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Представлены результаты численного моделирования функционирования вращающихся куму-
лятивных зарядов. Продемонстрировано отсутствие влияния скорости радиального расширения
высокоскоростных полых цилиндрических ударников, которые имитируют элемент кумулятив-
ной струи, на глубину их проникания. Проведен численный анализ процесса растяжения вра-
щающегося растягивающегося металлического цилиндра (струи) с гармоническим профилем

боковой поверхности. Оценено влияние различных параметров, в том числе угловой скорости
струи, на ее сплошность в осевом и радиальных направлениях. Предложена зависимость для
оценки коэффициента предельного удлинения вращающейся кумулятивной струи. Сравнение
результатов расчетов с экспериментальными данными демонстрирует удовлетворительное со-
гласование.
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ВВЕДЕНИЕ

Влиянию вращения кумулятивного заря-
да (КЗ) на проникающее действие посвящено
множество работ [1–6]. В них показано, что с
увеличением угловой скорости КЗ глубина его

пробития снижается схожим образом для заря-
дов различного диаметра в зависимости от их

окружной скорости (рис. 1).
Выделяют критическое значение угловой

скорости (ωd = 100 об ·дюйм/с), при которой
резко падает глубина пробития Lω/L0 (рис. 1).
Считается [3, 5], что до указанного значения
угловой скорости снижение глубины проби-
тия кумулятивной струи происходит преиму-
щественно из-за более раннего, чем без враще-
ния, распада струи на элементы, что приводит
к уменьшению ее общей длины и глубины про-
никания (рис. 2).

При угловой скорости, превышающей кри-
тическую, наблюдается центробежное разру-
шение кумулятивной струи, которое сопровож-
дается радиальным разлетом материала струи

и резким падением ее проникающей способно-
сти [3, 6] (см. рис. 2).

Высказано несколько предположений о ме-
ханизмах, объясняющих снижение глубины
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Рис. 1. Зависимость относительной глубины
пробития КЗ от его окружной скорости для

зарядов диаметром 57 и 105 мм [3]

проникания струи в преграду: ранний рас-
пад на элементы по причине скручивания ма-
териала струи по спиральной линии или по

причине центробежного разрушения в шейках;
снижение средней плотности из-за центробеж-
ного разрушения струи и ее последующего рас-
ширения в радиальном направлении по всей

длине [3, 6–17].
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Рис. 2. Рентгенограммы участков кумулятив-
ных струй, образованных из заряда диамет-
ром 105 мм, вращающегося с различной угло-
вой скоростью [3]

В настоящей работе при помощи чис-
ленного моделирования проанализировано вли-
яние радиального расширения кумулятивной

струи на ее проникание, а также проведено ис-
следование растяжения вращающейся струи в

зависимости от геометрических, кинематиче-
ских параметров и свойств материала, опреде-
ляющих этот процесс.

ПРОНИКАНИЕ
РАДИАЛЬНО РАСШИРЯЮЩИХСЯ
ТРУБЧАТЫХ УДАРНИКОВ

С помощью численного решения задачи о

проникании радиально расширяющегося поло-
го ударника анализируется влияние радиаль-
ного расширения струи на снижение глубины

ее пробития.
Моделирование проводилось в рамках ре-

шения двумерной осесимметричной задачи ме-
ханики сплошных сред на основе метода сгла-
женных частиц (SPH) [18]. Материал медного
ударника рассматривался как идеальная сжи-
маемая жидкость с уравнением состояния в

форме линейной зависимости между скоростью

фронта ударной волны в среде D и массовой

скоростью за ее фронтом u: D = a + bu, где a,
b — эмпирические параметры материала. При-
нималось a = 3 940 м/с, b = 1.489. Стальная
преграда моделировалась как сжимаемая упру-
гопластическая среда с переменным пределом

текучести Y в форме Джонсона — Кука [19]

Y = [A + Bεnp ][1 + C ln ε̇∗p]
[
1 −

( T − T0
Tm − T0

)m]
,

Рис. 3. Проникание медного трубчатого ци-
линдрического ударника, движущегося с раз-
личной радиальной скоростью и постоянной

осевой скоростью 9 000 м/с, в стальную пре-
граду

где A, B, n, C, m — эмпирические параметры

материала; εp — интенсивность пластической

деформации; T0, Tm — температуры окружаю-
щей среды и плавления материала; ε̇∗p — от-
носительная интенсивность скорости пласти-
ческой деформации. В приведенных ниже рас-
четах G = 8.18 · 1011 Па; A = 7.92 · 108 Па;
B = 5.10 · 108 Па; n = 0.26; C = 0.014; m =
1.03; T0 = 300 K; Tm = 1 793 К. Упругое по-
ведение описывалось линейной моделью с ис-
пользованием упомянутого ранее значения мо-
дуля сдвига G и объемного модуля упругости

K = 1.59 · 1011 Па.
Моделируемые ударники двигались с осе-

вой скоростью vz = 9 000 м/с, имели одинако-
вую массу (3.6 г) и длину (30 мм), но различ-
ный радиус центрального отверстия (0.01, 0.79,
2.0, 7.0 мм) и различную радиальную скорость
расширения vr (0, 50, 100, 1 000 м/с). На рис. 3
приведены результаты проникания ударника с

начальным радиусом канала 0.79 мм и различ-
ными значениями радиальной скорости.

На рис. 4 показаны зависимости относи-
тельной глубины проникания ударников L/l
(отношение глубины каверны L к длине удар-
ника l) от радиальной скорости их расшире-
ния. Из рис. 4 следует, что скорость радиаль-
ного расширения оказывает заметное влияние

только на проникание ударника с пренебре-
жимо малым радиусом центрального канала

(0.01 мм). Увеличение скорости расширения vr
такого ударника от 0 до 10 м/с приводит к сни-
жению величины L/l на 26 % (с 1.4 до 1.04).
При дальнейшем росте vr от 10 до 100 м/с глу-
бина пробития изменяется незначительно.
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Рис. 4. Относительная глубина проникания

ударников с различным радиусом централь-
ного канала в зависимости от относительной

скорости радиального расширения

В случае, когда радиус отверстия удар-
ника изначально превышает 0.3 его радиуса,
глубина пробития не меняется с ростом ра-
диальной скорости расширения. При этом на-
чальный радиус отверстия центрального ка-
нала оказывает влияние на глубину пробития

ударника. При его увеличении с 0.005 до 0.96
от радиуса ударника глубина пробития умень-
шается с 1.26l до 0.97l. Следовательно, разру-
шенная из-за действия центробежной силы ра-
диально расширяющаяся часть кумулятивной

струи сохраняет ограниченную способность к

пробитию преграды.
Следствием полученного результата о

независимости глубины пробития ударника от

его радиальной скорости является то, что толь-
ко лишь увеличение поперечного сечения струи

(снижение ее средней плотности) при сохра-
нении трубчатой формы ударника не может

быть причиной уменьшения глубины проника-
ния расширяющейся кумулятивной струи [3, 6].

Для установления механизма снижения

глубины пробития вращающимися КЗ в рам-
ках настоящей работы исследуется процесс

растяжения вращающихся металлических ци-
линдров с заданными на их поверхности гармо-
ническими отклонениями от цилиндрической

формы.

РАСТЯЖЕНИЕ ВРАЩАЮЩИХСЯ
МЕТАЛЛИЧЕСКИХ ЦИЛИНДРОВ

В большом количестве работ числен-
но [20–24], аналитически [25–31] и эксперимен-

тально [20, 32–34] исследовался процесс удли-
нения кумулятивной струи с ее последующим

распадом на элементы из-за развития поверх-
ностных гармонических возмущений без уче-
та начального вращения. Показано, что су-
ществуют определенные частоты и амплиту-
ды поверхностных возмущений, которые при-
водят к разрыву струи наискорейшим образом,
что ограничивает ее коэффициент предельно-
го удлинения nlim = l/l0, где l0 — начальная

длина элемента струи, l — суммарная длина

элементов струи после ее разрушения.
В рамках настоящей работы аналогич-

но [20–24] численно анализировался про-
цесс растяжения вращающегося металлическо-
го цилиндра, имитирующего участок кумуля-
тивной струи, боковая поверхность которого
подвергалась поверхностным возмущениям.

Профиль возмущений боковой поверхности

задавался гармоническим законом вида r =
R0 + a cos(2πx/λ), где R0 — номинальный ра-
диус цилиндра, a — амплитуда возмущения,
λ — длина волны возмущения. В расчетах рас-
сматривался цилиндр с начальными радиусом

R0 = 3 мм и длиной L0 = 20 мм.
Задача решалась с использованием

лагранжева подхода [18]. В качестве модели

материала медного цилиндра использовалась

модель Джонсона — Кука с разупрочнени-
ем (G = 4.6 · 1010 Па; A = 1.0 · 108 Па;
B = 2.92 · 108 Па; n = 0.31; C = 0.025;
m = 1.09; T0 = 300 K; Tm = 1 356 К; D1 = 0.54;
D2 = 4.89; D3 = −3.03; D4 = 0.014; D5 = 1.14)
совместно с уравнением состояния D(u) со

значениями параметров из задачи о проника-
нии радиально расширяющихся трубчатых

ударников. Критерием разрушения выступа-
ло достижение интенсивности пластических

деформаций ε
p
i = 2.8.

В результате решения получено, что раз-
личным значениям параметров a и λ соот-
ветствовали различные значения предельного

удлинения цилиндра (струи). С увеличением

относительной амплитуды возмущений a/R0
наблюдается снижение коэффициента предель-
ного удлинения nlim. При этом при a/R0 > 0.05
величина nlim практически не изменяется и

примерно равна 2.0. Влияние длины волны воз-
мущения λ на nlim иллюстрируется U-образной
кривой с минимальным значением коэффициен-
та удлинения при λ/R0 = 3, который и прини-
мался в качестве полученного по результатам

численного моделирования.



С. С. Рассоха 121

Рис. 5. Внешний вид цилиндра без начального
вращения через 160 мкс после начала растяже-
ния (а), и цилиндров, вращающихся со скоро-
стью ωJ0 = 10 000 об/с (б) и 15 000 об/с (в)
через 160 мкс после начала растяжения и со
скоростью ωJ0 = 20 000 об/с через 70 мкс по-
сле начала растяжения (г)

На рис. 5 показан внешний вид цилиндра с
гармоническими поверхностными возмущения-
ми a/R0 = 0.05 и λ/R0 = 3 после его разру-
шения на элементы в зависимости от началь-
ной угловой скорости ωJ0. Плотность материа-
ла струи ρ = 8 900 кг/м3, начальный градиент
осевой скорости ε̇z0 = 104 c−1, предел текуче-
сти материала струи Y = 100 МПа, начальный
радиус струи R0 = 3 мм, начальный градиент

угловой скорости
dωJ0
dx

= 0.

Из рис. 5 следует, что с увеличением на-
чальной угловой скорости доля разрушенно-
го материала увеличивается, что приводит к
уменьшению nlim. При малых значениях ωJ0
центробежное разрушение начинается в местах

формирования шеек, там, где текущая угловая
скорость является наибольшей согласно крите-
рию [6]

ρR2ω2J
Y

= C1 + C2
ρR2ε̇2z
Y

, (1)

где C1, C2 — постоянные коэффициенты. В на-
стоящей работе принималось, что C1 = 0.634,
C2 = 0.75.

С увеличением ωJ0 область разрушения
распространяется вне шеечной части. При

этом формируется центральный канал, а ра-
диальный размер струи растет вплоть до раз-
рушения по механизму дробления осколочных

оболочек, который описан в работе [35].
Из рис. 5 можно сделать качественный вы-

вод о том, что вращающаяся струя состоит
из двух частей: первая сохраняет свою сплош-
ность и способность к последующему удлине-
нию, вторая разрушается из-за действия цен-
тробежных сил и прекращает увеличивать

свою длину, не теряя при этом, как следует из
решения задачи о проникании расширяющих-
ся трубчатых ударников, свою проникающую

способность. Доля каждой из этих частей в об-
щей длине струи зависит от ее угловой ско-
рости вращения. С ростом угловой скорости

вклад первой части снижается, а второй— уве-
личивается. Результаты численного моделиро-
вания, приведенные на рис. 5, корректно опи-
сывают только первую неразрушенную часть

струи, поскольку вторая часть исключена из
расчета из-за эрозии ячеек по критерию пре-
дельной интенсивности пластических деформа-
ций (ε

p
i = 2.8).

Дополнительно стоит отметить, что на

рис. 5,в у второго слева сформированного эле-
мента присутствует поперечная скорость дви-
жения (скорость дрейфа), которая приводит
к снижению глубины пробития струи [10–15].
Анализ предыдущих этапов растяжения струи

показал, что поперечная скорость возникает
из-за асимметричного разрушения струи в ее
шеечной области.

Распределения осевой и угловой скоро-
стей вращения цилиндра при начальной уг-
ловой скорости ωJ0 = 4 000 об/с приведены
на рис. 6. Обращает на себя внимание тот

факт, что после разрушения цилиндра на эле-
менты (рис. 6,а) скорость левого элемента па-
дает до нуля, а правого, наоборот, возраста-
ет до максимального значения 200 м/с, соот-
ветствующего начальному градиенту скорости

ε̇z0 = 104 c−1. Дополнительно к этому изна-
чально постоянное распределение угловой ско-
рости по длине цилиндра трансформируется в

переменное по длине. Угловая скорость право-
го элемента (рис. 6,б) на 6 % меньше, чем ле-
вого. В то же время расстояние между торца-
ми цилиндра сохраняется неизменным при раз-
личных значениях ωJ0, что свидетельствует об
отсутствии влияния вращения на градиент осе-
вой скорости кумулятивной струи.
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Рис. 6. Распределение осевой скорости (а) и
угловой скорости (б) по длине цилиндра через
155 мкс после начала растяжения

ЗАВИСИМОСТЬ ПРЕДЕЛЬНОГО УДЛИНЕНИЯ
СТРУИ ОТ УГЛОВОЙ СКОРОСТИ
КУМУЛЯТИВНОГО ЗАРЯДА

По результатам численного моделирова-
ния растягивающегося вращающегося цилин-
дра с гармоническим профилем боковой поверх-
ности определялась зависимость коэффициента

предельного удлинения струи nlim от парамет-
ров, которые определяют ее растяжение. Как
известно из [1–3, 20, 31], в случае без начально-
го вращения (ωJ0 = 0) величина nlim0 зависит

от плотности материала струи ρ, начального
градиента осевой скорости ε̇z0, предела текуче-
сти материала струи Y и начального радиуса

струи R0 в виде следующей аппроксимирую-
щей степенной функции:

nlim0 = A
(ρε̇2z0R2

0

Y

)B
, (2)

где A, B — постоянные коэффициенты. В ра-
боте [20] показано, что A = 5.38, B = 0.39.

Для указанных выше значений парамет-
ров гармонического возмущения боковой по-
верхности (a/R0 = 0.05, λ/R0 = 3) рассчитаны
зависимости коэффициента предельного удли-
нения без начального вращения nlim0 от пара-
метров, которые входят в формулу (2). Полу-
чено, что A = 5.3, B = 0.33. Результаты чис-
ленного моделирования и степенной аппрокси-
мации (2) с определенными в настоящей рабо-
те значениями коэффициентов A и B приведе-
ны на рис. 7. Наблюдается удовлетворительное
согласие численного моделирования и аппрок-

Рис. 7. Зависимости коэффициента предель-
ного удлинения от градиента осевой скорости

(а) и от предела текучести материала (б)

симации за исключением предельного коэффи-
циента удлинения при малых значениях преде-
ла текучести (рис. 7,б). Это расхождение объ-
ясняется тем, что в представленных расчетах
использовалась модель Джонсона — Кука, ко-
торая учитывает деформационное упрочнение,
а зависимость (2) получена для упругопласти-
ческой среды с постоянным пределом текуче-
сти.

Влияние начальной угловой скорости ци-
линдра ωJ0 и начального градиента угловой

скорости
dωJ0
dx

на предельное удлинение струи

иллюстрирует рис. 8.
Поскольку вклад разрушенной действием

центробежных сил части струи в численном

моделировании не учитывается из-за эрозии,
то предельное значение nlim стремится к ну-
лю при больших значениях как угловой скоро-

сти ωJ0, так и ее градиента
dωJ0
dx

.

Зависимость nlim для неразрушенной ча-
сти струи от ее угловой скорости по результа-
там численного моделирования подбиралась в
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Рис. 8. Зависимости коэффициента предель-
ного удлинения от начальной угловой скоро-
сти вращения (а) и от начального градиента
угловой скорости (б)

виде nlim(ωJ0) = nlim0/F (ωJ0), где nlim0 — ко-
эффициент предельного удлинения струи при

отсутствии ее вращения, F (ωJ0) — неубываю-
щая функция влияния угловой скорости на пре-
дельное удлинение.

В соответствии с (2) nlim0 =

5.3 (ρε̇2z0R
2
0/Y )1/3. Функция F (ωJ0) в работах

[3, 6] получена в виде F (ωJ0) =
√

1 +Aω2J0,

где A — параметр, зависящий от времени [6]
или от характеристик струи и заряда [3]. В на-
стоящей работе функция F (ωJ0) задавалась

зависимостью вида F (ωJ0) =

√
1 + (ω

eff
J0 /ω̄)4,

где ω
eff
J0 = ωJ0 + 2

∣∣∣(dωJ0
dx

)
0

∣∣∣RJ0 — эффектив-

ная угловая скорость вращения кумулятивной

струи, учитывающая изменение угловой ско-

рости по длине струи
dωJ0
dx

; ω̄ — характерная

угловая скорость, которая вычисляется по

формуле ω̄2 = 0.5[0.634Y/ρR2
0 + 0.75ε̇2z0]. Вид

зависимости для ω̄2 обусловлен тем обсто-
ятельством, что центробежное разрушение,
которое начинается при выполнении усло-
вия (1), должно происходить при угловой

скорости, соответствующей максимальной по

абсолютному значению производной
dnlim
dωJ0

.

В соответствии с представлением о том,
что вращающаяся струя состоит из двух ча-
стей: первой (сплошной), способной к даль-
нейшему удлинению, и второй (разрушенной),
длина которой более не изменяется, поиск за-
висимости nlim(ωJ0) струи целиком проводил-
ся в виде nlim(ωJ0) = nlim0/F (ωJ0)+nlim∞(1−
1/F (ωJ0)), где nlim∞ — коэффициент предель-
ного удлинения части струи, которая разруше-
на центробежными силами из-за ее вращения.
Тогда зависимость коэффициента предельного

удлинения от угловой скорости струи оконча-
тельно принимает вид

nlim(ωJ0) =
nlim0√

1 + (ω
eff
J0 /ω̄)4

+

+ nlim∞
(

1 − 1√
1 + (ω

eff
J0 /ω̄)4

)
. (3)

ВРАЩАЮЩИЙСЯ КУМУЛЯТИВНЫЙ
ЗАРЯД КАЛИБРА 105 ММ

Зависимость (3) совместно с инженерной
методикой В. М. Маринина [36] может быть
использована для оценки пробивного действия

вращающегося кумулятивного заряда. В рабо-
тах [3–5, 9] рассматривается функционирова-
ние вращающегося кумулятивного заряда ка-
либра 105 мм, снаряженного взрывчатым веще-
ством Composition B (ТГ-40/60), со стальным
корпусом толщиной 9.5 мм. Облицовка заряда
изготовлена из меди с углом при вершине 45◦,
ее толщина — 2.5 мм. Расстояние до преграды
составляло два калибра. Схема рассматривае-
мого заряда приведена на рис. 9.

В работе [5] исследовалось влияние вра-
щения заряда в диапазоне ωSC = 0 ÷ 60 об/с
на глубину пробития заряда, изображенного на
рис. 9. Экспериментальные данные приведены
на рис. 10. Отчетливо прослеживается эффект
критической угловой скорости, при превыше-
нии которой глубина пробития заряда резко

уменьшается из-за центробежного разрушения
кумулятивной струи. Кроме этого, в [5] экспе-
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Рис. 9. Схема исследуемого 105-миллиметро-
вого кумулятивного заряда

Рис. 10. Зависимость глубины проникания ку-
мулятивной струи от начальной угловой ско-
рости вращения кумулятивного заряда

риментально показано, что при больших зна-
чениях угловой скорости заряда глубина про-
бития монотонно уменьшается с увеличением

расстояния до преграды. Следовательно, вели-
чина nlim∞ в формуле (3) зависит от расстоя-
ния до преграды. В настоящей работе влияние
расстояния до преграды не исследовалось, по-
этому принималось, что nlim∞ = 2.0. Постро-
енная с использованием зависимости (3) рас-
четная кривая L(ωSC) (см. рис. 10) удовлетво-
рительно согласуется с экспериментальными

данными. Максимальное относительное откло-
нение не превышает 20 %.

ВЫВОДЫ

Таким образом, в настоящей работе по-
казано, что глубина проникания расширяю-

щихся трубчатых ударников в диапазоне от-
носительных радиальных скоростей 0.001 ÷
0.01 не зависит от скорости их радиального

расширения, но зависит от диаметра осево-
го канала. На основании этого сделан вывод,
что центробежно-разрушенная часть кумуля-
тивной струи ограниченно сохраняет свое про-
никающее действие.

Проведено численное моделирование рас-
тяжения вращающегося металлического ци-
линдра с гармоническими возмущениями бо-
ковой поверхности. Показано, что вращающу-
юся струю можно представить состоящей из

участков двух типов: первого, который сохра-
нил свою сплошность и способность к дальней-
шему увеличению длины, и второго, который
разрушился из-за действия центробежных сил,
прекратил процесс удлинения, но тем не менее
сохранил ограниченную способность к проби-
тию преграды.

На основании подхода о разделении струи

на два типа участков построена зависимость

коэффициента предельного удлинения от уг-
ловой скорости вращения цилиндра и других

параметров, определяющих процесс растяже-
ния. Данная зависимость учитывает извест-
ное критическое условие начала центробежно-
го разрушения градиентных цилиндров, а так-
же совпадает с полученными ранее формулами,
которые определяют коэффициент предельного

удлинения при отсутствии начального враще-
ния.

С использованием методики В. М. Мари-
нина и предложенной зависимости коэффици-
ента предельного удлинения от угловой ско-
рости построена кривая, отображающая влия-
ние начальной угловой скорости заряда на его

глубину пробития. Наблюдается удовлетвори-
тельное согласование с известными экспери-
ментальными данными.Максимальное относи-
тельное отклонение не превышает 20 %.
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