр Eu(Acac)₃, Eu(Dpm)₃ и Eu(Hfac)₃ с отнесением расчетных энергий орбиталей Кона—Шэма

Рис. 4. Заряды (по Малликену) на атомах Eu(Acac)₃ и Eu(Hfac)₃ (ат. ед.)

Таблица 4

Заряды атомов q (ат. ед.) (по Малликену)

		Ln(Acac) ₃			Ln(Dpm) ₃					Ln(Dbm) ₃						
La	1,8	Eu	1,88	Lu	1,92	La	1,82	Eu	1,9	Lu	1,94	La	1,83	Eu	1,91	Lu	1,95
O	-0,63	O	0,64	O	0,64	O	-0,64	O	-0,66	O	0,66	O	-0,65	O	-0,66	O	0,66

В спектрах трех соединений европия наибольший интерес представляет выяснение причины сдвига полос в спектре Eu(Hfac)₃ относительно Eu(Acac)₃ на 2 эВ (см. рис. 3). Общепринятое объяснение высокой акцепторной способностью было нами опровергнуто анализом химических сдвигов остовных уровней на примере комплексов M(Acac)₃ и M(Hfac)₃ (M = Al, V, Cr, Fe) [28].

В соответствии с расчетными данными наблюдается также стабилизация лигандных уровней на величину, превышающую 2 эВ (см. табл. 3), но анализ электронной плотности в хелатных циклах двух комплексов не обнаруживает переноса электронной плотности на заместители R при фторировании метильных групп (рис. 4).

Причина стабилизации лигандных уровней в эксперименте и расчетах в изменении знака молекулярного потенциала групп R. В метильной группе атом C имеет по расчетным данным высокий отрицательный эффективный заряд –0,60 е, а в группе CF₃ — более значительный положительный (+0,76 е). Изменение знака молекулярного потенциала в области хелатных циклов не только ведет к стабилизации уровней, но и поляризует связи О—C и C—C (см. рис. 4).

При рассмотрении распределения заряда в комплексах по данным расчетов (см. табл. 4) наблюдается поляризация. Заряд на атомах металла и кислорода увеличивается во всех трех комплексах при переходе от La к Eu и Lu, электронная плотность на металлах падает, это свидетельствует об ионной природе связи металла с лигандами.

Интерпретация валентной области РФЭ спектров. Отнесение полос валентной области рентгеновских спектров *трис*-дибензоилметанатов La, Eu и Lu в конденсированном состоянии обосновывается на результатах, обсуждаемых выше (рис. 5).

Отсутствие 4*f*-электронов в комплексе La(Dbm)₃ упрощает идентификацию полос от потолка валентной зоны до 16 эВ. Первая низкоинтенсивная полоса обусловлена ионизацией лигандных уровней от π_3 до n_+ , вторая соответствует группе близких по энергии МО шести C₆H₅, коррелирующих с МО бензола $2e_{2g}(\sigma)$, $1a_{2u}(\pi_1)$ и π_2 МО хелатных циклов. Участок спектра от 7 до 12 эВ соответствует σ орбиталям *p* типа фенильных и хелатных циклов. Более интенсивная полоса 4 обусловлена 5*p*-орбиталями La и группами уровней, коррелирующих с МО бензола $1e_{2g}(2s)$. Полосы 5 и 6 соответствуют группам уровней C2*s*-типа, коррелирующих с двумя нижними МО бензольных циклов $1a_{1g}(2s)$ и $1e_{1u}(2s)$. Широкая полоса 7 в области 23—28 эВ соответствует O2*s* электронам карбонильных групп и H₂O (20—30 %).

В комплексе $Eu(Dbm)_3$ полосы 5 и 5' отнесены к 5*p*-электронам Eu с расщепление 5,53 эВ. Положение полосы 5*p* металлов (Lu, Eu, La) опускается вследствие уменьшения заряда на металле (см. табл. 4). Полоса 4 имеет вклад 2*s* уровней углерода хелатного цикла и фенильных

Рис. 5. РФЭ спектры валентной области Ln(Dbm)₃ (Ln = La, Eu, Lu) с сопоставлением полос расчетным энергиям орбиталей Кона—Шэма

групп, полоса 3 представлена 2*s* атома углерода хелатного цикла. Интенсивная полоса 2 обусловлена Eu4*f*, при этом в расчете из-за используемого эффективного остовного потенциала 4*f*электроны убраны в остов, поэтому на спектре отсутствует отнесение данной полосы. РФЭ характеристики, полученные после обработки спектров, приведены в табл. 5.

Для Lu(Dbm)₃ выделяются по интенсивности полосы спин-орбитальных дублетов Lu4*f* электронов $4f_{7/2}$, $4f_{5/2}$ и Lu5*p* электронов $5p_{3/2}$, $5p_{1/2}$ (полосы 1, 5, 6). Полосы 2, 3, 4 и 5' соответствуют уровням *s*-типа. В комплексе Lu(Dbm)₃ широкие полосы 5 и 6 — результат расщепления Lu5*p* (величина расщепления 6,3 эВ), полоса 5' в соответствии с расчетами отнесена четырем уровням от 1*e*, $2a_1$, $1a_2$ и 2*e*, содержащим преимущественно орбитали O2*s*.

5

Т	а	б	Л	И	ц	а

-		-	
Комплекс	O1 <i>s</i>	C1s	$Ln(4d_{5/2}; 4d_{3/2})$
La(Dbm) ₃ Eu(Dbm) ₃ Lu(Dbm) ₃	531,2 531,4 531,9	285,0 285,0 285,0	102,9; 106,2 136,4; 142,2 196,9; 206,6

 E_{cb} остовных электронов (эВ)

В области энергий связи от 9 до 23 эВ основной вклад в интенсивность спектра валентных электронов вносят уровни, содержащие преимущественный вклад C2s электронов. В частности, для каждой фенильной группы существует шесть уровней, коррелирующих с MO *s*-типа C₆H₆: $2a_{1g}$, $4e_{1u}$, $4e_{2g}$, $2b_{1u}$. Слабая полоса у потолка валентной зоны соответствует близким по энергии верхним π орбиталям фенильных групп.

Высокая интенсивность полосы Lu4f вносит сложности в точность определения потенциалов ионизации, однако, выбрав положение максимума полосы 4f, мы определили дефект Купманса для 4f, равный 1,8 эВ.

ЗАКЛЮЧЕНИЕ

Переход от комплексов Еи к Lu сопровождается изменением длины связи Ln—O, что согласуется с ионным радиусом лантаноидов. При замещении CH₃ на C(CH₃)₃ в лигандах происходит "выталкивание" МO n_- и n_+ связывающими орбиталями σ (C—C) и σ (C—H), дестабилизация находится в прямой зависимости от вклада *трет*-бутильных групп. Установлен значительный вклад *d* и *s* орбиталей металлов в лигандные n_+ орбитали.

Показано, что при замещении CH₃-группы на CF₃ стабилизация на 2 эВ энергий ионизации обусловлена эффектом поля.

В комплексах Ln(Dbm)₃ смешивание орбиталей хелатного цикла и фенильных групп приводит к увеличению энергии π₃ орбиталей и уменьшение энергий остальных.

Сдвиг в УФ спектрах Ln(Acac)₃ максимумов трех первых полос в область больших энергий на 0,1 эВ при замещении металла (Eu на Lu) обусловлен, преимущественно, изменением молекулярного потенциала для лигандных уровней.

Идентифицированы полосы валентной области *трис*-дибензоилметанатов Eu, Lu, ультрафиолетовых (газовая фаза) и рентгеноэлектронных (конденсированное состояние) спектрах.

Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации в рамках Государственного задания № 2014/36 по НИР № 1137 Дальневосточного федерального университета.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Mirochnik A.G., Bukvetskii B.V., Zhikhareva P.A., Karasev V.E. //* Russ. J. Coord. Chem. 2001. 27, N 6. P. 443 448.
- 2. Мирочник А.Г., Петроченкова Н.В., Карасев В.Е. // Высокомол. соед. Сер. А. 1999. **42**, № 10. С. 1642.
- 3. Binnemans K. Handbook on the physics and chemistry of rare earths. Elsevier, 2005. 35. P. 107 272.
- 4. Shul'gin V.F., Abkhairova S.V., Konnik O.V., Meshkova S.B., Topilova Z.M., Kiskin M.A., Eremenko I.L. // Russ. J. Inorg. Chem. 2012. 57. P. 420 426.
- 5. Kuz'mina N.P., Eliseeva S.V. // Russ. J. Inorg. Chem. 2006. 51, N 1. P. 73 88.
- 6. Eliseeva S.V., Troyanov S.I., Kuzmina N.P., Mirzov O.V., Vitukhnovsky A.G. // J. Alloys and Compounds. 2004. **374**, N 1-2. P. 293 297.
- 7. Utochnikova V.V., Kotova O.V., Shchukina E.M., Eliseeva S.V., Kuz'mina N.P. // Russ. J. Inorg. Chem. 2008. 53, N 12. P. 1878 1884.
- 8. Нефедов В.И., Вовна В.И. Электронная структура химических соединений. М.: Наука, 1987.
- 9. Нефедов В.И. Рентгеноэлектронная спектроскопия химических соединений. М.: Химия, 1984.
- 10. Нефедов В.И., Вовна В.И. Электронная структура органических и элементоорганических соединений. М.: Наука, 1989.
- 11. Мазалов Л.Н. Рентгеновские спектры. Новосибирск: ИНХ СО РАН, 2003.
- 12. Westcott B.L., Seguin T.J., Gruhn N.E. // J. Electron Spectr. Relat. Phenom. 2014. 193. P. 100 101.
- 13. Novak I., BrankaKovač // J. Organometal. Chem. 2007. 692. P. 2299 2305.
- 14. Richer G., Sandorfy C. // J. Mol. Struct. (Theochem). 1988. 167. P. 413 423.

- 15. Короченцев В.В., Вовна В.И., Калиновская И.В., Комиссаров А.А., Доценко А.А., Шурыгин А.В., Мирочник А.Г., Сергиенко В.И. // Журн. структур. химии. 2014. **55**, № 6. С. 1114 1123.
- 16. Вовна В.И., Горчаков В.В., Чередниченко А.И., Дзюбенко Н.Г., Кузьмина Н.П., Мартыненко Л.И. // Координац. химия. – 1991. – 17, № 4. – С. 571 – 576.
- 17. *Чередниченко А.И., Вовна В.И., Горчаков В.В., Кузьмина Н.П.* // Координац. химия. 1990. **16**, № 9. С. 1283 1287.
- Vovna V.I., Lvov I.B., Slabzhennikov S.N., Ustinov A.Yu. // J. Electron Spectr. Relat. Phenom. 1998. 88-91. – P. 109 – 117.
- 19. Вовна В.И., Горчаков В.В., Мамаев А.Ю. // Координац. химия. 1984. 10, № 10. С. 1362 1367.
- 20. Вовна В.И., Карасев В.Е., Мирочник А.Г., Зиатдинов А.М. // Журн. неорган. химии. 1987. **32**, № 10. – С. 2403 – 2408.
- 21. CasaXPS Version 2.3.12 Casa Software Ltd, 1999-2006.
- 22. Granovsky A.A. Firefly v. 8, www http://classic.chem.msu.su/gran/firefly/index.html
- 23. Schmidt M.W., Baldridge K.K., Boatz J.A. // J. Comput. Chem. 1993. 14. P. 1347 1363.
- 24. Dolg M., Peterson K.A., Schwerdtfeger P., Stoll H. Pseudopotentials of the Stuttgart/Cologne group, Institute for theoretical chemistry, August 19, 2014 [www.tc.uni-koeln.de].
- 25. Vovna V.I., Korochentsev V.V., Komissarov A.A., L'vov I.B. // Russ. J. Phys. Chem. B. 2013. 7, N 3. P. 220 224.
- 26. Осьмушко И.С., Вовна В.И. // Журн. структур. химии. 2004. 45, № 5. С. 783 791.
- 27. Potts A.W., Lee E.P.F. // Chem. Phys. Lett. 1981. 82, N 3. P. 526 529.
- 28. Вовна В.И., Харченко В.И., Чередниченко А.И., Горчаков В.В. // Журн. структур. химии. 1989. **30**, № 3. – С. 144 – 147.