УДК 536.4

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ПРОЦЕССОВ ПОДАВЛЕНИЯ ПЛАМЕННОГО ГОРЕНИЯ И ТЕРМИЧЕСКОГО РАЗЛОЖЕНИЯ МОДЕЛЬНЫХ НИЗОВЫХ И ВЕРХОВЫХ ЛЕСНЫХ ПОЖАРОВ

Р. С. Волков, Г. В. Кузнецов, П. А. Стрижак

Томский политехнический университет, 634050 Томск, pavelspa@tpu.ru

Выполнено экспериментальное исследование процессов тепло- и массопереноса и фазовых превращений при подавлении пламенного горения и термического разложения модельных низовых, верховых и комбинированных лесных пожаров за счет локального воздействия воды. Опыты проводились с типичными лесными горючими материалами (смесь листьев, хвоинок и веточек), а также с макетами стволов и веточек деревьев. Определены условия и характеристики процессов подавления пламенного горения и термического разложения лесных горючих материалов. Показано, что в случае верховых и комбинированных пожаров локальное кратковременное (несколько секунд) воздействие жидкостного снаряда не приводит к подавлению термического разложения материала (возможна лишь локализация пламенного горения). В случае низовых лесных пожаров такой подход может быть эффективным при рациональном выборе площади орошения водой очага горения, а также интенсивности и времени распыления.

Ключевые слова: лесной горючий материал, пламенное горение, термическое разложение, подавление горения, водяной снаряд, аэрозоль, капля воды.

DOI 10.15372/FGV20170608

ВВЕДЕНИЕ

Тушение крупных лесных пожаров в настоящее время практически везде осуществляется сбросом большой массы воды с вертолета или самолета (до нескольких десятков тонн, например, с ИЛ-76) в область горения леса [1–3]. При этом вода либо подается локально в виде своеобразных водяных снарядов, либо распыляется над площадями до нескольких тысяч квадратных метров [3–5]. Но пока отсутствуют прямые или косвенные обоснования эффективности использования таких технологий подавления горения лесных массивов на площадях, превышающих несколько сотен квадратных метров. Нет ни экспериментальных данных о связи условий и характеристик процесса подавления горения (время, тип материала, категория пожара, скорость распространения фронта горения, температура и др.) лесных горючих материалов (ЛГМ) с параметрами воздействия (плотность и время орошения, дисперсность капельного потока, высота сброса или распыления воды и др.), ни результатов полевых стендовых испытаний в услови-

ях, максимально приближенных к реальным. Соответственно, пока нет и теории тушения лесных пожаров путем воздействия на горение ЛГМ монолитными массами воды или специализированными аэрозольными потоками. Для разработки научных основ таких технологий необходимы экспериментальные исследования (в лабораторных условиях и на крупноразмерных моделях лесных пожаров) основных закономерностей процессов, протекающих при взаимодействии горящих ЛГМ с распыленной водой или монолитными снарядами. Поскольку процессы термического разложения и пламенного горения ЛГМ в условиях низовых и верховых лесных пожаров существенно отличаются [6-8], эксперименты целесообразно проводить в условиях, соответствующих низовым, верховым и комбинированным (совместно протекающим низовым и верховым) лесным пожарам.

На протяжении последних 5–7 лет выполнены экспериментальные и теоретические исследования [9–13] с целью создания научных основ теории тепло- и массопереноса и фазовых превращений при движении больших и малых объемов воды (массивы, струи, аэрозоли, одиночные капли) через пламена с температурой более 1 000 К. Определены основные закономерности процессов движения и испарения, дефор-

Работа выполнена при поддержке Российского научного фонда (проект № 14-39-00003).

[©] Волков Р. С., Кузнецов Г. В., Стрижак П. А., 2017.

мации, взаимодействия между собой групп капель воды, ее растворов, эмульсий и суспензий в условиях интенсивного нагрева. В то же время установлено [13], что поперечные размеры облаков аэрозолей высокой плотности практически не меняются при перемещении через пламя, несмотря на ожидаемые процессы трансформации поверхности и сплющивания водяной массы. Это приводит к малой площади орошения водой участков горящего лесного массива и, соответственно, участков термического разложения ЛГМ. В этой связи актуальны эксперименты [14-16] по определению условий и характеристик процесса подавления горения (на лабораторных и стендовых макетах) низовых и верховых лесных пожаров нераспыленной водой в соответствии с типичными условиями ее локального сброса воздушным судном. В первую очередь целесообразно определить, при каких условиях даже локальный сброс воды может быть эффективным. Термин «эффективный» соответствует такому воздействию воды на горящий ЛГМ, при котором выполняются условия подавления термического разложения и пламенного горения или контролируемого замедления (локализации) распространения фронта горения с учетом минимального времени тушения и использованного объема воды [9– 13]. В настоящем исследовании под эффективным воздействием подразумевалось полное подавление термического разложения и пламенного горения ЛГМ.

Термин «подавление» в отношении термического разложения и пламенного горения вводится с целью физической интерпретации соответствующих процессов. Термическое разложение ЛГМ проходит в достаточно узком диапазоне температуры, как правило, 400÷600 К. При этом скорость процесса зависит от температуры экспоненциально. При большом времени теплового воздействия термическое разложение ЛГМ завершается полностью — остается только углеродный остаток. Воздействие воды на ЛГМ приводит к быстрому снижению температуры в зоне разложения и к соответствующему падению скорости этого процесса. При некоторых объемах воды и временах воздействия температура в зоне реакции падает ниже температуры начала термического разложения. Дальнейшего пиролиза ЛГМ не происходит. В результате генерация газообразного горючего (продуктов пиролиза ЛГМ) прекращается, и пламенное горение завершается. Затем вследствие воздействия воды завершается и разложение ЛГМ.

Цель настоящей работы — экспериментальное определение необходимых условий и основных характеристик процесса подавления горения ЛГМ распыленной водой и большими (монолитными в начальный момент времени) ее массивами при воспроизведении условий низовых, верховых и смешанных лесных пожаров.

1. МЕТОДИКА ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ

1.1. Цели и объект исследования

При планировании экспериментов целями исследования выбраны время и удельный расход воды, обеспечивающие подавление термического разложения ЛГМ. Основными варьируемыми факторами являлись тип очага лесного пожара, время воздействия на ЛГМ, конфигурация потока воды (аэрозоль или монолитная масса в начальный момент времени).

Проведенный анализ показал, что прямое физическое моделирование [17] условий реального низового или верхового лесного пожара в лабораторных экспериментах (или стендовых на больших по размерам моделях горящего лесного массива) невозможно. При совместном протекании верховых и низовых пожаров размер области горения по вертикальной координате может достигать $20 \div 25$ м [1–3]. Поэтому при планировании экспериментов ставилась задача имитационного моделирования с воспроизведением основных условий реального верхового пожара (состав и структура ЛГМ, температура пламени, размеры отдельных фрагментов по поперечной или вертикальной координате) и полным воспроизведением условий низового лесного пожара.

1.2. Этапы исследования

Эксперименты проводились в два этапа. На первом (в лабораторных условиях) исследовались характеристики процессов подавления пламенного горения и термического разложения ЛГМ модельных низовых (площадь поверхности $S_f \approx 0.063 \text{ м}^2$) и верховых ($S_f \approx 0.096 \text{ м}^2$) лесных пожаров. На втором этапе (на испытательном полигоне МЧС России) эксперименты выполнялись на существенно бо́льших

Рис. 1. Внешний вид экспериментального комплекса на испытательном полигоне

(по сравнению с лабораторными) по площади ($S_f = 0.1 \div 0.64 \text{ M}^2$) моделях лесных пожаров. Площадь поверхности модельного очага во всех случаях представляла собой сумму площадей всех граней стволов и веточек, а также внешней (свободной) поверхности насыпки ЛГМ. Внешний вид испытательного комплекса (второй этап) приведен на рис. 1.

Площадь «подстилки» (очага пожара) вычислялась по выражению $S_f = a_f b_f$. При ширине поддона для укладки ЛГМ $a_f =$ $0.23 \div 0.6$ м и его длине $b_f = 0.28 \div 1.1$ м значения площади варьировались в диапазоне $S_f =$ $0.063 \div 0.64$ м².

Для моделирования низового лесного пожара применялась металлическая емкость, наполненная смесью типичных ЛГМ в массовом соотношении компонентов: листья березы — 25 %, хвоя сосны — 15 %, ветки лиственных пород деревьев — 60 %. Максимальная площадь поверхности ЛГМ составляла 0.64 м², толщина слоя 0.07 м. Таким образом, максимальный объем реагирующего ЛГМ — 0.045 м³.

Плотность навески (подстилки) ЛГМ вычислялась по формуле $\rho_f = m_{f0}/(h_f S_f)$. При представленных выше значениях площади поверхности модельного очага S_f и варьировании толщины слоя ЛГМ h_f и массы навески m_{f0} значения ρ_f поддерживались в диапазоне $12 \div 15 \text{ кг/m}^3$, соответствующем свежему опаду лесного материала, согласно представлениям [18–20].

Для создания макета верхового лесного пожара использовались бруски сосны поперечных размеров 0.02×0.03 м и длиной $0.1 \div 0.3$ м. Основные параметры макетов низовых, верховых и комбинированных лесных пожаров определялись согласно [21]. Высота макетов варьировалась в интервале $0.2 \div 0.8$ м. Площадь поверхности макетов верхового пожара изменялась в диапазоне $0.3 \div 0.7$ м², а комбинированного — $0.9 \div 1.3$ м². Внешний вид макетов в лабораторных экспериментах приведен на рис. 2.

При выполнении исследований на испытательном стенде для создания макета низового лесного пожара использовалась такая же смесь ЛГМ, как в лабораторных исследованиях. Материал укладывался в металлический поддон, в нижней части которого выполнены отверстия для установки термопар.

Для имитационного моделирования верхового лесного пожара из брусков различного сечения и веточек сосны изготавливалась модель дерева. К вертикальной деревянной станине (сечение 0.05 × 0.05 м, высота 0.4 м) горизонтально прикреплялись бруски («ветки») длиной 0.4 м и сечением 0.01 × 0.02 м. Макет состоял из двух таких «деревьев», отстоящих друг от друга на расстояние 0.4 м (расстояние между крайними «ветками», которое соответствовало характерному поперечному размеру каждой из двух моделей деревьев).

Макеты верхового пожара в лабораторных

Рис. 2. Внешний вид лабораторных макетов (первый этап исследований) низового (a) и верхового (b) лесных пожаров перед зажиганием и в процессе горения

экспериментах и при полевых стендовых испытаниях отличались конструктивно [21], но при этом обеспечивались практически идентичные температуры пламени. В полевых испытаниях имеется возможность использовать макеты с максимально близкими к реальным «стволами» деревьев. В лабораторных условиях, к сожалению, такой возможности нет.

Макет комбинированного лесного пожара состоял из наполненной смесью ЛГМ кюветы (имитирующей низовой пожар) и двух «деревьев» (имитирующих верховой пожар). Внешний вид макетов на втором этапе исследований приведен на рис. 3.

Перед проведением экспериментов материалы высушивали в течение $3 \div 5$ дней при температуре 300 К. Непосредственно перед каждым экспериментом проводился контроль влажности материалов (методом термической сушки), которая для смеси ЛГМ составляла $8 \div 12$ %, для брусков и веточек сосны — $10 \div 14$ %.

Следует отметить специфическую конструкцию стенда с ограждением моделей лесных пожаров (см. рис. 3). Ограждение необ-

Рис. 3. Внешний вид полевых макетов (второй этап исследований) низового (a), верхового (b) и комбинированного (b) лесных пожаров перед зажиганием и в процессе разгорания

ходимо для того, чтобы максимально приблизить условия эксперимента к натурным. Стены (из огнеупорного и жаропрочного материала — асбестового листа), окружающие макет, максимально снижают теплоотвод из области горения во внешнюю среду. Они, образно говоря, «вырезают» из большой совокупности горящих деревьев одно центральное, которое горит в окружении других. Ветровая нагрузка в проведенных опытах не рассматривалась по двум причинам. Во-первых, лесные пожары достаточно часто распространяются в безветренную погоду. Вовторых, имитация ветровой нагрузки при горении леса возможна только при большом числе стволов. Организовать такой эксперимент даже на полигоне МЧС России крайне сложно (вследствие высокой пожарной опасности).

1.3. Водяные массивы

Создание жидкостного массива (монолитного в начальный момент времени снаряда) проводилось по методике, описанной в работе [13]. Закрепленная над макетом пожара резиновая оболочка с жидкостью разрушалась с помощью заостренного наконечника. После этого вода продолжала движение вертикально вниз под действием силы тяжести. Для видеорегистрации процесса использовалась высокоскоростная видеокамера Phantom V411 (частота съемки до $6 \cdot 10^5$ кадр/с, максимальное разрешение 1 280 × 1 280 пикселей). Типичные видеокадры массивов воды приведены на рис. 4, *a*.

Начальные объемы массива воды варьировались в диапазоне $V_0 = 0.05 \div 1$ л, высота их сброса — от 1 до 15 м (ограничена техническими характеристиками подъемной платформы — максимальная высота 17 м). Для каждого типа модельного лесного пожара (низового, верхового, комбинированного) при идентичных условиях проводились 7÷10 экспериментов. Диапазон варьирования V₀ выбран на основе анализа результатов опытов [13] и выводов работ [2-4]. В частности, в [2-4] показано, что при сбросе воды шлюзовым способом с высоты $100 \div 150$ м до верхних ярусов деревьев долетают фрагменты жидкости характерных объемов 0.01÷5 л. Минимальные по объему фрагменты (0.01 л) интенсивно трансформируются и измельчаются. Поэтому принято решение о варьировании начального объема снарядов с 0.05 л. Из результатов опытов [13] можно заключить, что в лабораторных условиях затруднительно проводить сброс водяных массивов объемом более 1 л. Это требует больших (до 20 м²) площадей испытательных лабораторий. Последние необходимы для безопасного удаления видеорегистрирующих систем от траектории перемещения массива, достоверного и непрерывного контроля продольных и поперечных размеров массива, специализиро-

Рис. 4. Внешний вид массива воды ($V_0 \approx 250 \text{ мл}$) на различном удалении от точки сброса (*a*), а также протяженность соответствующих стадий трансформации *n* водяных массивов различных начальных объемов (δ):

б: ось *у* — направление движения водяного массива; ось *n*: 1 — сплющивание массива, 2 — начало образования «пузырей», 3 — разрушение «пузырей» и образование жидкостных «цепочек», 4 — полное разрушение массива на облако мелких капель

ванного улавливания фрагментов воды в нижней части стенда с целью минимизации негативных последствий от столкновения жидкости с основанием стендового каркаса. Поэтому максимальный начальный объем водяного массива составил 1 л.

В выполненных экспериментах установлено, что для всех массивов характерны типичные стадии трансформации и разрушения (аналогичные [13, 22]): сплющивание массива, начало образования «пузырей», разрушение «пузырей» и образование жидкостных «цепочек», полное разрушение массива на облако мелких капель. Протяженность каждой из выделенных стадий иллюстрирует рис. 4, δ , хорошо видны соответствующие отличия. Поэтому при проведении экспериментов по тушению модельных лесных пожаров высоту сброса массива выбирали исходя из протяженности установленных стадий (рис. 4, δ).

1.4. Методика исследования процессов подавления горения и термического разложения водяных массивов

Перед началом основных экспериментов регистрировалось время полного выгорания используемых макетов и навесок ЛГМ без взаимодействия с жидкостью. В рамках первого и второго этапов каждого эксперимента выполнялись следующие действия:

1) создавался макет лесного пожара, в котором для контроля температуры термического разложения ЛГМ и последующего подавления пиролиза (T_f) устанавливались три хромель-алюмелевые термопары с диаметром спая 0.5 мм (тепловая инерция 0.4 с, систематическая погрешность ± 3 K). Опрос показаний термопар выполнялся регистратором National Instruments модели NI 9219 (четыре канала, максимальная производительность 20 мс), считывание данных в соответствии с инерционностью термопар проводилось через 0.4 с;

2) над макетом на варьируемой высоте (удаление от модели $1 \div 15$ м) закреплялся жидкостный массив (в резиновой оболочке [13]);

3) зажигание ЛГМ осуществлялось равномерно по всей площади поверхности с одновременным применением нескольких пьезоэлектрических газовых горелок; при четырех горелках пламя покрывало всю поверхность навески ЛГМ через 3÷5 с; считалось, что ЛГМ равномерно горит по всей площади поверхности;

4) при горении всей открытой поверхности ЛГМ (контролировалось визуально), а также по достижении показаний трех термопар уровня 600 К (средняя температура, соответствующая пламенному горению) осуществлялся сброс жидкостного массива в зону горения;

5) процессы подачи воды, последующего горения ЛГМ и его подавления регистрировались видеокамерой (с частотой до 10³ кадр/с), определялось время подавления термического разложения.

Для исследуемого типа ЛГМ средняя температура модельного очага горения (учитывались показания трех термопар, размещенных на разной глубине) без воздействия водяного аэрозоля составляла 600÷650 К. Нередко регистрировался кратковременный рост температуры до 750 К и снижение до 600 К, что обусловлено разнородным составом смеси ЛГМ и, как следствие, его усадкой в процессе термического разложения. Растет масса «прококсованного» хрупкого слоя. При определенном ее значении «прококсованный» ЛГМ оседает и закрепленная на фиксированном расстоянии термопара начинает показывать температуру более нагретых элементов ЛГМ.

Пламенное горение и термическое разложение материала считались остановленными (для всех типов модельных очагов) при соблюдении следующих условий:

— отсутствие пламени (регистрировалось при анализе видеограмм процесса);

— температура во всех точках макета лесного пожара ниже температуры термического разложения ЛГМ [1, 23, 24], $T_f < 400$ K;

— в течение 5 мин не происходит повторного воспламенения ЛГМ или повышения значений T_f сверх 400 К в условиях лабораторных или стендовых экспериментов.

В экспериментах регистрировалась температура в слое ЛГМ. Из-за усадки ЛГМ в ходе эксперимента его фрагменты начинали касаться спая термопары. В настоящее время принято считать, что в процессе интенсивного пиролиза различие температур газообразных и твердых продуктов термического разложения ЛГМ в одном сечении мало (единицы градусов). Нет результатов экспериментов, иллюстрирующих обратное. Поэтому такой подход к представлению температуры в слое ЛГМ широко используется при исследовании процессов термического разложения ЛГМ (например, в работе [12]).

1.5. Водяные аэрозоли и методики их исследования

Проведены эксперименты по воздействию

на аналогичные модели лесных пожаров аэрозольным водяным потоком с различной дисперсностью капель ($R_d = 0.01 \div 0.35$ мм). В зависимости от типа макета пожара использовалось одновременно несколько $(2 \div 3)$ распылительных форсунок, генерирующих полидисперсный капельный поток. Система подачи воды на форсунки (см. рис. 1) состояла из резервуара с водой и нагнетателя (воздушного компрессора). Для оценки характеристик распыленного капельного потока (размеров капель R_d и скоростей их движения u_d) использовался программно-аппаратный кросскорреляционный комплекс диагностики многофазных потоков [9, 10]. Применялись известные и хорошо себя зарекомендовавшие методики: particle image velocimetry (PIV) [25] и shadow photography (SP) [26].

1.6. Погрешности измерений

Погрешности определения времени выгорания лесных материалов t_b и времени подавления горения t_e составили 0.5 с, размеров капель $R_d = 0.005$ мм, скоростей движения $u_d = 0.02$ м/с. Максимальные случайные погрешности определения температуры T_f в слое ЛГМ не превышали 30 К.

2. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

2.1. Применение водяных массивов

Установлены основные закономерности процессов подавления пламенного горения и термического разложения ЛГМ с использованием монолитных (в начальный момент времени) жидкостных массивов. Так, для малых по площади ($S_f < 0.06 \text{ м}^2$) моделей низовых лесных пожаров (рис. 5) в рамках первого этапа исследований подавление горения наблюдалось в 80 ÷ 90 % лабораторных экспериментов, если площадь поперечного сечения массива воды составляла не менее 80 % площади поверхности макета. В таком случае (практически при полном орошении макета водой) пламя мгновенно исчезало, за 1÷3 с, и последующее подавление процесса термического разложения завершалось в течение 4÷16 с. Результаты измерения температуры лесного пожара спустя 1 с после сброса воды приведены на рис. 5, а.

В случае же локального воздействия жидкостного массива (при орошении им менее

Рис. 5. Результаты измерения температуры модельных низовых пожаров термопарами, размещенными на разной глубине (1–3 — сверху вниз), при воздействии водяного массива объемом 0.2 л, обеспечивающего 100 (a) и 60 % (δ) покрытия площади ЛГМ

80 % площади поверхности макета) термическое разложение ЛГМ за границей воздействия воды не прекращалось (рис. 5, δ). При таком варианте сброса (воздействие на $40 \div 60$ % площади навески ЛГМ) подавление горения в зоне орошения также занимает в среднем $1 \div 3$ с. Однако за пределами этой зоны горение продолжается в прежнем режиме практически до полного выгорания ЛГМ.

Аналогичные закономерности процессов подавления горения и термического разложения установлены для модельных ($S_f = 0.2 \div 0.6 \text{ m}^2$) низовых лесных пожаров на втором этапе исследований (при полевых стендовых испытаниях). Однако в этом случае (высота сброса снаряда изменялась от 3 до 10 м) важную роль играла стадия трансформации формы жидкостного массива перед контактом с ЛГМ. Так, во время первой и второй стадий

Рис. 6. Типичные видеокадры процесса подавления термического разложения модельных верховых и комбинированных пожаров после воздействия водяного массива

трансформации массив объемом до 1 л покрывал не более чем 0.25 м^2 площади поверхности ЛГМ и, как следствие, условия подавления термического разложения лесного массива в большинстве случаев не были достигнуты. При более длительном движении массива (увеличении высоты сброса) происходило его частичное или даже полное разрушение (третья и четвертая стадии трансформации). Площадь, покрытая жидкостью, значительно увеличивалась (в $10 \div 15$ раз). Условия подавления модельного низового лесного пожара достигались в большинстве случаев.

Выполненные экспериментальные исследования показали, что пламенное горение ЛГМ всегда реализуется только в прилегающей к поверхности ЛГМ области внешней среды (газофазное горение). Ни при каких условиях пламя не проникало в пористую структуру ЛГМ.

На рис. 6 приведены результаты второго этапа исследований — последовательные видеокадры сброса (с высоты 5 м) массива жидкости ($V_0 \approx 0.5$ л) на модель верхового лесного пожара. Высота 5 м выбрана с целью обеспе-

чить полное покрытие водой всей площади поверхности горящего ЛГМ.

Результаты экспериментов по подавлению пламенного горения и термического разложения ЛГМ в условиях модельного верхового лесного пожара показали, что ожидаемый эффект достигался только в случае покрытия жидкостным снарядом более 80 % площади поверхности макета. В отличие от лабораторных экспериментов, полное подавление горения модельного верхового лесного пожара не удалось реализовать ни в одном из проведенных экспериментов. После попадания на макет пожара жидкостного снаряда последний разрушался при контакте с соответствующими «элементами деревьев» (ветками) и практически не оказывал заметного влияния на процессы в основании макета, и тем самым пламенное горение и термическое разложение продолжались. Вследствие этого по истечении 100÷200 с горение возобновлялось. Аналогичные результаты получены и в экспериментах с двумя последовательно подаваемыми (через малый интервал времени — 10 с) жидкостными снарядами («ядрами» [13])

при суммарном объеме жидкости 1 л. Пламя в данном случае удавалось сбить — ликвидировалось пламенное горение. Однако термическое разложение древесины и горение в режиме тления продолжались. В этот отрезок времени термопарами, установленными в основании макета, зарегистрирована температура от 370 до 480 K.

Полностью подавить пламенное горение модели комбинированного (низового и верхового) лесного пожара с применением локального сброса жидкости не удалось. Даже при обеспечении 100 % покрытия водой площади ЛГМ «элементы деревьев» (верховой лесной пожар) задерживали капли воды, препятствуя их проникновению в область низового пожара. В результате горение ЛГМ прекращалось на открытых участках, но продолжалось у основания «деревьев», а спустя $15 \div 20$ с макет комбинированного лесного пожара разгорался вновь по всей высоте (температура T_f достигала максимальных значений).

2.2. Применение водяных аэрозолей

На рис. 7 приведена зависимость характерного времени подавления реакции термического разложения в условиях низового, верхового и комбинированного лесных пожаров от размеров капель воды распыляемого аэрозольного потока. При проведении этих экспериментов во всех случаях обеспечивалось полное подавление горения ЛГМ. При этом минимальные значения времени тушения ($t_e < 140$ с) соответствовали низовым пожарам. Подавление горения макетов стендовых верхового и комбинированного лесных пожаров характеризовались близкими значениями t_e , как правило, не выше 700 с.

На основании результатов выполненных экспериментов с водным аэрозолем можно сделать вывод, что определяющее влияние на продолжительность подавления пламенного горения и термического разложения верховых и комбинированных модельных очагов оказывают элементы деревьев («ветки» и «ствол»). Такой результат хорошо согласуется с данными выполненных экспериментов по подавлению модельных пожаров (пламенного горения и термического разложения) с применением жидкостных массивов. Очевидно, что отдельные, разнесенные в пространстве элементы верховых и комбинированных пожаров, как

Рис. 7. Время подавления пламенного горения модельных низовых $(S_f \approx 0.63 \text{ м}^2)$ (*a*), верховых $(S_f \approx 0.26 \text{ м}^2)$ (*б*) и комбинированных $(S_f \approx 0.63 \text{ м}^2)$ (*в*) пожаров при воздействии аэрозольным потоком (в условиях варьирования размера капель при полевых испытаниях)

и в случае с массивами, препятствуют проникновению капель аэрозоля к основанию пожара (соответственно, процесс подавления горения занимает более продолжительное время). Кроме того, в экспериментах на моделях верхового пожара регистрировался значительный унос восходящими продуктами сгорания мелких ($R_d < 0.12$ мм) капель воды, что хорошо коррелирует с данными [10, 27]. Эти результаты объясняют увеличение времени тушения пожара t_e на рис. 7, *б*, *в*.

Несмотря на достаточно большие, на первый взгляд, значения t_e на рис. 7, минимальные объемы воды (V_e) , затраченные на подавление термического разложения ЛГМ исследованных моделей пожаров, соответствовали мелким каплям аэрозоля $(R_d = 0.05 \div 0.1 \text{ мм})$ и составляли для низовых пожаров 0.08÷0.19 л, верховых и комбинированных — 0.45÷1.13 л. Максимальные же значения Ve регистрировались для капель аэрозоля размерами R_d = $0.2 \div 0.35$ мм и составляли для низовых пожаров 0.57 ÷ 0.79 л, верховых и комбинированных — 1.68÷2.15 л, что в несколько раз меньше, чем при использовании водяных массивов. Если учесть характерные площади поверхности ЛГМ, то минимальный удельный расход аэрозоля с каплями размеров R_d = $0.05 \div 0.1$ мм составил 0.127 л/м², а максимальный — 0.302 л/м², для капель размеров $R_d = 0.2$ и 0.35 мм — 0.905 и 6.46 л/м² соответственно. С учетом установленных времен подавления горения получаем минимальные и максимальные плотности орошения: 0.001 и 0.081 л/(${\rm M}^2 \cdot {\rm c}$). Эти значения существенно ниже традиционно рекомендуемых пожарными службами по всему миру (как правило, $1 \div 3 \ \pi/(M^2 \cdot C))$ [3]. Указанное отличие можно объяснить двумя причинами. Первая — ранее не проводились прямые эксперименты по подавлению горения ЛГМ с измерением времени и массы воды, необходимой для подавления, в условиях ее распыления (нет публикаций с такими данными). Вторая — до настоящего времени пожарные специалисты из-за отсутствия результатов фундаментальных исследований, иллюстрирующих рациональность применения малых объемов, ориентировались на такую массу воды, которая обеспечивала гарантированное подавление горения (в том числе с многократным завышением ее объема).

Проведенные лабораторные и стендовые эксперименты показали, что мелкодисперсный аэрозоль более эффективен по сравнению с массивами воды при подавлении термического разложения навесок ЛГМ любой структуры. При орошении макета пожара полидисперсным распыленным капельным потоком реализуются три механизма подавления пламенного горения и термического разложения. Во-первых, мелкие капли жидкости, интенсивно испаряясь, существенно снижают температуру пламени и продуктов пиролиза. Во-вторых, капли воды, попав на поверхность пиролизующегося ЛГМ, значительно охлаждают его. В-третьих, образовавшийся водяной пар (в совокупности с движущимися каплями) вытесняет кислород из зоны горения. Менее затратным по объему жидкости является использование мелкодисперсного аэрозоля $(R_d = 0.05 \div 0.1 \text{ мм}, \text{ см. рис. 7})$. В данном случае наибольший вклад в процесс тушения, скорее всего, вносит парообразование энергозатратный процесс (за счет высокой теплоты испарения воды — 2 МДж/кг). При интенсивном длительном испарении капель воды вблизи поверхности ветвей деревьев, горящих до начала воздействия водяного аэрозоля, прекращается прогрев слоя ЛГМ, в котором интенсивно развивалось термическое разложение, и начинается его охлаждение, даже если вода не успела проникнуть в пористую структуру древесины. Аккумулированная в прогретом слое ЛГМ (в условиях верхового пожара – в веточках) теплота отводится во внешнюю среду (водяной пар с достаточно низкой температурой) и в глубь материала. В результате термическое разложение ЛГМ замедляется, а его газообразные продукты, продолжающие поступать во внешнюю среду, охлаждаются до температуры, при которой скорость их реакции с кислородом воздуха, присутствующим в облаке водяного пара, снижается до предельно низких значений (концентрация горючих газов также снижается, что ведет к уменьшению тепловыделения). Если при этом поступление водяного аэрозоля в область вблизи поверхности остывающего ЛГМ прекращается, возможно возобновление горения последнего. Если же поступление водяного аэрозоля продолжается длительное время (как показали эксперименты, до 700÷800 с), то ЛГМ за счет отвода тепла в окружающий его достаточно «холодный» водяной пар и в глубь слоя остывает до температуры меньше температуры начала термического разложения. Прекращается пиролиз ЛГМ, соответственно, его горение не возобновляется.

Скорее всего, использование жидкостных массивов в целях локализации (создания заградительных полос) и ликвидации пожаров может быть эффективно лишь в случае низового лесного пожара. В условиях верховых и комбинированных лесных пожаров целесообразно прибегать к технологиям специализированного, распределенного во времени и пространстве распыления жидкостей, обеспечивающего покрытие максимально возможной площади очага, так как только в этом случае можно достичь полного подавления горения. При разработке таких технологий необходимо учитывать особенности движения (торможения, уноса и др.) капель жидкости во встречном потоке продуктов сгорания, описанные, например, в работах [10, 27].

ЗАКЛЮЧЕНИЕ

Полученные в проведенных экспериментах необходимые параметры (в частности, удельный расход воды и плотность орошения) и основные характеристики (время) процессов подавления горения в условиях верховых и низовых пожаров при воздействии на горящий ЛГМ потоков распыленной воды показали, что подавление аэрозольным потоком возможно только при длительном воздействии последнего (от 10 с (низовой) до 800 с (верховой и смешанный)) и размерах капель от 0.25 мм и более. Установлено также, что монолитными (или относительно монолитными) водяными массивами подавить горение в условиях верхового пожара невозможно даже при большом удельном расходе воды. Сформулированы гипотезы о механизмах тепло- и массопереноса в слоях и отдельных фрагментах ЛГМ в условиях взаимодействия с потоками воды.

Результаты проведенных экспериментальных исследований являются основанием для выводов о том, что подавление горения ЛГМ в условиях верховых пожаров при локальном сбросе больших масс воды малоэффективно, а подавление горения ЛГМ при низовых пожарах происходит только на малых по размерам участках поверхности горения, соответствуюцих по площади поперечным сечениям массивов воды, поступающих в область горения лесных горючих материалов.

ЛИТЕРАТУРА

- Merino L., Caballero F., Martínez-De-Dios J. R., Maza I., Ollero A. An unmanned aircraft system for automatic forest fire monitoring and measurement // J. Intelligent and Robotic Systems: Theory and Applications. — 2012. — V. 65, N 1–4. — P. 533–548.
- 2. Москвилин Е. А. Применение авиации для тушения лесных пожаров // Пожар. безопасность. 2009. № 1. С. 89–92.

- Копылов Н. П., Хасанов И. Р., Кузнецов А. Е., Федоткин Д. В., Москвилин Е. А., Стрижак П. А., Карпов В. Н. Параметры сброса воды авиационными средствами при тушении лесных пожаров // Пожар. безопасность. — 2015. — № 2. — С. 49–55.
- 4. Thompson M. P., Calkin D. E., Herynk J., McHugh C. W., Short K. C. Airtankers and wildfire management in the US Forest Service: examining data availability and exploring usage and cost trends // Intern. J. Wildland Fire. — 2012. — V. 22, N 2. — P. 223–233.
- Calkin D. E., Stonesifer C. S., Thompson M. P., McHugh C. W. Large airtanker use and outcomes in suppressing wildland fires in the United States // Intern. J. Wildland Fire. — 2014. — V. 23, N 2. — P. 259–271.
- 6. Гончикжапов М. Б., Палецкий А. А., Коробейничев О. П. Кинетика пиролиза лесных горючих материалов в инертной/окислительной среде при быстром и медленном темпах нагрева // Сиббезопасностьспассиб. — 2012. — № 1. — С. 38–44.
- Субботин А. Н. Математическая модель распространения низового лесного пожара по подстилке или слою опада хвои // Пожар. безопасность. 2008. № 1. С. 109–116.
- Асеева Р. М., Серков Б. Б., Сивенков
 А. Б. Горение и пожарная опасность древесины // Пожаровзрывобезопасность. 2012. Т. 21, № 1. — С. 19–32.
- Vysokomornaya O. V., Kuznetsov G. V., Strizhak P. A. Experimental investigation of atomized water droplet initial parameters influence on evaporation intensity in flaming combustion // Fire Saf. J. — 2014. — V. 70. — P. 61–70.
- Коробейничев О. П., Шмаков А. Г., Чернов А. А., Большова Т. А., Шварцберг В. М., Куценогий К. П., Макаров В. И. Тушение пожаров с помощью аэрозолей растворов солей // Физика горения и взрыва. 2010. Т. 46, № 1. С. 20–25.
- Snegirev A. Yu., Tsoy A. S. Treatment of local extinction in CFD fire modeling // Proc. of the Combust. Inst. — 2015. — V. 35, N 3. — P. 2519– 2526.
- Korobeinichev O. P., Shmakov A. G., Shvartsberg V. M., Chernov A. A., Yakimov S. A., Koutsenogii K. P., Makarov V. I. Fire suppression by low-volatile chemically active fire suppressants using aerosol technology // Fire Saf. J. — 2012. — V. 51. — P. 102–109.
- Volkov R. S., Zabelin M. V., Kuznetsov G. V., Strizhak P. A. Features of transformation of water projectiles moving through high-temperature combustion products // Tech. Phys. Lett. 2016. V. 42, N 3. P. 256–259.
- 14. Dimitrakopoulos A., Gogi C., Stamatelos G., Mitsopoulos I. Statistical analysis of the fire environment of large forest fires (>1 000 ha) in

Greece // Polish J. Environ. Studies. — 2011. — V. 20. — P. 327–332.

- Catry F. X., Rego F. C., Moreira F., Bacao F. Characterizing and modelling the spatial patterns of wildfire ignitions in Portugal: Fire initiation and resulting burned area // 1st Intern. Conf. on Modelling, Monitoring and Management of Forest Fires. — WITpress, 2008. — P. 213– 221. — (WIT Trans. on Ecology and the Environnment; V. 119).
- 16. Klyde D. H., Alvarez D. J., Schulze P. C., Cox T. H., Dickerson M. Limited handling qualities assessment of very large aerial tankers for the wildfire suppression mission // AIAA Atmospheric Flight Mech. Conf. — 2010.
- Седов Л. И. Методы подобия и размерности в механике. — М.: Наука, 1977.
- Барановский Н. В., Кузнецов Г. В. Прогноз возникновения лесных пожаров и их экологических последствий. — Новосибирск: Изд-во СО РАН, 2009.
- Доррер Г. А. Математические модели динамики лесных пожаров. — М.: Лесн. пром-сть, 1979.
- Конев Э. В. Физические основы горения растительных материалов. — Новосибирск: Наука, 1977.
- 21. ГОСТ Р 51057-2001. Техника пожарная. Огнетушители переносные. Общие технические требования. Методы испытаний.

- 22. Волков Р. С., Забелин М. В., Кузнецов Г. В., Стрижак П. А. Трансформация водяного снаряда при свободном падении в условиях воздействия ортогонального направлению его движения потока воздуха // Инж.-физ. журн. 2016. Т. 89, № 4. С. 861–867.
- 23. Гришин А. М. Математические модели лесных пожаров. — Томск: Изд-во ТГУ, 1981.
- 24. Субботин А. Н. Математическая модель распространения низового лесного пожара по подстилке или слою опада хвои // Пожар. безопасность. 2008. № 1. С. 109–116.
- 25. Westerweel J. Fundamentals of digital particle image velocimetry // Measur. Sci. Technol. — 1997. — V. 8. — P. 1379–1392.
- 26. Dehaeck S., Van Parys H., Hubin A., Van Beeck J. P. A. J. Laser marked shadowgraphy: a novel optical planar technique for the study of microbubbles and droplets // Exp. Fluids. 2009. V. 47, N 2. P. 333–341.
- 27. Volkov R. S., Strizhak P. A. The integral characteristics of the deceleration and entrainment of water droplets by the counter flow of hightemperature combustion products // Exp. Therm. Fluid Sci. — 2016. — V. 75. — P. 54–65.

Поступила в редакцию 7/XII 2016 г., в окончательном варианте — 5/V 2017 г.