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Приведены результаты исследования влияния работы струйного вентилятора, установленно-

го на очистном комбайне, на изменение параметров аэродинамического сопротивления вые-

мочного участка, концентрации метана и угольной пыли. Исследования проводились в про-

граммном комплексе Ansys Fluent, на основании натурных данных, полученных в угольных 

шахтах Кузбасса. Объектом исследования служила пылегазовоздушная атмосфера 

сверхдлинных угольных лав протяженностью 400 м с мощностью вынимаемого пласта 2.4 

и 3.7 м. Выявлено, что применение струйного вентилятора способно снизить аэродинамиче-

ское сопротивление выемочного участка до 35 %, что позволяет увеличить на 24 % количе-

ство подаваемого в лаву воздуха без увеличения мощности на главных вентиляционных 

установках. Поток воздуха, исходящий из струйного вентилятора, способствует устранению 

застойных метановоздушных зон вблизи работающего комбайна и снижает концентрацию 

угольной пыли на рабочих местах машинистов на 13.8 – 36.7 %. 
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Процесс проветривания очистных угольных забоев должен быть постоянным и непре-

рывным, чтобы обеспечить эффективное удаление отработанного воздуха и замену его све-

жим. Известно, что по мере перемещения горных работ на глубокие горизонты требуется увели-

чение подачи воздуха в шахту. Изменение аэродинамического сопротивления забоев за время 

цикла работы очистного комбайна обусловливает изменение расхода воздуха через него. Это из-

менение сказывается на пылегазовой обстановке очистного забоя и участка в целом.   

С увеличением протяженности горных выработок возрастает их аэродинамическое со-

противление, поэтому главной вентиляционной установке требуется все больше мощности, 

чтобы обеспечить рабочие зоны необходимым количеством воздуха. По разным оценкам, 

доля общих затрат электроэнергии, приходящейся на системы вентиляции шахт, составляет 

30 – 70 %, что существенно сказывается на конечной себестоимости добытого угля [1 – 4]. 

 

Исследование выполнено в рамках проекта НИР (№ гос. регистрации 121052500147-6). 
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В настоящее время на многих горнодобывающих предприятиях внедряется разработка 

пластов сверхдлинными лавами, чтобы соответствовать требованиям современных высоко-

производительных очистных комплексов [5 – 7]. Очистной механизированный комплекс, за-

нимающий около 50 % проходного сечения лавы, является основным препятствием для воз-

душного потока. Увеличение протяженности забоя, оборудованного очистным комбайном 

и механизированной крепью, неизбежно приводит к увеличению аэродинамического сопро-

тивления на данном участке и повышению требований к эффективности главных вентиляци-

онных установок. Разработка способов повышения эффективности проветривания 

сверхдлинных угольных лав без увеличения нагрузки на вентиляторы главного проветрива-

ния — весьма актуальная задача. 

В очистных выработках основная часть энергии движущегося потока затрачивается на пре-

одоление лобового сопротивления (до 70 – 80 %) и меньшая часть — на преодоление сопротив-

ления трения [8]. Установка струйного вентилятора на очистной комбайн позволяет снизить 

аэродинамическое сопротивление в районе ведения выемочных работ путем принудительного 

перемещения воздушного потока в обход препятствия на этом участке [9]. 

В данном исследовании ограничимся параметрами добычных участков, наиболее характер-

ными для большинства шахт Кузбасса. Угленосная толща Кузнецкого угольного бассейна со-

держит около 350 угольных пластов различной мощности, неравномерно распределенных по 

простиранию. Преобладающая мощность пластов угля составляет 1.3 – 4.0 м. Следует отме-

тить, что мощность разрабатываемого пласта оказывает существенное влияние на аэродинами-

ческое сопротивление очистных выработок и сказывается на величине потока вентиляционной 

струи. Проведенный анализ показал, что наибольшее распространение имеют лавы с мощно-

стью вынимаемого пласта 2.4 и 3.7 м. 

Примем геометрические параметры таких очистных выемочных столбов в качестве ис-

ходных данных и при помощи вычислительных экспериментов проведем оценку эффектив-

ности их проветривания с применением струйных вентиляторов, установленных на очист-

ном комбайне. Кроме размеров поперечного сечения лав (рис. 1), их протяженность прини-

малась равной 400 м с сопряжением с двухсотметровыми участками вентиляционного 

и конвейерного штреков. На основании проектных данных исследуемых шахт средняя рас-

четная скорость воздуха в лавах составляет 2.0 – 2.5 м/с. Осевой струйный вентилятор имел 

диаметр 0.6 м (выпускаемый серийно по существующим аэродинамическим характеристи-

кам) и мог развивать скорость воздушного потока на выходе 15 – 30 м/с. Основным услови-

ем выбора типоразмера струйного вентилятора является средняя скорость воздуха по сече-

нию лавы, которая вблизи рабочих мест очистной выработки не должна превышать 4 м/с, 

допустимую по Правилам безопасности. 

В течение технологического цикла геометрические параметры очистного забоя непосто-

янны, в отличие от других выработок. Рассмотрим изменение аэродинамического сопротив-

ления при расположении очистного комбайна на шести позициях (рис. 1). Позиция 1 (0 м) — 

начальное положение очистного комбайна, осуществившего врезку в пласт. Позиция 2 

(200 м от начала) — расположение очистного комбайна в средней части на 1/2 длины лавы. 

Позиция 3 (300 м от начала) — 3/4 длины лавы. Позиция 4 (350 м) — 7/8 длины лавы. По-

зиция 5 (375 м) — 15/16 длины лавы. Позиция 6 (400 м) соответствует крайнему положению 

очистного комбайна, завершившего проход по лаве, но не преграждающего сечение конвей-

ерного штрека. 
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Рис. 1. Схема добычного участка (а), очистной механизированный комплекс (б) и расположение 

позиций (1 – 6) очистного механизированного комплекса по длине лавы 

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ 

Для решения задач вычислительной гидродинамики применялся программный комплекс 

Ansys Fluent. Начальное воздухораспределение на расчетном участке решалось в стационарной 

постановке, без учета метана и пыли, с применением стандартной модели турбулентности k – ɛ. 

Граничные условия задавались шероховатостью поверхностей выработок, давлением на вход-

ных сечениях конвейерного и вентиляционного штрека, на основании расчета, выполненного 

при сетевом моделировании шахты методом графов с сосредоточенными параметрами. В даль-

нейшем задача воздухораспределения при перемещении очистного конвейера решалась в не-

стационарной постановке.  

Аэродинамическое сопротивление лавы, определяемое при нормальных условиях воздуш-

ной среды (при температуре 18 °C и атмосферном давлении 101325 Па), имеет размерность 

1 kμ = 9.81 Н·с2/м8. Для “пустой” очистной выработки с мощностью вынимаемого пласта 2.4 м, 

без учета механизированного комплекса, аэродинамическое сопротивление составляет 

0.039145 kµ. При установке механизированной крепи и комбайна в лаве аэродинамическое со-

противление возрастет до 0.087210 kµ, что в 2.2 раза больше “пустой” выработки. Для лавы 

с мощностью вынимаемого пласта 3.7 м эти значения составят 0.012038 и 0.036197 kµ соответ-

ственно; аэродинамическое сопротивление выработки, оснащенной механизированным ком-

плексом, в 2.9 раза больше “пустой”.  

Выемка угля в лаве сопровождается непрерывным перемещением очистного комбайна. 

В период его работы в призабойном пространстве лавы можно выделить три характерные зо-

ны: до прохода комбайна, после прохода комбайна и район его работы. В зависимости 

от направления отработки пласта комбайном (в попутном с направлением движения воздушно-
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го потока или в обратном) геометрические параметры очистной выработки также меняются. 

В среднем при мощности отрабатываемого пласта 1.3 – 4.0 м аэродинамическое сопротивление 

участка лавы до и после прохода комбайна примерно на 40 и 200 % ниже, чем сопротивление 

участка лавы в районе работы комбайна. Такие изменения аэродинамического сопротивления 

призабойного пространства влияют на перераспределение количества воздуха в его пределах 

и по всему выемочному участку. 

При помощи Ansys Fluent, методом конечных объемов проведен расчет, показавший изме-

нение аэродинамического сопротивления исследуемого участка в зависимости от места распо-

ложения механизированного комплекса в лаве (табл. 1). 

ТАБЛИЦА 1. Аэродинамическое сопротивление исследуемого участка шахтной сети при 

включении струйного вентилятора с разной производительностью, установленного на очистном 

комбайне в лаве с мощностью вынимаемого пласта 2.4 и 3.7 м 

Скорость 

воздушной струи 

вентилятора, м/с 

Расположение комбайна, номер позиции 

1 2 3 4 5 6 

Аэродинамическое сопротивление, kµ 

 
2.4 м 

0 (выключен) 0.088086 0.089046 0.088966 0.088775 0.088735 0.084530 

15 0.077355 0.078256 0.078113 0.079021 0.080628 0.081837 

22 0.068466 0.069216 0.068253 0.068644 0.071167 0.081625 

30 0.056910 0.058101 0.057024 0.057335 0.059128 0.088364 

 
3.7 м 

0 (выключен) 0.037024 0.038017 0.035921 0.035697 0.035199 0.035323 

15 0.035601 0.036891 0.034300 0.037798 0.039164 0.048216 

22 0.031838 0.033226 0.030459 0.032776 0.034130 0.055374 

30 0.028075 0.029705 0.026705 0.027993 0.031220 0.058872 

 

С началом добычных работ появляется участок с повышенным аэродинамическим сопро-

тивлением (зона работы комбайна примерно 20 м, позиция 1), так как на воздушный поток ока-

зывает возмущающее действие корпус комбайна и передвигаемые вслед за ним секции крепи. 

В результате аэродинамическое сопротивление лавы повышается и достигается своего макси-

мального значения при приближении комбайна к середине очистной выработки, т. е. когда весь 

участок с повышенным сопротивлением будет влиять на общее сопротивление лавы. 

При дальнейшем продвижении комбайна аэродинамическое сопротивление лавы начинает 

снижаться, поскольку увеличивается участок с меньшим сопротивлением (после прохода ком-

байна) и уменьшается участок с большим сопротивлением (до прохода комбайна). 

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ 

Оценка эффективности струйного вентилятора, установленного на очистном комбайне, 

на изменение расхода воздуха в лаве. На основании полученных результатов можно провести 

оценку влияния работы струйного вентилятора, установленного на очистном комбайне, на из-

менение аэродинамического сопротивления исследуемого участка. В дополнение к классиче-

скому определению аэродинамического сопротивления выработки (зависящего от ее геометри-

ческих параметров, шероховатости поверхностей и др.) будет учитываться влияние струйного 

вентилятора, установленного на очистном комбайне. В качестве допущения следует принять 

условие, что проходящий через струйный вентилятор вентиляционный поток имеет постоян-

ную скорость 15, 22 и 30 м/с (табл. 1). 
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Струйный осевой вентилятор принудительно осуществляет перемещение воздушных масс, 

создавая эффект эжекции на участке с наибольшим аэродинамическим сопротивлением в лаве, 

тем самым снижая его. Исключением является вариант расположения комбайна в позиции 6 

(рис. 1), когда струя воздуха создает “воздушную пробку” в месте сопряжения лавы и конвей-

ерного штрека. По достижении 25 м от края забоя, ближнего к конвейерному штреку, работу 

струйного вентилятора необходимо приостанавливать. 

Таким образом, регулируя скорость воздушного потока, инициированного струйным венти-

лятором, установленным на очистном комбайне, можно уменьшать аэродинамическое сопротив-

ление сверхдлинной лавы (протяженностью 400 м) с мощностью вынимаемого пласта 2.4 м на 

11 – 35 %. Такое регулирование позволит увеличить количество поступающего в лаву воздуха на 

6 – 24 % (рис. 2а) [8]. Для лавы с мощностью вынимаемого пласта 3.7 м снижение аэродинамиче-

ского сопротивления составит 0 – 21 %. Количество поступающего в лаву воздуха при этом мо-

жет быть увеличено до 12.5 % (рис. 2б). 

 
Рис. 2. Расход воздуха в лаве с мощностью пласта 2.4 (а) и 3.7 м (б) в зависимости от располо-

жения очистного комбайна при разной скорости воздуха от струйного вентилятора 

Оценка эффективности струйного вентилятора, установленного на очистном комбайне, 

на изменение концентрации метана в лаве. Способность метана формировать взрывоопасные 

скопления при определенных параметрах воздушной струи является основанием к увеличению 

подачи чистого воздуха на глубокие участки шахты [10 – 17]. Наиболее известный и распро-

страненный метод борьбы с таким формированием скоплений метана — увеличение скорости 

воздушного потока в очистных выработках. 
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В очистном забое метановыделение в основном происходит с обнаженной части пласта 

при разрушении угля очистным комбайном и при транспортировке отбитого угля конвейером 

вдоль лавы и выработанного пространства. При этом “… концентрация метана в лаве при от-

сутствии выделения его из выработанного пространства изменяется вдоль лавы по закону, 

близкому к линейному, возрастая в направлении движения воздуха” [18]. 

В [19] приведено сравнение натурных замеров концентрации метана на выемочном участке 

в угольной шахте и результатов численного моделирования. Метановыделение, зависящее 

от нагрузки на забой, должно быть надежно локализовано мощным потоком свежего воздуха. 

Однако ограниченная пропускная способность очистных выработок препятствует достижению 

высоких показателей добычи угля в газообильных шахтах. Чтобы устранить это препятствие, 

необходимо рационально распределить воздушные массы в призабойном пространстве. 

Серия вычислительных экспериментов показала, что чем меньше мощность отрабатывае-

мого пласта и сечение лавы, тем выше концентрация метана в воздухе при одинаковых скоро-

стях его движения вдоль очистной выработки [19]. При этом зависимость концентрации метана 

от длины выработки имеет общий вид:  

 ( )C L aL b  ,  

где коэффициенты a и b изменяются нелинейно и зависят от средней скорости V движения по-

тока воздуха в лаве. На основании проведенных исследований [20] установлено, что для очист-

ной выработки с мощностью отрабатываемого пласта 2.4 м коэффициент 0.00134 /a V , 

0.11/ 0.1b V  . Для отрабатываемого пласта мощностью 3.7 м коэффициенты имеют следу-

ющие значения: 0.00087 /a V , 0.06 / 0.1b V  . 

Учитывая, что концентрация метана в лаве зависит в том числе и от расхода воздуха через 

нее, определим его изменение по длине лавы в зависимости от расположения комбайна для 

мощности пласта 2.4 и 3.7 м (табл. 2). 

ТАБЛИЦА 2. Средняя концентрация метана на рассматриваемом участке шахтной сети при 

разной скорости струйного вентилятора, установленного на очистном комбайне, в лаве 

с мощностью отрабатываемого пласта 2.4 и 3.7 м 

Скорость воздушной 

струи вентилятора, 

м/с 

Расположение комбайна от начала лавы, м 

0  200  300 350 375 400 

Концентрация метана (CH4), % 

 
2.4 м 

0 (выключен) 0.16 0.30 0.37 0.40 0.42 0.43 

15 0.15 0.29 0.35 0.39 0.41 0.42 

22 0.15 0.27 0.33 0.37 0.39 0.42 

30 0.15 0.26 0.31 0.34 0.36 0.44 

 
3.7 м 

0 (выключен) 0.12 0.18 0.21 0.22 0.23 0.23 

15 0.12 0.18 0.20 0.22 0.23 0.26 

22 0.12 0.17 0.20 0.22 0.23 0.27 

30 0.12 0.17 0.19 0.21 0.22 0.27 
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Результаты анализа показали, что работа струйного вентилятора на очистном ком-

байне способствует снижению концентрации метана в лаве в 1.08  – 1.17 раза. Учитывая, 

что вынос метана из очистной выработки существенно зависит от величины потока возду-

ха, возникновение “воздушной пробки” при подходе комбайна к конвейерному штреку 

с включенным струйным вентилятором снижает его эффективность. Поэтому на расстоя-

нии 25 м от края забоя, ближнего к конвейерному штреку, струйный вентилятор необхо-

димо выключить. 

Оценка эффективности струйного вентилятора, установленного на очистном комбайне, 

на изменение концентрации угольной пыли в лаве. Концентрация пыли на рабочих местах ма-

шинистов комбайна и крепи в лаве в среднем за смену составляет 30 – 240 мг/м3, а при неудо-

влетворительном функционировании средств гидрообеспыливания превышает технически до-

стижимый уровень (ТДУ) [21, 22]. 

В шахтах угольная пыль является одним из наиболее вредных и опасных факторов, кото-

рый приводит к возникновению профзаболеваний у горняков и образует с воздухом взрывча-

тые смеси в подземной атмосфере выработок. Наличие пыли в метановоздушной среде снижает 

границу взрываемости метана до 3 %. Участие угольной пыли при детонации метана увеличи-

вает силу взрыва и его разрушительную способность, которая часто бывает на порядок выше, 

чем у метановоздушной смеси [23]. 

С целью уменьшения опасности возгорания и взрыва угольной пыли целесообразно приме-

нять меры по снижению запыленности и пылеотложения в горных выработках. Для этого в со-

четании с комплексным обеспыливанием воздуха при всех процессах угледобычи используют-

ся водяные завесы и пылеулавливающие устройства [24 – 28]. В некоторых шахтах за рубежом 

для снижения концентрации пыли на рабочих местах машиниста комбайна и машиниста крепи 

на очистных комплексах дополнительно устанавливают аспирационные установки, способ-

ствующие более быстрой очистке воздуха от пыли и выносу ее из рабочей зоны [29 – 32]. 

Предложен способ снижения аэродинамического сопротивления выемочного участка и выноса 

мелкодисперсной угольной пыли из рабочих зон забоя с помощью установки струйного венти-

лятора на очистном комбайне [9]. 

Для моделирования двухфазного течения существуют лагранжевы и эйлеровы модели [33]. 

В основе лагранжева подхода лежит рассмотрение движения отдельных частиц дисперсной фа-

зы, в основе эйлерова подхода — изменение параметров течения (скоростей, давлений, темпе-

ратур) в точках пространства. Также существуют гибридные модели, в которых чередуются  

лагранжев и эйлеров подход. В гибридных моделях вводится усреднение по пространству и пе-

реход от реального распределения частиц к объемной доле. 

Лагранжева модель DPM (модель дискретной фазы) подразумевает построение траекторий 

частиц дисперсной фазы в сплошной фазе на основе решения обыкновенных дифференциаль-

ных уравнений движения. Модель учитывает двухсторонний обмен импульсом и энергией ча-

стиц со сплошной фазой. Она применима для небольших значений объемной концентрации ча-

стиц, когда взаимодействие их между собой учитывается опосредованно. Для более точного 

учета взаимодействия частиц при увеличении концентрации используется гибридная модель 

DDPM (модель плотной дискретной фазы). Модель подразумевает, что частицы не накаплива-

ются в какой-либо части расчетной области. Она применима для любых течений с относитель-

но небольшой концентрацией частиц, если нужно учесть разброс/изменение размеров частиц, 

образование вторичных частиц, взаимодействие со стенкой. 
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Решение поставленной задачи проводилось при помощи гибридного подхода, представлен-

ного в расчетном комплексе Ansys Fluent моделью DDPM, построенной как комбинация моде-

лей Eulerian (полная эйлерова модель, т.е. модель взаимопроникающих сред) и DPM [34]. 

В качестве двух сред, моделируемых в исследовании, принимались воздух и антрацитная пыль. 

Дисперсность пыли задавалась распределением Розина – Раммлера в диапазоне от 5 до 100 мкм 

согласно [35] (рис. 3). 

 

Рис. 3. Гистограмма фракционного распределения частиц пыли  

При решении задачи исследования приняты следующие допущения: не учитывались си-

стемы орошения и пылеподавления от отбитого угля; принято, что со всех поверхностей пото-

ком воздуха срывается равномерно 15 % пыли; учитывалось только инерционное прилипание 

частиц пыли к поверхностям исследуемого участка. 

В отличие от метановоздушных параметров, концентрацию угольной пыли сложно оцени-

вать на исходящей из забоя струе, да и по длине лавы она будет существенно изменяться в за-

висимости от режима работы и расположения очистного комбайна (как основного источника 

пыли и возмущения воздушного потока). Какая-то часть пыли осаждается, другая переходит 

во взвешенное состояние, что затрудняет получение общих закономерностей. По этой причине 

основные измерения концентрации угольной пыли будут фиксироваться в сечениях рабочих 

зон машиниста комбайна и машиниста крепи. 

Наибольшее по длительности время своего нахождения в лаве очистной комбайн работает 

на “промежуточном” участке. Именно здесь элементы вентиляционной сети (такие, как пово-

рот из вентиляционного штрека в лаву и, наоборот, из лавы в конвейерный штрек) оказывают 

наименьшее влияние на структуру струи приточного воздуха. Рассмотрим изменения концен-

трации пыли в рабочих зонах при расположении очистного комбайна в “промежуточной”, 

близкой к центру, части лавы. 

При отработке угольного пласта очистным комбайном, движущимся против струи приточ-

ного воздуха (рис. 4), последняя разделяется на два потока: один (более выровненный и мощ-

ный) движется между механизированной крепью и огораживающей конструкцией конвейера, 

другой — между обнаженной поверхностью угольного пласта и конвейером. Поток 2, подхва-

тывает выделяемую от режущих шнеков комбайна пыль и уносит ее дальше. Через 20 – 30 м 

массовая концентрация угольной пыли становится соизмерима с фоновым запылением от лаво-

вого конвейера. 

Самые крупные частицы пыли (от 50 мкм и более), выделяемые от режущих шнеков ком-

байна, оседают на почве и конвейере, более мелкие — разносятся с потоком воздуха по осталь-

ному объему выработки. Значительная часть пыли оттесняется воздушным потоком к вырабо-

танному пространству, где оседает на конструкциях механизированной крепи (рис. 4). 



 РУДНИЧНАЯ АЭРОГАЗОДИНАМИКА ФТПРПИ, № 4, 2024 

 160 

 

Рис. 4. Массовая концентрация угольной пыли на рабочих местах машинистов комбайна и крепи 

при движении очистного комбайна против направления потока воздуха 

Средняя массовая концентрация угольной пыли в сечениях А-Аʹ и Б-Бʹ составляет  

328 – 333 мг/м3. Непосредственно в области нахождения горнорабочих массовая концентрация 

находится в пределах 90 – 140 мг/м3. Эти значения соответствуют ТДУ. 

При движении очистного комбайна в попутном направлении с приточной струей воздуха 

(рис. 5) струя разделяется также на два потока: один движется между механизированной кре-

пью и огораживающей конструкцией конвейера, другой — между обнаженной поверхностью 

угольного пласта и конвейером. Однако в этом случае более выровненным является поток 2, 

который подхватывает пыль от режущих шнеков комбайна и уносит ее дальше, вынося из ра-

бочей зоны большее количество частиц пыли.  

 

Рис. 5. Массовая концентрация угольной пыли на рабочих местах машинистов комбайна и крепи 

при движении очистного комбайна в попутном направлении с потоком воздуха 
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За счет изменения структуры поля скоростей воздушного потока 1 меньшая доля угольной 

пыли вытесняется к выработанному пространству, по сравнению с вариантом движения ком-

байна в противоположном направлении (рис. 4). Средняя массовая концентрация угольной пы-

ли в сечениях А-А' и Б-Б' составляет 176 – 245 мг/м3. Непосредственно в области нахождения 

горнорабочих массовая концентрация находится в пределах 90 – 140 мг/м3. Эти значения соот-

ветствуют ТДУ. 

Работа струйного вентилятора, установленного на очистном комбайне, способствует уве-

личению скорости потока воздуха и возникновению дополнительных вихрей (рис. 6). Часть 

этих вихрей выносит запыленность от границы с выработанным пространством. Основной же 

поток воздуха от струйного вентилятора снижает уровень запыленности за очистным комбай-

ном, вынуждая тяжелые частицы пыли (от 50 мкм и более), выделяемые от режущих шнеков, 

оседать на почву и конвейер. 

Таким образом, средняя массовая концентрация угольной пыли в исследуемых сечениях  

А-А и Б-Б снижается на 13.8 – 17.7 % до значений 270 – 287 мг/м3. В области нахождения ма-

шинистов комбайна и крепи массовая концентрация находится в пределах 90 – 140 мг/м3.  

 

Рис. 6. Массовая концентрация угольной пыли на рабочих местах машинистов комбайна и крепи 

при движении очистного комбайна против направления потока воздуха, с учетом работы струй-

ного вентилятора 

Наилучшего результата по снижению массовой концентрации угольной пыли в очистной 

выработке удается достичь при работе струйного вентилятора, когда комбайн движется в попут-

ном направлении с приточной струей воздуха (рис. 7). В этом случае струйный вентилятор рабо-

тает в режиме воздуходувки, сдувая до 80 % пыли, находящейся во взвешенном состоянии вбли-

зи работающего комбайна. Побочные завихрения потоков воздуха выносят наибольшую часть 

угольной пыли от границы с выработанным пространством, а прямой поток от струйного венти-

лятора способствует осаждению частиц от режущих шнеков комбайна в основном на конвейер. 

При этом средняя массовая концентрация угольной пыли в исследуемых сечениях А-Аʹ 

и Б-Бʹ снижается на 34.1 – 36.7 % до значений 116 – 155 мг/м3. В области нахождения машини-

стов комбайна и крепи массовая концентрация находится в пределах 57 – 100 мг/м3. Эти значе-

ния соответствуют ТДУ. 



 РУДНИЧНАЯ АЭРОГАЗОДИНАМИКА ФТПРПИ, № 4, 2024 

 162 

 

Рис. 7. Массовая концентрация угольной пыли на рабочих местах машинистов комбайна и крепи 

при движении очистного комбайна в попутном направлении с потоком воздуха, с учетом работы 

струйного вентилятора 

ВЫВОДЫ  

Исследована технология вентиляции сверхдлинной угольной лавы с использованием 

струйного вентилятора, установленного на очистном комбайне. Показана эффективность тако-

го способа проветривания в очистных выработках с мощностью пласта 2.4 м, что позволяет 

снизить: аэродинамическое сопротивление на 35 %, увеличивая расход воздуха на 24 %; кон-

центрацию метана в 1.17 раза; среднюю массовую концентрацию угольной пыли в окрестно-

стях работающего очистного комбайна на 13 – 36 %. 
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