УДК 621.039.5

Стохастическая динамика кипения на поверхности тепловыделяющего элемента

А.И. Достов

НИЦ Курчатовский институт, Москва

E-mail: a.dostov@gmail.com

Динамика кипения жидкости на обогреваемой поверхности исследуется в рамках эквивалентной задачи динамики температуры тепловыделяющего элемента. Соответствующее уравнение баланса тепла выводится в концепции кривой кипения. Показано, что структурная неустойчивость потенциала кривой кипения приводит к необходимости исследования задачи о флуктуациях температуры поверхности, на которой происходит кипение. Теоретический анализ уравнения Ито для модели рассматриваемой системы показал, что при определенной интенсивности в нешнего случайного воздействия система переходит из одного состояния самоорганизованной критичности в другое. Эти процессы сопровождаются 1/f^α-шумом (фликкер-шумом), который рассматривается как объективный показатель кризиса кипения. Теоретические результаты подтверждаются экспериментальными данными других авторов.

Ключевые слова: кривая кипения, кризис кипения, ядерные реакторы, стохастическая нелинейная динамика, фликкер-шум.

Введение

Стохастические явления при кипении оказывают существенное влияние на критические тепловые нагрузки в технических устройствах различного рода. Исследования [1, 2] показали, что при кипении на теплоотдающей поверхности могут происходить лавинообразные стохастические процессы, значительная доля энергии которых приходится на низкочастотные флуктуации параметров системы. Такие процессы, называемые 1/*f*-шумом, приводят к крупномасштабным энергетическим выбросам в системах с кипением. Генерация фликкер-шума при переходе к кризисному режиму кипения происходит в результате динамического взаимодействия двух параметров порядка, свойственных фазовым переходам. Фликкер-шум, выявленный путем численного анализа системы стохастических дифференциальных уравнений, свидетельствует о состоянии самоорганизованной критичности [3] для рассматриваемой системы. Это означает, что система под действием малых возмущений переходит из одного метастабильного состояния в другое.

Экспериментальное подтверждение этого явления было получено авторами работы [4] при изучении процессов кипения воды на проволочных нагревателях в условиях естественной конвекции. При постановке экспериментальных исследований был использован принцип эквивалентности устойчивости режима кипения и устойчивости температурного поля греющего элемента, впервые предложенный в монографии [5].

При решении задач устойчивости стационарного распределения температуры в тепловыделяющем элементе в работе [6] была впервые применена кривая кипения в большом

© Достов А.И., 2018

Достов А.И.

Рис. 1. Кривая кипения.

объеме для задания закона теплообмена на теплоотдающей поверхности. Эта кривая представляет собой зависимость плотности теплового потока (q) на теплоотдающей поверхности от разности температуры поверхности и температуры насыщения. Схематично такая кривая представлена на рис. 1, где BC — режим развитого пузырькового кипения, температурный напор, CD — режим переходного пузырькового кипения, DE — режим пленочного кипения, C — точка кризиса кипения (катаст-

рофа), D — точка гистерезиса. Несмотря на многочисленные исследования этой кривой, необходимо констатировать, что суть ее остается непонятой в полной мере до настоящего времени. Доподлинно известно лишь существование точек максимума, минимума и точки закипания на этой кривой, впервые выявленных в работе [7]. Заметим, что использованная в работе [6] аналитическая зависимость для кривой кипения представляет собой аппроксимацию экспериментальных данных только по этим трем характерным точкам.

В работе [8] было отмечено, что попытки механистического прогнозирования происходящих при кипении явлений оказываются безуспешным. В качестве иллюстрации этого замечания рассмотрим кривые кипения, полученные в экспериментах Е.В. Анохиной [9] (рис. 2). На этом риснуке представлены результаты семи серий опытов при использовании в качестве нагревателя вольфрамовой проволочки. Температура, при которой происходил пережог нагревателя, была разной для каждой серии. Видно ветвление кривых при увеличении температурного напора от серии к серии. Причем это ветвление носит случайный характер, то есть в области FCHD, заштрихованной на рис. 1, система может скачком переходить от одного режима кипения к другому. На рис. 2 видно также, что существует разброс экспериментальных данных как по температуре стенки, при которой достигается критический тепловой поток, так и по величине самого потока. В этой же работе опыты проводились с нагревателями из меди и нихрома разных диаметров. Было обнаружено сильное влияние поверхностных условий на кривые кипения и отмечена неопределенность в температуре возникновения кризиса (128-152 °C) и в величине критического теплового потока ((0,8–1,5)·10⁶ Вт/м²). В публикациях других исследователей, например, в работе [10], также акцентируется внимание на случайности проявления кризиса и гистерезиса. Отсюда можно сделать заключение, что существование различных режимов кипения и случайность их возникновения, как принципиально важных характеристик кипящей системы, десятилетиями ускользали от внимания исследователей. Авторы работы [11] показали, что нелинейность кривой кипения является главным

фактором, приводящим к кризису кипения. Следуя теории катастроф, изложенной в монографии [12], в работе [11] в рассмотрение вводится потенциал, критические точки которого находятся из следующего уравнения, определяющего семейство кривых равновесного кипения:

$$\left(\Delta T - \Delta T_0\right)^3 - n_u \left(\Delta T - \Delta T_0\right) + F(q) = 0,$$

Рис. 2. Кривые кипения воды на вольфрамовом нагревателе диаметром 90 мкм для семи серий опытов.

где n_u — коэффициент уравнения, зависящий от теплофизических свойств жидкости, ΔT — перегрев жидкости, ΔT_0 — начальное значение перегрева, а F(q) — константа, зависящая от теплового потока q. Заметим, что это уравнение зависит от разности ($\Delta T - \Delta T_0$), которую можно рассматривать как флуктуацию также и при $\Delta T_0 = 0$. Таким образом, вводится в рассмотрение «математическое топологическое пространство кипения». Смены режимов кипения фактически представляются как бифуркации в этом виртуальном пространстве. Поскольку функция F(q) неизвестна, то возможности этой модели ограничены. В частности, по этой причине исключается зависимость кризиса кипения от материала, размеров и микроструктуры теплоотдающей поверхности. В то же время получен важный результат: топологическое пространство равновесного кипения описывается полиномами третьей степени.

Уравнение Д.А. Лабунцова [13] для кривой кипения представляет зависимость теплового потока от температурного напора стенка-жидкость (ΔT_s) также в виде полинома третьей степени, но при этом, как будет показано далее, в уравнении учитывается влияние поверхностных условий. Последнее дает основание для применения уравнения Д.А. Лабунцова при построении уравнения динамики потенциала. В качестве потенциала, согласно принципу эквивалентности, используется теплосодержание тепловыделяющего элемента.

Введение в уравнение динамики температуры тепловыделяющего элемента малых возмущений (шума), обусловленных как стохастической природой процесса кипения, так и случайными внешними воздействиями, дает возможность исследовать стохастические процессы самоорганизации таких систем.

1. Кривая кипения Д.А. Лабунцова

Зависимость теплового потока q от перегрева теплоотдающей поверхности ΔT_s , предложенная Д.А. Лабунцовым [13], состоит из двух слагаемых:

$$q = q_1 + q_2 = a\Delta T_s^3 + b\Delta T_s^2. \tag{1}$$

где $\Delta T = T - T_s$, T — температура стенки, T_s — температура насыщения. Первое слагаемое представляет тепловой поток через тонкий слой жидкости в основании пузыря. Второе — тепло, идущее на испарение жидкости в пузыри, растущие на стенке. Коэффициенты этого уравнения выражаются следующим образом:

$$a = 10^{-3} \lambda^2 / (\sigma T_{\rm s} \nu), \quad b = 5 \lambda r \rho_{\rm v} / (\sigma T_{\rm s}), \tag{2}$$

где λ — коэффициент теплопроводности, σ — коэффициент поверхностного натяжения, ν — кинематическая вязкость воды, ρ_{ν} — плотность пара, r — теплота парообразования. В выражениях для a и b присутствуют константы (const₁ = 10⁻³ и const₂ = 5), которые были подобраны Д.А. Лабунцовым на основе феноменологического метода, позволившего описать экспериментальные данные для определенного типа поверхностных условий в диапазоне давлений от 1 до 200 бар «с минимальными искажениями или толкованиями» [13]. При этом в рассмотрение включались экспериментальные данные как для условий свободной конвекции, так и для вынужденного движения в трубах. Следует отметить, что при выводе соотношений (1) и (2) использовались упрощенные оценки уровня локальной смачиваемости, мелкомасштабной шероховатости, плотности и геометрии впадин и свойств материала теплоотдающей поверхности, влияющих на процесс кипения.

2. Структурная неустойчивость потенциала кривой кипения

Рассмотрим кривую кипения (1) в следующем виде:

$$\Delta T_{\rm s}^3 + \frac{b}{a} \Delta T_{\rm s}^2 - \frac{q_{\rm v} \delta}{a} = 0, \tag{3}$$

где q_v — удельное объемное тепловыделение, $\delta = V/S$, V — объем тепловыделяющего элемента, S — поверхность теплоотдачи. Полином (3) удобно записать как

$$\Delta T_{\rm s}^3 + A \Delta T_{\rm s}^2 + B \Delta T_{\rm s} + C = 0, \tag{4}$$

где

$$A = b/a, \quad B = 0, \quad C = -q_{\rm v}\delta/a. \tag{5}$$

Используя подстановку $\Delta T_{\rm s} = \theta - A/3$, преобразуем уравнение (4) к так называемому «неполному» виду

$$\theta^3 + \lambda_1 \theta + \lambda_2 = 0, \tag{6}$$

в котором

$$\lambda_1 = -A^2 / 3, \tag{7}$$

$$\lambda_2 = 2A^3 / 27 + C. \tag{8}$$

Уравнение (6) имеет один действительный корень и два сопряженных комплексных корня, или три действительных корня, по крайне мере два из которых равны, или три различных действительных корня в зависимости от того, будет ли сумма $(\lambda_1/3)^3 + (\lambda_2/2)^2$ положительна, равна нулю или отрицательна. Составим выражение для этой суммы с учетом (7) и (8):

$$\left(-\frac{A^2}{9}\right)^3 + \left(\frac{A^3}{27} + \frac{C}{2}\right)^2 = \frac{A^3C}{27} + \frac{C^2}{4}$$

Подставляя в это соотношение выражения для А и С из соотношений (5), получим

$$\frac{A^3 \cdot C}{27} + \frac{C^2}{4} = C\left(\frac{A^3}{27} + \frac{C}{4}\right) = \left(-\frac{q_v\delta}{a}\right)\left(\frac{1}{27}\left(\frac{b}{a}\right)^3 - \frac{q_v\delta}{4a}\right).$$
(9)

Для иллюстрации проведем вычисления в (9) для давления теплоносителя p = 6,92 мПа и соответствующей температуры насыщения $T_s = 285$ °C. При этих параметрах a = 535 BT/(M^2 (°C)³), b = 32273 BT/(M^2 (°C)²). При вычислении члена $q_v \delta/a$ в (9) примем $q_v = 1,5 \cdot 10^8$ BT/M³, что близко к удельной мощности источников энерговыделения в ядерных реакторах [5]. Рассматривая пластинчатый твэл, положим $\delta = 1,5$ мм, что приблизительно соответствует толщине стенки трубчатых имитаторов тепловыделяющих элементов.

Тогда
$$\frac{q_v \delta}{4a} = 1 \cdot 10^2$$
, $\frac{1}{27} \left(\frac{b}{a}\right)^3 = 8, 1 \cdot 10^3$, $A^3 \cdot C/27 + C^2/4 = -4, 7 \cdot (8, 1 \cdot 10^3 - 1 \cdot 10^2) < 0$.

Отсюда следует, что уравнение (6) для заданных конкретных условий имеет три действительных корня. Вычисляя λ_1 и λ_2 для этого случая по формулам (7) и (8) соответственно, получим $\lambda_1 = -1156$, $\lambda_2 = 15116$, 8. Для функции $f(\theta) = -(\theta^3 + \lambda_1\theta + \lambda_2)$ введем потен- θ

циал
$$U(\theta)$$
, такой, что $U(\theta) = -\int_{0}^{0} f(\theta) d\theta$. Очевидно, что
$$U(\theta) = \left(\frac{1}{4}\theta^{4} + \frac{1}{2}\lambda_{1}\theta^{2} + \lambda_{2}\theta\right).$$
(10)

Из выражений (7) и (8) следует важная особенность потенциала (10) — для рассматриваемой задачи только параметр λ_2 может принимать нулевое значение.

На рис. 3 представлена функция f, а на рис. 4 — потенциал U. Видно, что потенциал, изображаемый кривой I, в области изменения параметра θ от 10 до 25, что соответствует изменению ΔT_s от -10 °C до 5 °C, представляет собой практически плоскую функцию. Такое состояние системы называется критическим. Система в этих условиях очень чувствительна к малым воздействиям.

В уравнении (10) имеются в общем случае два управляющих параметра — λ_1 и λ_2 , при обращении которых в нуль потенциальная энергия системы представляет собой структурно неустойчивую функцию. Если эти параметры изменяются в диапазоне, включающем нулевые значения, структурная неустойчивость неизбежно реализуется.

Понятие структурной неустойчивости возникает при исследовании задач на экстремум. Рассматриваемый потенциал представляет собой функцию типа $y = x^4$, которая имеет минимум в начале координат. Если ввести слабое возмущение $y = x^4 - \epsilon x^2$, где параметр $\epsilon > 0$ может быть сколь угодно малым, то в результате получим функцию, которая имеет три критические точки. При этом начало координат становится точкой максимума, а в двух новых критических точках, сколь угодно близких к x = 0, функция принимает минимальные значения. Таким образом, малые возмущения функции $y = x^4$ приводят к ее качественным изменениям в окрестности критической точки. На рис. 4 кривая 2, которая может рассматриваться как возмущенная функция типа $y = x^4 - kx^2$, представляет собой так называемый бистабильный потенциал. Возмущение $y = x^4$ путем добавления линейного члена ϵx приводит к результату, изображаемому на рис. 4 кривой 1.

В рассматриваемой задаче управляющие параметры λ_1 и λ_2 могут изменяться в определенных пределах, то есть эти параметры формируют семейство функций. Интерес представляют качественные перестройки функций при изменении этих параметров (бифуркации) [12]. В рассматриваемой здесь задаче с семейством (10) точке бифуркации соответствует значение параметра $\lambda_2 = 0$, поскольку при переходе λ_2 от отрицательных значений к положительным одно устойчивое стационарное состояние заменяется другим устойчивым состоянием, симметричным с первым относительно оси $\theta = 0$ (рис. 4). При $\lambda_2 = 0$ возникает пара устойчивых состояний $\theta_{1,2} = \pm \sqrt{-\lambda_1}$ и одно неустойчивое состояние при $\theta = 0$. Очевидно, что можно говорить об отображении множества значений

Рис. 5. Границы устойчивости, определяемые полукубической параболой.

управляющего параметра на множество критических точек. В рассматриваемом нами примере это отображение трёхзначное. Точка бифуркации разделяет области с различным поведением критических точек. Ясно,

что когда области управляющих параметров являются двухмерными или трехмерными, то границы между областями с различным поведением критических точек представляют собой кривые или поверхности. Полное решение проблемы о типах особенностей таких отображений было получено *X*. Уитни [12].

Если λ_1 и λ_2 не равны нулю, то с геометрической точки зрения наблюдается отображение поверхности критических точек на плоскость управляющих параметров. Роль границы будет играть не точка на прямой, а полукубическая парабола на плоскости (рис. 5). Ветви этой параболы изображают зависимость кратных корней кубического уравнения от управляющего параметра λ_1 . Точка возврата, разделяющая эти ветви, соответствует тройному корню. Ветви параболы получили в теории катастроф название линии складки, а точка возврата, в которой эти линии собираются, называется сборкой. В области *I* на рис. 5, ограниченной линиями складки, кубическое уравнение имеет три действительных корня. Вне этих линий (области *2* и *3* на рис. 5) существует один действительный корень. Геометрические особенности графика дали название и катастрофе — «сборка». Таким образом, катастрофа «сборка» характеризует семейство функций четвертой степени, зависящих от двух параметров, и геометрию соответствующего кубического уравнения.

Пусть выполняется равенство $\lambda_2 = 0$. В этом случае из соотношений (5) и (8) находим

$$\lambda_2 = \frac{2}{27} (b/a)^3 - \frac{q_v \delta}{a} = 0.$$
(11)

Поверхностная плотность теплового потока, определяемая из выражения (11), равна $q_v \delta = (2/27)b^3/a^2$.

Кипение представляет собой комплексное явление, включающее фазовые переходы, турбулентность, случайное образование пузырьков на хаотически расположенных потенциальных центрах, взаимодействие пузырьков, а также взрывное вскипание в перегретой жидкости в непосредственной близости к поверхности теплообмена. Взаимодействие пузырьков сильно зависит от микроструктуры центров парообразования, от теплоемкости, теплопроводности и толщины стенки. Определяющую роль здесь играют флуктуации параметров системы. Это приводит к тому, что стохастичность является неотъемлемой и существенной характеристикой процесса кипения. Кипящая система может подвергаться и внешним воздействиям. В частности, в системе могут происходить колебания давления, генерируемые насосами, запорными органами арматуры и др. Эти внешние воздействия могут быть как детерминированными, так и случайными. Необходимо учитывать также флуктуации источников тепла, обусловленные флуктуациями температуры тепловыделяющего элемента и паросодержанием теплоносителя. К кризису теплообмена (запариванию) могут привести при этом коллективные взаимодействия флуктуаций различного рода.

Таким образом, кипение представляет собой динамическое стохастическое явление. Главная характеристика стохастического воздействия — его интенсивность. Исходя из этого возникает задача исследования динамики флуктуаций параметров системы в зависимости от интенсивности этих воздействий.

3. Стохастическая динамика кипения

Исследование проводится в рамках концепции кривой кипения и, следовательно, связано с изучением нелинейной неравновесной системы. Среди переменных такой системы находится одна наиболее неустойчивая, называемая параметром порядка [14, 15]. В рассматриваемом случае система описывается одним параметром — перегревом поверхности теплообмена выше температуры насыщения жидкости. Таким образом, параметром порядка является перегрев поверхности кипения.

Будем рассматривать динамику температуры тепловыделяющего элемента в приближении сосредоточенных параметров. Запишем уравнение теплового баланса для тепловыделяющего элемента при охлаждении кипящей водой в виде

$$oc_p \frac{dT}{d\tau} = -\frac{S}{V} (a\Delta T_s^3 + b\Delta T_s^2) + q_v, \qquad (12)$$

где ρ — плотность, c_p — удельная теплоемкость материала. Для уравнений такого типа известно, во-первых, что детерминистская парадигма (совокупность основных положений и принципов, лежащих в основе методов исследований, свойственных детерминистским уравнениям) неверна [15], во-вторых, что очень малые различия в начальных условиях приводят к большим различиям в конечных результатах [16].

Будем рассматривать динамику флуктуаций параметра порядка ΔT_s . При учете флуктуаций температуры насыщения теплоносителя можно записать $T_s = \overline{T}_s + \delta T_s$, где \overline{T}_s — среднее значение температуры насыщения, δT_s — флуктуация температуры насыщения. Осцилляции температуры насыщения могут быть обусловлены, в частности, осцилляциями давления среды и происходить по гармоническому закону с частотой ω : $\delta T_s = \delta T_0 \cdot \sin \omega t$. Уравнение (12) теперь может быть записано в виде

$$\rho c_p \frac{d(\Delta T_s + \delta T_s)}{dt} = -S/V \left(a\Delta T_s^3 + b\Delta T_s^2\right) + q_v$$

или

$$\rho c_p \frac{d(\Delta T_s)}{dt} = -\frac{a}{\delta} (\Delta T_s^3 + \frac{b}{a} \Delta T_s^2 - \frac{q_v \delta}{a}) - \rho c_p \delta T_0 \omega \cos \omega t.$$
(13)

Введем замену переменных $\Delta T_{\rm s} = \frac{b}{a} \left(\frac{\varphi}{\sqrt{3}} - \frac{1}{3} \right)$. Тогда из (13) получим

$$\rho c_p \frac{d\varphi}{dt} = -\frac{b^2}{3a\delta} \left[\varphi \left(1 - \varphi^2 \right) - 3\sqrt{3} \left(\frac{2}{27} - \frac{q_v \delta}{a} \cdot \frac{a^3}{b^3} \right) \right] - \rho c_p \delta T_0 \frac{a\sqrt{3}}{b} \omega \cos \omega t.$$
(14)

Обозначим

$$\chi = \frac{b^2}{3a\delta} \cdot \frac{1}{\rho c_p}, \ \tau = \chi t, \quad \Omega = \omega / \chi, \quad \beta = \delta T_0 \Omega \frac{a}{b} \sqrt{3}, \quad Q = 3\sqrt{3} \left(\frac{2}{27} - \frac{q_v \delta}{a} \cdot \frac{b^3}{a^3}\right) 3\sqrt{3}. \tag{15}$$

Подставляя (15) в (14), получим

1

$$d\varphi/d\tau = \varphi(1-\varphi^2) + \beta \cos \Omega \tau - Q.$$
(16)

Проблема корректного введения шума в правую часть уравнения (16) решается путем использования модели броуновского движения. Рассмотрим сначала модель аддитивного независимого дискретного случайного блуждания с постоянным сносом v_0 . В этой модели величина x испытывает n = 1, 2, ... случайных независимых приращений, каждое со средним квадратичным отклонением σ_0 . В результате накопления таких изменений x окажется равным $x = x_0 + v_0 \cdot m + \sigma_0(\varepsilon_1 + ... + \varepsilon_n)$. Случайные числа предполагаются нормированными: $\langle \varepsilon \rangle = 0, \quad \langle \varepsilon^2 \rangle = 1$. Далее вводится дискретная переменная Винера $W_n = \varepsilon_1 + ... + \varepsilon_n = \varepsilon \sqrt{n}$. Пусть длительность каждого шага равна $\Delta \tau$, так что за промежуток времени ($\tau - \tau_0$) их количество равно $n = (\tau - \tau_0)/\Delta \tau$. Обозначив дисперсию и снос в единицу времени как $\sigma^2 = \sigma_0^2 / \Delta \tau$, $v = v_0 / \Delta \tau$, представим случайную функцию *x* в виде

$$x(\tau) = x(\tau_0) + \nu(\tau - \tau_0) + \sigma \sqrt{\tau - \tau_0} \cdot \varepsilon.$$
(17)

В зависимости от значения случайного числа ε будет получаться случайное число xв момент времени τ . Таким образом, процесс $x(\tau)$ имеет нормальное распределение с максимумом, смещающимся со скоростью v, и с шириной, увеличивающейся со временем пропорционально $\sqrt{\tau - \tau_0}$. Переходя к пределу в (17) при $(\tau - \tau_0) \rightarrow 0$, получим

$$dx = v d\tau + \sigma dW, \tag{18}$$

где $dW = \varepsilon \sqrt{d\tau}$.

Простое Винеровское блуждание (18) представляет собой частный случай уравнения Ито [17]. В сороковых годах прошлого века К. Ито создал теорию стохастических дифференциальных уравнений, за которыми впоследствии укрепилось название «уравнения Ито». В дальнейшем выяснилось, что стохастические уравнения являются удобным инструментом для решения многих прикладных задач. Общие процессы Ито представляют собой деформацию простого винеровского блуждания. Если снос и дисперсия являются функциями времени, которые могут зависеть также и от x, то уравнение Ито записывается как $dx = a(x, \tau)d\tau + b(x, \tau)dW$. Положим в уравнении (16) Q = 0, что соответствует случаю $\lambda_2 = 0$ при анализе структурной устойчивости кривой кипения. Тогда уравнение Ито для уравнения (16) запишется как

$$d\varphi = \left[\varphi(1-\varphi^2) + \beta \cos\Omega\tau\right] d\tau + \sigma dW.$$
⁽¹⁹⁾

Это уравнение позволяет моделировать динамику стохастического процесса при помощи итерационной схемы

$$\varphi_{k+1} = \left[\varphi_k (1 - \varphi_k^2) + \beta(\cos(\Omega \tau_k))\right] \Delta \tau + \sigma \sqrt{\Delta \tau} \cdot \varepsilon_k.$$
⁽²⁰⁾

Для заданного шага по времени $\Delta \tau$ и начального значения φ_0 генерируется нормальное распределенное случайное число ε_1 , затем по формуле (20) вычисляется φ_1 . Далее φ_1 подставляется на место φ_0 , сдвигается время $\tau_1 = \tau_0 + \Delta \tau$ и процесс повторяется. В результате получается последовательность случайных чисел. Сходимость этого алгоритма означает, что при уменьшении $\Delta \tau$ должны стремиться к определенному пределу среднее значение $\overline{\varphi}(\tau)$, среднеквадратичное отклонение σ и функция распределения вероятностей $P(\varphi_0, \tau_0 \Rightarrow \varphi, \tau)$ случайного процесса $\varphi(\tau)$.

В качестве показателя сходимости при дроблении шага интегрирования в рассматриваемом процессе будем рассматривать также сохранение особого свойства системы, описываемого уравнением (19), — стохастического резонанса. Суть этого явления заключается в возникновении кооперативных эффектов между внутренними флуктуациями параметров системы и внешним силовым воздействием [18].

Уравнение (19) совпадает с уравнением

$$d\varphi = \left[\varphi(\mu - \varphi^2) + \beta \cos \omega_0 \tau\right] d\tau + \varepsilon dW, \qquad (21)$$

если положить в нем $\mu = 1$, $\omega_0 = \Omega$. Для этого уравнения доказывается [18], что для винеровского процесса с дисперсией σ , заключенной в интервале (σ_1 , σ_2), решение имеет пик в спектральной мощности. Этот пик свидетельствует о периодическом изменении

функции $\varphi(\tau)$, причем период этих колебаний равен $T = 2\pi/\Omega$, а амплитуда $A = 2\sqrt{\mu}$. В этой работе показано также, что для заданной амплитуды внешнего воздействия β , при условии, что она меньше величины $\mu^{3/2}$, границы интервала для величины интенсивности шума, в котором выполняются эти закономерности, определяются как

$$\sigma_1 = \mu \left(\frac{1 - 4\beta / \mu^{3/2}}{2\ln(2\sqrt{2}\mu / \omega_0)} \right)^{1/2},$$
(22)

$$\sigma_2 = \mu \left(\frac{1 + 4\beta / \mu^{3/2}}{2\ln(2\sqrt{2}\mu / \omega_0)} \right)^{1/2}.$$
 (23)

Определим теперь граничные точки интервала (σ_1 , σ_2) для случая, когда $\beta = 0,125$, $\Omega = 0,001$, $\mu = 1$. Подставляя эти значения в формулы (18) и (19), получим

$$\sigma_1 = \left(\frac{1 - 4 \cdot 0,125}{2 \cdot \ln(2\sqrt{2}/0,001)}\right)^{1/2} = 0,181, \quad \sigma_2 = \left(\frac{1 + 4 \cdot 0,125}{2 \cdot \ln(2\sqrt{2}/0,001)}\right)^{1/2} = 0,305.$$

4. Результаты численного анализа

Численное интегрирование уравнения Ито (19) с использованием итерационной схемы (20) требует очень малых интервалов $\Delta \tau$ из-за неустойчивости интегрирования детерминистской части уравнения. При этом необходимо получить решение задачи для больших интервалов времени с целью анализа низкочастотных флуктуаций искомой величины. В задачах такого рода при больших интервалах и малых шагах интегрирования происходит накопление ошибок вычислений. Вычислительный эксперимент показал, что более совершенной схемой вычислений в данном случае оказалась схема Мильштейна [19]. Был установлен также оптимальный шаг интегрирования $\Delta \tau = 0,001$. Ниже приводятся основные результаты расчетов. Для параметров уравнения (18) $\beta = 0,125$, $\Omega = 0,001$, $\sigma = 0,25$, соответствующих условиям резонанса в работе [18], построены графики изменения ΔT_s (параметра порядка) (рис. 6) от времени, функция распределения флуктуаций (рис. 7) и мощность спектральной плотности (МСП) ΔT_s (рис. 8).

На рис. 6 видно, что при заданных значениях параметров стохастического процесса возникает периодичность в изменении параметра порядка. Решение изменяется скачком между двумя устойчивыми состояниями, процесс почти периодический и синхронный с внешним воздействием. Этот результат совпадает с расчетными данными, полученными в работе [18].

Из рис. 7 следует, что флуктуации параметра порядка в резонансном режиме сосредоточены в области притяжения точек с координатами 1 и –1 на оси амплитуд колебаний. Функция распределения имеет ярко выраженный двугорбый вид.

Рис. 6. Изменение $\Delta T_{\rm s}$ во времени в резонансном режиме. $\beta = 0.125, \Omega = 0.001, \sigma = 0.25.$

Рис. 7. Функция распределения ΔT_s в резонансном режиме. $\beta = 0.125, \Omega = 0.001, \sigma = 0.25.$

Рис. 8. Мощность спектральной плотности $\Delta T_{\rm s}$ в резонансном режиме. $\beta = 0,125, \Omega = 0,001, \sigma = 0,25; MC\Pi = 0,0015/f^2.$

Рисунок 8 показывает, что в резонансном режиме возникает $1/f^2$ -шум (фликкершум) в мощности спектральной плотности ΔT_s . Характерная особенность этого шума возрастание амплитуды флуктуаций по расходящемуся типу.

Как отмечалось выше, при увеличении интервала интегрирования возрастает ошибка в вычислениях. Чтобы проиллюстрировать это, был проведен расчет для интервала, в 10 раз меньшего, при сохранении других параметров задачи. Сравнение рис. 8 с рис. 9 подтверждает это. В то же время видно, что точность расчетных результатов на рис. 8 вполне приемлема для доказательства существования фликкер-шума. Дальнейшее исследование при сохранении интенсивности шума, но при отсутствии внешнего периодического воздействия показало, что вид функции распределения сохраняет двугорбый вид,

Рис. 9. Мощность спектральной плотности $\Delta T_{\rm s}$ в резонансном режиме. $\beta = 0,125, \Omega = 0,001, \sigma = 0,25; {\rm MC\Pi} = 0,03/f^2.$

Рис. 10. Изменение параметра порядка при $\sigma = 0,25, \beta = 0$.

а мощность спектральной плотности изменяется с частотой, аналогично тому, как это происходит и в случае с периодическим внешним воздействием.

Характер изменения флуктуаций ΔT_s с течением времени при отсутствии внешнего воздействия показан на рис. 10. Видно, что этот параметр изменяется скачкообразно также и при рассматриваемых условиях, если уровень шума тот же, при котором в случае периодического внешнего воздействия происходит резонанс. Однако скачки происходят случайным образом. Мощность спектральной плотности при этом имеет тот же вид, что и на рис. 9. Возникновение фликкер-шума и скачкообразный характер изменения флуктуаций параметра порядка говорят об особом (критическом) состоянии рассматриваемой системы. Система в критических условиях переходит из одного метастабильного состояния в другое случайным образом, а фликкер-шум является наглядной характеристикой такого состояния. Важно подчеркнуть, что 1/*f*-шум возникает только при достижении достаточной интенсивности σ случайной составляющей в уравнении Ито. Чтобы показать это, был проведен расчет при малой интенсивности шума (σ = 0,025). Было показано, что в этом случае в спектре флуктуаций при низких частотах возможен только шум Лоренца (рис. 11) [14]. Следовательно состояние системы не является критическим.

Полученные результаты требуют экспериментального подтверждения. С этой целью воспользуемся данными работ [3, 4] по исследованию кипения воды на платиновой проволочке (кипение в свободном объеме). Диаметр платинового нагревателя изменялся от 20 до 100 мкм. Давление в воде было атмосферным. В экспериментах регистрировались колебания транспортного тока в цепи, связанные с кипением.

Сравним расчетные данные, полученные при численном решении уравнения (19) при σ = 0,25 в реальном времени, с данными по МСП, представленными в работах [3, 4]. Для этого воспользуемся преобразованием временной координаты $\tau = \chi t$, где χ вычисляется

Рис. 11. Мощность спектральной плотности $\Delta T_{\rm s}$ при $\beta = 0$ и $\sigma = 0,025$. МПС имеет вид шума Лоренца при низких частотах.

Рис. 12. Мощность спектральной плотности $\Delta T_{\rm s}$ при $\beta = 0$, $\sigma = 0,25$ в реальном времени. МСП = $0,03/f^2$.

из соотношения (15) при $\delta = d/4$, где d — диаметр платиновой проволочки, а коэффициенты a и b рассчитываются по формулам (2). В результате получим

 $a = 267,5 \text{ BT/(m^2(^{\circ}\text{C})^3)}, \quad b = 1279 \text{ BT/(m^2(^{\circ}\text{C})^2)}, \quad \chi = 141,5/c.$

При вычислениях принималось $\alpha = 100$. Тогда при шаге интегрирования $\Delta \tau = 0,001$ шаг интегрирования в реальном времени составит 10^{-5} с. Расчет для периода времени T = 1000 с при длине временного ряда 10^8 дает результат МСП, представленный на рис. 12. Поскольку электрическое сопротивление платины линейно зависит от температуры, то флуктуации температуры платинового нагревателя и транспортного тока в нем должны быть эквивалентны. Сравнивая кривую на рис. 12 и кривую 2 на рис. 5 в работе [3], можно утверждать, что получено хорошее соответствие экспериментальных и теоретических данных.

Заключение

При тепловых потоках, близких к критическим, в кипящих системах возникает неустойчивость. Точное описание поведения таких систем невозможно, поскольку совокупность основных положений и принципов, лежащих в основе методов исследований, свойственных детерминистским системам (детерминистская парадигма), неверна. В настоящей работе исследования проведены в рамках новой концепции, связанной с изучением нелинейных систем и процессов вдали от термодинамического равновесия. Согласно этой концепции, среди переменных в системе имеется одна, наиболее неустойчивая, называемая параметром порядка. В качестве параметра порядка в процессах кипения выступает перегрев теплоотдающей поверхности выше температуры насыщения. В этих процессах использование кривой кипения дает возможность связать энергетический показатель системы — отводимую мощность — с параметром порядка и получить объективный показатель достижения предельно допустимой тепловой нагрузки на поверхности тепловыделяющего элемента.

В работе показано, что под воздействием малых возмущений кипящая система переходит из одного метастабильного состояния в другое, то есть возникает состояние самоорганизованной критичности, которое имеет наглядное изображение в виде 1/*f*-шума в мощности спектральной плотности рассматриваемого параметра. Таким образом, фликкер-шум выступает как объективный показатель критичности. Это дает основание утверждать, что для контроля критических условий и совершенствования полуэмпирических соотношений для предельных тепловых нагрузок в процессах теплопередачи в энергонапряженных технических устройствах целесообразно использовать возможности фликкер-шумовой спектроскопии.

Список литературы

- 1. Коверда В.П., Скоков В.Н., Скрипов В.П. 1/*f*-шум при неравновесном фазовом переходе. Эксперимент и математическая модель // Журн. эксперим. и теорет. физики. 1998. Т. 113, № 5. С. 1748–1757.
- Скоков В.Н., Коверда В.П. Фликкер-шум при переходе к кризисному режиму кипения на нелинейном нагревателе // Теплофизика высоких температур. 2000. Т. 38, вып. 2. С. 268–273.
- 3. Скоков А.В., Решетников В.П., Коверда В.П. Самоорганизация критических флуктуаций и 1/*f*-спектры в кризисных режимах кипения // Теплофизика высоких температур. 2000. Т. 38, № 5. С. 787–783.
- **4. Виноградов А.В.** Динамика флуктуаций в кризисных и переходных режимах кипения: дисс. ... канд. физ.мат. наук. Екатеринбург, 2005. 138 с.
- 5. Петухов Б.С., Генин Л.Г., Ковалев С.А. Теплообмен в ядерных энергетических установках. М.: Атомиздат, 1974. 470 с.
- 6. Ковалев С.А., Усатиков С.В. Оценка устойчивости режимов кипения с помощью функционала Ляпунова // Теплофизика высоких температур. 1991. Т. 29, № 4. С. 730–737.
- Nukiyama S. The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure // Int. J. Heat Transfer. 1966. Vol. 9. P. 1419–1433.
- 8. Ягов В.В. Теплообмен в однофазных средах и при фазовых превращениях [Электронный ресурс]: уч. пособие для вузов. М.: Изд. Дом МЭН, 2014. 542 с.
- Анохина Е.В. Влияние материала поверхности нагрева на кривую кипения жидкостей // Журнал технической физики. 2009. Т. 79, вып. 9. С. 20–25.
- Unger E.K., Eichhorn R. Transition boiling curves in saturated pool boiling from horizontal cylinder // Int. J. Heat Transfer. 1996. Vol. 118, No. 3. C. 654–661.
- Chai L.H., Shoji M. Boiling curves bifurcation and catastrophe // Ine. J. of Heat and Mass Transfer. 2001. Vol. 44, No. 21. P. 4175–4179.
- 12. Постон Т., Стюарт Й. Теория катастроф и ее приложения. М.: Мир, 1980. 487 с.
- **13. Лабунцов Д.А.** Приближенная теория теплообмена при развитом пузырьковом кипении // Изв. АН СССР. Энергетика и транспорт. 1963. № 1. С. 58–64.
- 14. Хакен Г. Синергетика. Пер. с англ. М.: Мир, 1980. 324 с.
- 15. Николис Г., Пригожин И. Познание сложного. Пер. с англ. М.: Мир, 1990. 345 с.
- 16. Понтрягин Л.С. Обыкновенные дифференциальные уравнения. М.: Наука, 1961. 331 с.
- 17. Ito K. On stochastic differential equations // American Mathematical Society. 1951. 360 p.
- Benzi R., Sutera A., Vulpiani A. The mechanism of stochastic resonance // J. of Physics, A: Math. Gen. 1981. Vol. 14. P. L453–L461.
- 19. Люу Ю.Д. Методы и алгоритмы финансовой математики. Пер. с англ. М.: Бином, 2014. 754 с.

Статья поступила в редакцию 16 января 2017 г., после доработки — 7 июля 2017 г.