ОБРАЗОВАНИЕ ВИХРЕВОГО КОЛЬЦА
ПРИ ВСПЛЫВАНИИ БОЛЬШОГО ВОЗДУШНОГО ПУЗЫРЯ В ВОДЕ

И. Г. Жидов, Е. Е. Мешков,
В. В. Попов, В. Г. Рогачев, А. И. Толкиянов

(Москва)

Всплытие газовых пузырьков в жидкостях посвящено большое количество экспериментальных и теоретических работ. Обзор литературы по этому вопросу содержится, например, в [1, 2]. Наибольшее внимание уделялось изучению вспылвания пузырьков сравнительно малых размеров ($R_0 \ll 3$ см; $V_0 \ll 100$ см3). При $R_0 \approx 0,1$ см воздушный пузырь всплывает в воде, практически не деформируясь. При $0,1 \ll R_0 \ll 2-3$ см форма пузыря меняется в процессе подъема, однако силы поверхностного натяжения препятствуют его дроблению. В работе [3], посвященной исследованию вспылвания пузырей с $R_0 \approx 3$ см, основное внимание уделялось описанию формы верхней части поверхности и движению жидкости около нее. Вопрос о дроблении пузыря здесь не рассматривался. Исследование вспылвания пузырька с $R_0 \approx 3$ см ($V_0 = 100$ см3) показало [4], что при $t > V/R_0g$ он превращается во вспылляющая торOIDальную ямку. В работе [4] также исследовалась эволюция пузырей с $V_0 = 100-3000$ см3 при $t < 2V/R_0g$. Экспериментальные наблюдения позволили из-за влияния стенок наблюдать дальнейшую эволюцию крупных пузырей.

Наиболее крупные газовые пузыри сферической формы образуются при взрыве ВВ в жидкости [5]. Однако в этом случае имеются сложные взаимодействия размеров пузыря, качественно меняющие картину вспылвания [6].

В данной работе приведены результаты экспериментального исследования вспылвания пузыря большого воздушного пузыря ($R_0 = 15$ см, $V_0 = 1,4 \times 10^4$ см3), который в начальный момент имеет сферическую форму и покоятся.

Схема эксперимента изображена на фиг. 1, где 1 — кинокамера «Красногорск» 16 мм, $F = 10$ мм, 2 — кинокамера «Экран» 8 мм, $F = 12,5$ мм в боксе для подводных съемок, 3 — резиновый баллон, наполненный воздухом. Воздушный пузырь образуются при протяжении длиной иглой оболочки тонкого резинового баллона, надутого воздухом. Баллон помещается в тонкую капроновую сетку и укрепляется на расстоянии 30 см от дна бассейна глубиной 2 м. Резиновая оболочка быстро сжимается, освобождая воздушный пузырь (такой способ образования исходного пузыря аналогичен использованному в [4]). Кинокамера показывает, что время стабилизации оболочки меньше 0,02 с. За это время пузырь практически не сдвинется с места. Остатки оболочки и капровая сетка слабо влияют на подъем пузыря, поскольку их суммарная поверхность значительно меньше поверхности пузыря. Это влияние ведет к начальному возмущению границы раздела воздуха—вода. Когда пузырь поднимается на $H > H_0$, влияние сетки и оболочки становится тем более несущественным, поскольку последние остаются близко $(H_0 = \text{начальная высота центра пузыря})$.
Картина вспыливания регистрировалась с помощью кинокамер «Красногорск» и «Экран» с частотой съемки 48 кадр/с. Расстояние от стенок и дна бассейна выбиралось достаточно большим, чтобы исключить их влияние на вспыливание пузырька. При определении геометрических размеров учитывалось различие коэффициентов оптического предломления воды и воздуха.

Благодаря гравитационной неустойчивости [7] границы вода—воздух, на верхнем полушарии пузырь амплитуда возмущения поверхности нарастает. С течением времени рост возмущений поверхности приводит к отрыву от нее пузырьков диаметром ~ 5 см. По мере подъема происходит дробление этих пузырьков на более мелкие и картина их распадения приобретает хаотический, турбулентный характер. При \(t \approx 2\sqrt{R_0/g} \) образуется характерное тороидальное вихревое кольцо, состоящее из массы пузырьков диаметром ~ 1 см, вращающихся вокруг осевой линии тора. К моменту выхода тороидального кольца на поверхность воды диаметр пузырьков составляет ~ 0,1—0,5 см. Помимо визуальных наблюдений, прямым подтверждением того факта, что тороидальное кольцо состоит из отдельных пузырьков, является увеличение объема кольца в несколько раз по сравнению с исходным объемом воздушного пузыря. В момент \(t = 10\sqrt{R_0/g} \) объем тороида \(V = 2,4V_0 \), тогда как адабатическое увеличение газового объема из-за его вспышки не превышает 15 %.
Общую картину образования и развития вихревого кольца иллюстрирует фиг. 2 (вид сверху, съемка проводилась кинокамерой 2).
Зависимости высоты подъема $H(t)$, отсчитываемой от начального положения пузыря H_0, большого $R(t)$ и малого $r(t)$ радиусов тора представлены на фиг. 3, 4 в безразмерном виде. Масштаб измерения линейных размеров является R_0, времени — $t_0 = \sqrt{R_0/g}$. Погрешность в определении R и r составляет в среднем ~ 10% и определяется в основном неровностями края тороидального кольца.
На фиг. 3, 4 для сравнения с экспериментом приведены результаты расчета $H(t)$, $R(t)$, $r(t)$ по феноменологической модели [8] (сплошная линия).
В расчете, соответствующем случаю внешней среды постоянной плотности, взят набор безразмерных параметров, близкий к использованному в [8]: $t_0 = 0,12; \xi = 1,29 \cdot 10^{-3}; \gamma_0 = 0,2; R_0 - r_0 = 0,096; H'_0 = 0,0076; V'_0 = 0,128; \alpha = 0,055; \beta = 0,5; C_s = 0,4; \theta = \text{const}; \rho_1 = \text{const}$ (обозначения те же, что и в [8]). Удовлетворительное согласие расчетных и экспериментальных данных указывает на разумный выбор эмпирических констант в модели.
Тенденция к расхождению расчетной и экспериментальной зависимостей $H(t)$ заметно проявляется при $t/t_0 \gtrsim 12$, когда на подъем кольца влияет поверхность воды. Это влияние приводит к более медленному всплытию и более быстрому расширению вихревого кольца, нежели в случае неограниченной среды, для которого применима модель [8].
Устойчивость полученных результатов по отношению к вариации начальных условий проверялась экспериментально. В частности, варьировалось место повреждения резиновой оболочки (на верхнем полюсе и на экваторе), варьировались размер ячеек капроновой сетки (3 × 3 см, 6 × 6 см). Качественное и количественное совпадение результатов этих экспериментов при $t > t_0$ указывает на слабую зависимость картины всплытия вихревого кольца от начальных условий.

Поступила 11 V 1976
ЛИТЕРАТУРА

5. Христифоров Б. Д. Параметры ударной волны и газового пузыря при подводном взрыве зарядов разной плотности из тяжелых и легких свинца. — ПМТФ, 1964, № 4, с. 118.

УДК 532.516

ДВИЖЕНИЕ ЖИДКОЙ ПЛЕНКИ
НА ПОВЕРХНОСТИ ВРАЩАЮЩЕГОСЯ ЦИЛИНДРА
В ПОЛЕ ТЯЖЕСТИ

В. В. Пуханов

(Новосибирск)

1. Постановка задачи. Рассматривается плоское движение жидкой пленки на поверхности вращающегося цилиндра в поле тяжести (см. фигуру). Примем обозначения: \(a \) — радиус цилиндра; \(\omega \) — постоянная угловая скорость его вращения вокруг своей оси; \(g \) — ускорение силы тяжести; \(\nu \) — кинематическая вязкость жидкости; \(\rho \) — ее плотность; \(\sigma \) — коэффициент поверхностного натяжения. Из этих величин можно составить три независимых безразмерных комбинации: число Рейнольдса \(Re = a^2 \omega / \nu \), число Галилея \(\gamma = g / \rho a^2 \nu^2 \) и обратное число Вебера \(\beta = \sigma / \rho a^2 \nu^2 \).

Задача состоит в определении полярной системы \(r, \theta \) и всех \(\theta \) функции \(h(\theta, t) \) и решения \(u, v, p \) системы

\[
\begin{align*}
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial r} + v \frac{\partial u}{\partial \theta} - \frac{u^2}{r} = - r + Re^{-1} \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} - \frac{2}{r^2} \frac{\partial v}{\partial \theta} \right) - \gamma \sin \theta, \\
\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial r} + v \frac{\partial v}{\partial \theta} + \frac{2}{r} \frac{\partial u}{\partial \theta} = - \frac{1}{r} \frac{\partial p}{\partial r} + Re^{-1} \left(\frac{\partial^2 v}{\partial r^2} + \frac{1}{r} \frac{\partial v}{\partial r} + \frac{2}{r^2} \frac{\partial u}{\partial \theta} \right) - \gamma \cos \theta, \\
ru + v_\theta = 0,
\end{align*}
\]