2 — гидродинамическое приближение (v = 0); видно удовлетворительное согласие с результатами численного решения точной системы уравнений (точки), полученными в [8]. Гидродинамическое приближение, как и следовало ожидать, дает завышенное значение амплитуды давления. Это связано с тем, что несмотря на малость амплитуды упругой разгрузки по сравнению с амплитудой волны, она оказывает существенное влияние на профиль волны (рис. 2). На рис. 2 также хорошо видна динамика обработования и эволюция упругого предвестника и упругой разгрузки при расстояниях от границы ed = 0; 0,206; 0,488; 0,862; 1,33; 1,9; 2,55; 3,3 — линии 1—8.

Авторы выражают благодарность Э. И. Андраникну за поддержку исследований и обсуждение работы.

ЛИТЕРАТУРА

7. Годунов С. К., Роменский Е. И. Нестационарные уравнения неллинейной теории упругости в эйлеровых координатах. — ПМФ, 1972, № 5.
8. Дербас А. А., Нестеренко В. Ф. и др. Исследование процесса затухания ударных волн в металлах при нагружении контактным взрывом. — ФГБ, 1979, № 2.

Поступила 26/VII 1985 г.

УДК 532.46

КИНЕТИКА ИОНОВ И НЕЙТРАЛОВ В РАЗРЯДЕ НИЗКОГО ДАВЛЕНИЯ С ЗАМКНУТЫМ ХОЛОВСКИМ ТОКОМ

В. К. Калашиков, Ю. В. Саночкин

(Москва)

Рассмотрение кинетики тяжелых частиц в реальных ограничениях системе представляет значительный интерес для многих задач физики плазмы. Можно отметить ряд работ, посвященных кинетике нейтралов вблизи стенки термодинамического реактора (см., например, [1, 2]). Вопрос о кинетике тяжелых частиц возникает при изучении пограничного слоя между плотной холодной полностью ионизованной плазмой и горячим электродом [3]. Поскольку в указанных примерах функция распределения нейтралов около ограничивающей стенки пространственно неоднородна, встает вопрос о ее влиянии на функцию распределения иононов и, в частности, на перенос ионов в сообществе газа. Рассмотрение баланса и динамики тяжелых частиц важно также для разрыва низкого давления с замкнутым холловским током, используемого для генерации интенсивных потоков ускоренных ионов [4]. В этом случае нельзя ограничиться изучением только одного компонента тяжелых частиц. Кинетика нейтралов и ионов в ускорителях плазмы с замкнутым дрейфом исследовалась в [5, 6], причем учитывался только процесс ионизации (численно интегрировалась система кинетических уравнений тяжелых компонентов плазмы). Однако в указанных работах не учитывалась взаимодействие ионов с нейтралами, которое при определенных условиях может играть существенную роль [7].

Цель данной работы — изучение кинетики тяжелых частиц в разряде низкого давления с замкнутым дрейфом замкнутых электронов с учетом выгорания нейтрального компонента вследствие ионизации электронным ударом и столкновений между ионами и нейтралами.

При рассмотрении динамики тяжелых компонентов упругие столкновения с электронами можно не учитывать. Как будет показано ниже, в дан-
ном случае столкновений ион — ион также в первом приближении может пренебречь. Таким образом, если не интересоваться такими вопросами, как образование многозарядных ионов, возбужденных атомов и т. д., используемая кинетическая модель соответствует физическим условиям реализующихся на практике режимов разряда.

В экспериментах и технологии наиболее широко используются две разновидности разряда с замкнутым дрейфом. Различают разряд с анодным слоем, в котором реализуется режим с большим положительным анодным падением (ускоритель с анодным слоем (УАС)), и разряд с растянутым электрическим полем (ускоритель с замкнутым дрейфом и протяженной зоной ускорения (УЭЗДВ)). В первом случае падение приложенного напряжения q_0 оказывается локализованным на длине l порядка дармовского радиуса электрона с энергией $e q_0$ и температуры электронов в слое $T_e \sim e q_0$, во втором — падение потенциала происходит на длине, определяемой размером диэлектрической вставки между анодом и катодом l, в $T_e \sim 10$ эВ [4]. В условиях, интересных для практики, большая часть поступающего через анод газа выгорает, т. е. в обоих случаях длина разрядного промежутка l больше длины ионизации:

$$l > \frac{v_t}{\langle \sigma v_e \rangle n_g} \approx \frac{v_t}{\langle \sigma v_e \rangle n_g},$$

где v_t, n_g — характерные скорости нейтралов и ионов; n_g, n — масштабы концентраций нейтралов и заряженных частиц; $\langle \sigma v_e \rangle$ — характерное значение коэффициента ионизации. Скорость нейтралов $v_t \sim (T_e/M)^{1/2}$ определяется температурой анона, а скорость ионов $v_t \approx (e q_0/M)^{1/2}$ — разрядным напряжением ($v_t \gg v_e$). Для условий УАС величина l оказывается меньше, а для УЭЗДВ — порядка длины свободного пробега относительно столкновений ион — нейтрал

$$l \ll \frac{v_t}{\langle \sigma v_e \rangle n_g} \approx \frac{v_t}{\langle \sigma v_e \rangle n_g}$$

(в — сечение резонансной перезарядки). Режим движения нейтралов может быть свободнотелескductive, так как $l < (\sigma v_e n_g)^{-1}$ (в — газокинетическое сечение атома). В условиях разряда низкого давления объемной рекомбинации можно пренебречь. Как уже упоминалось, рассмотряемый разряд используется обычно в проточном устройстве ускорителя. Газ поступает через анод, а из них и не успевшие ионизоваться нейтралы свободно покидают разрядный промежуток. В силу (1) допустимо пренебречь второй и последующими перезарядками и, как будет видно из дальнейшего, ионизации быстрых нейтралов. В уравнении для ионов, пренебрегая v_0 по сравнению с v_t (приближение сильного поля), можно считать, что ионы, образовавшись в результате перезарядки из медленных ионов, имеют нулевую скорость. Функцию распределения нейтралов естественно представить в виде суммы $f = f_m + f_0$, где f_m и f_0 описываются группу медленных ($v \sim v_t$) и быстрых ($v \sim v_t$) частиц. Исходная система кинетических уравнений:

$$\frac{\partial}{\partial t} + v \frac{\partial}{\partial x} + \frac{eE}{M} \frac{\partial}{\partial v} = [v(x) + \psi(x)] n_m(x) \delta(v) - |v| \sigma(|v|) n_m(x) F, \quad \psi(0) = 0$$

(2)

$$v \frac{\partial f}{\partial x} = - [v(x) + \psi(x)] f_m, \quad v \frac{\partial f}{\partial v} = |v| \sigma(|v|) n_m(x) F.$$

Здесь F — функция распределения ионов; n_m — концентрация медленных атомов; $v = (\sigma v_e)n_e$ — функция ионизации электронами; $\psi = \int |v| \sigma(|v|) F(x, v) dv = \langle \sigma v_e \rangle n_t$. Границные условия задаются на аноде:

$$F(0, v) = F_0(v), \quad f_m(0, v) = f_m(0, v), \quad f_0(0, v) = 0.$$

464
Уравнение для ионов может быть решено методом характеристик. Решение задач (2), (3) записем в виде

\begin{equation}
F(x, v) = F_0 \left(\sqrt{v^2 + v_{nx}^2} \right) \exp \left\{ - \int_{0}^{x} n_m(y) \left(\sqrt{v^2 + v_{nx}^2} \right) dy \right\} + \\
+ \frac{M n_m(z)}{e E(z)} \left[\psi(z) \right] \left[\Theta(v) - \Theta(v - v_{nx}) \right] \times \\
\times \exp \left\{ - \int_{0}^{x} n_m(y) \sigma \left(\sqrt{v^2 + v_{ny}^2} \right) dy \right\},
\end{equation}

\begin{equation}
f_m(x, v) = f_{m0}(v) \exp \left\{ - \frac{1}{v} \int_{0}^{x} \left(\psi(x') + \psi(x') \right) dx' \right\},
\end{equation}

\begin{equation}
f_0(x, v) = \sigma \left(\left| v \right| \right) \int_{0}^{x} n_m(x') F(x', v) dx'.
\end{equation}

Аргумент функций \(z(x, v) \) в (4) находится из уравнения характеристики

\[Mv^2/2e + \phi(x) = \psi(z). \]

В (4) используются обозначения:

\[v_{xy} = v(x, y) = \sqrt{\frac{2e}{M} \left[\psi(x) - \psi(y) \right]}, \quad \Theta(v) = \begin{cases} 1, & v > 0, \\ 0, & v < 0, \end{cases} \]

где \(v_{xy} \) — скорость иона, образовавшегося в точке \(x \) с нулевой скоростью, которую он имеет в точке \(y \). Согласно (4), решение определено, если известны функции \(n_m \) и \(\psi \) и заданы внешние условия: распределение электрического поля, сорт газа и его функция ионизации. Уравнения для \(n_m(z) \) и \(\psi(x) \) следуют из (4). Положим для простоты \(f_{m0} = n_g b(v - v_g) \), тогда

\begin{equation}
n_m(x) = n_g \exp \left\{ - \frac{1}{v_g} \int_{0}^{x} \left(\psi(x') + \psi(x') \right) dx' \right\},
\end{equation}

\begin{equation}
\psi(x) = \psi_0 + \int_{0}^{x} \sigma(v_{xy}) n_m(y) \left[\psi(y) + \psi(y) \right] \exp \left\{ - \int_{y}^{x} n_m(z) \sigma(v_{yz}) dz \right\} dy,
\end{equation}

\begin{equation}
\psi_0(x) = \int_{x}^{0} \sigma \left(\left| v \right| \right) F_0 \left(\sqrt{v^2 + v_{nx}^2} \right) \exp \left\{ - \int_{0}^{x} n_m(y) \sigma \left(\sqrt{v^2 + v_{ny}^2} \right) dy \right\} dv.
\end{equation}

Таким образом, задача (2), (3) об интегрировании системы кинетических уравнений с произвольным электрическим полем и сечением перезарядки, зависящим от скорости, сводится к решению двух одномерных нелинейных интегральных уравнений типа Вольterra (5) и, возможно, в предельных случаях в явном виде. Границы в дальнейшем рассматриваемом случае, когда ионы образуются в объеме, т. е. \(F_0(v) = 0 \). Тогда все моменты функций распределения (4) могут быть представлены как серия однотипных интегралов. Например, выражения для концентраций частиц и соответствующих потоков имеют вид

\begin{equation}
n_1(x) = \int_{0}^{x} n_m(y) \left[\psi(y) + \psi(y) \right] \exp \left\{ - \int_{y}^{x} n_m(z) \sigma(v_{yz}) dz \right\} dy,
\end{equation}

\begin{equation}
n_0(x) = \int_{0}^{x} n_m(x') dx' \int_{0}^{x'} n_m(y) \left[\psi(y) + \psi(y) \right] \exp \left\{ - \int_{y}^{x'} n_m(z) \sigma(v_{yz}) dz \right\} dy dx'.
\end{equation}

185
\[f_1(x) = \int_0^\pi n_m(y) \left[v(y) + \Psi(y) \right] \exp \left\{ -\int_0^\pi n_m(z) \sigma(v_{yz}) \, dz \right\} \, dy, \]

\[q_0(x) = \int_0^\pi n_m(x') \, dx' \int_0^\pi n_m(y) \left[v(y) + \Psi(y) \right] \exp \left\{ -\int_0^\pi n_m(z) \sigma(v_{yz}) \, dz \right\} \, dy. \]

При проведении расчетов использовались безразмерные величины и масштабы:

\[x' = \frac{x}{l}, \quad y' = \frac{y}{v_0}, \quad n_i = \frac{n_i}{n_0}, \quad n'_{\sigma} = \frac{n'_{\sigma}}{n_0}, \quad \sigma' = \frac{\sigma}{\sigma_0}, \quad n = \frac{n}{n_0}; \quad v_0 = \langle \sigma v_z \rangle_0 n, \quad \psi_0 = v_0 \sigma_0 n g, \quad v_1 = \left(\frac{2eq_0}{M} \right)^{1/2}, \]

где \(q_0 = n_0 v_0 \) — расход; \(\sigma_0 \) — характерное сечение перезарядки (штрихи в дальнейшем опущены).

После безразмерирования систему уравнений (5) записали как

\[(5') \quad n_m(x) = \exp \left\{ -l \int_0^\pi \left[v(x') + \Pi \psi(x') \right] \, dx' \right\}, \]

\[\psi(x) = \int_0^\pi n_m(y) \left[v(y) + \Pi \psi(y) \right] \exp \left\{ -l \int_0^\pi n_m(z) \sigma(v_{yz}) \, dz \right\} \, dy, \]

\[I = \frac{l \langle \sigma v_z \rangle_0 n g}{v_1}, \quad \Pi = q_0 n g. \]

Система (5) содержит два безразмерных параметра \(I \) и \(\Pi \), представляющих собой отношение длины канала к длине ионизации и длине перезарядки соответственно \((I \sim n_g / \sqrt{\sigma_0})\). Пропорциональен расходу и убывает с ростом электронной температуры, \(\Pi \sim n_g \). Как и (5'), остальные моменты (6) зависят от параметров \(I \) и \(\Pi \), кроме концентрации быстрых нейтралов, которая еще пропорциональна параметру \(N = n/n_g = v_0/v_1 \ll 1 \).

Рассмотрим кинетику тяжелых частиц для условий разряда в УЗДП. В исходных данных изучался диапазон расходов рабочего газа (в основном ксенона) \(q_0 = 30-100 \text{ мА} / \text{см}^2 \) в токовых единицах. Представляет интерес исследовать более широкий диапазон изменения параметра \(q_0 \). Согласован концентрация нейтралов у анода \(n_g \approx 10^{13}-10^{14} \text{ см}^3 \), длину канала \(l = 4 \text{ см} \) и приложенного напряжения \(q_0 \approx 150 \text{ В} \), нетрудно получить диапазон парметров \(I = 3-30 \), \(\Pi = 0,3-3 \). Для упрощения сечение перезарядки при расчетах полагалось неизменным. Используемые в вычислениях экспериментальные профили функции ионизации и потенциала известны для \(q_0 = 50 \text{ мА} / \text{см}^2 \) из [8].

На рис. 1 показана зависимость функции распределения ионов по скоростям в сечениях \(x = 0,2; 0,6; 1 \) (линии \(I-\beta \)) для \(q_0 = 50 \text{ и } 250 \text{ мА} / \text{см}^2 \) (сплошные и штриховые кривые). Видно, что она сильно неоднородна по \(x \) и вблизи катода имеет два максимума по \(v \). Наличие у катода двух групп частиц, имеющих существенно различные средние скорости, объясняется специфическим, почти ступенчатым изменением потенциала по длине разрядного промежутка и соответствующим распределением функции ионизации [8]. Группа быстрых ионов, формирующих максимум при \(v \approx 1 \), генерируется в прианодной области.

Относительно небольшая величина этого максимума при \(q_0 = 50 \text{ мА} / \text{см}^2 \) определяется малой скоростью ионизации в анодной части разряда. Вторая, более многочисленная при том же расходе, вблизи катода имеет меньший максимум при \(v \approx 3 \), генерируется в прикатодной области.
стром ионов при одномерном рассмотрении, возрастает. Следует подчеркнуть, что вычисление из опытных данных функции ионизации ψ(x) в области плазмы, примыкающей к аноду, затруднительно и неоднозначно. В этой области ионорождение и электрическое поле малы, ионы в основном уходят на стенку и z-направление не является выраженным [8]. Поэтому второй максимум функции распределения ионов в реальных двухмерных системах, подобных [8], может быть слажен или вообще отсутствовать.

На рис. 2 показано изменение температуры ионов по длине разрядного промежутка. (Цифры на кривых на рис. 2, 3, 5, 6 — значения расхода.) Вблизи анода, в области малых электрических полей и концентраций заряженных частиц, температура ионов мала и медленно возрастает. В средней части разрядного промежутка, в области больших электрических полей и интенсивной ионизации, T_i быстро растет, достигая в прикатодной области при q_a = 50 мA/cm^2 ~ 25 эВ. При увеличении расхода газа в связи с уменьшением плотности плазмы основной ионизации разброс скоростей ионного потока уменьшается, а при увеличении расхода на порядок T_i у катода окарается ~ 7 эВ. Полученные результаты нагрева ионного компонента оправдывают сделанное предположение о пренебрежении кулоновскими столкновениями между ионами.

На рис. 3 даны распределения суммарной концентрации нейтралов (сплошная линия) и быстрых нейтралов (штриховая). Виден характер изменения концентрации с изменением расхода, поясняющий зоны функции распределения ионов. С увеличением расхода процессы ионизации и переизлучения у анода идут более интенсивно. При этом длина, на которой происходит основная часть расхода, уменьшается. В связи с быстрым уменьшением концентрации нейтралов подобным образом деформируются область эффективного обмена импульсом. Расчет показывает, что в прикатодной области при увеличении расхода на порядок концентрация n_n убывает более чем на два порядка. Одновременно рост расхода приводит к пропорциональному увеличению концентрации быстрых нейтралов. Интервалу изменения q_a = 50—500 мA/cm^2 соответствует увеличение n_n от ~ 0,005 до 0,08. Изменение соотношения между потоком быстрых и медленных нейтралов идет таким образом, что суммарная их концентрация на выходе из ускорителя вначале убывает (в рассматриваемых условиях до ~ 0,05), а затем начинает возрастать.

На рис. 4 в увеличенном масштабе показаны зависимости концентрации заряженных частиц (сплошная линия) и быстрых нейтралов (штриховая) от расхода на выходе из ускорителя. При q_a ~ 500 мA/cm^2 n_n(1) больше n_n(1) в ~ 4 раза. Таким образом, проведенный расчет показывает, что в низковольтной части разряда в диапазоне параметров, типичных для УЗДП, всегда имеются нейтроны, концентрация которых большее концентрации заряженных частиц, т. е. существуют условия для реализации классической подвижности электронов на нейтралах.

На рис. 5 представлены распределения потоков ионов (сплошные линии) и быстрых нейтралов (штриховые), которые наглядно демонстрируют
влияние столкновений ион-нейтрал. Видно, что при $q_0 = 500 \text{ mA/cm}^2 \sim 27\%$ расхода покидает разрядный промежуток в виде потока быстрых нейтралов, соответственно на столько же уменьшается поток ионов. Однако с ростом расхода увеличение доли быстрых нейтралов замедляется и для рассчитанного варианта не превышает $\sim 30\%$. Поскольку нейтрали в процессе перезарядки приобретают только часть той энергии, которую может иметь ион, покидающий разрядный промежуток, то, естественно, рассмотренное взаимодействие приводит к ограничению коэффициента переработки вещества и эффективности ускоряющей системы.

Так как в литературе отсутствуют опытные данные, относящиеся к большим расходам, при проведении расчетов профилей потенциала и функции ионизации полагались неизменными. Воспользовавшись результатами [9], можно указать, каким условиям соответствуют описанные выше режимы разряда. Согласно [9], распределения электрического поля, температуры и концентрации электронов определяются профилем магнитного поля и между параметрами плазмы при фиксированных l и q_0 имеются приближенные функциональные зависимости:

$$E \sim \sqrt{\varepsilon_i \langle \sigma_{ee} \rangle / \langle \sigma_{ne} \sigma_{ne} \rangle} H, \quad q_0 \sim H^2 \sqrt{\varepsilon_i / n_e},$$

$$\langle \sigma_{ee} \rangle / \langle \sigma_{ne} \sigma_{ne} \rangle \sim H^2 / n_e^2, \quad n \sim n_e / \sqrt{\varepsilon_i}.$$

Здесь ε_i — цена иона; σ_{ee} — транспортное сечение для электронов; H — напряженность магнитного поля. Согласно указанным соотношениям, если $\varepsilon_i = \text{const}$, при одновременном с расходом увеличении $H \sim \sqrt{q_0}$ электрическое поле E и функция ионизации v остаются неизменными, а T_e, определяемая величиной коэффициента ионизации, несколько уменьшается. Если учесть увеличение ε_i с уменьшением T_e, то для поддержания электрического поля на неизменном уровне требуется меньшее увеличение H. При этом остается слабая падающая зависимость v от q_0. Следовательно, взаимодействие между ионами и нейтралами должно оказывать еще большее влияние на результаты по сравнению с приведенными данными. В условиях разряда в УАС параметр Π существенно меньше, чем в УЗДП при близких условиях. Кроме того, скорость ионизации больше
и, значит, область эффективного ионообразования меньше толщины слоя, что дополнительно ограничивает возможность обмена импульсом и зарядом между ионами и атомами. Поэтому влияние указанного взаимодействия на параметры ускоренного потока в УАС оказывается несущественным [10].

На рис. 6 показана зависимость направленной скорости ионного потока от величины электрического поля. Несмотря на то что в принятой модели учитывается только однократная перезарядка, в приподнятой области, где \(n_1 < n_2 \), наблюдается известная зависимость \(u_i \sim E^{1/2} \) (штриховые линии). Двухзначность функции \(u(E) \) обусловлена тем, что электрическое поле немонотонно и имеет максимум вблизи максимума неоднородного магнитного поля [8]. Из приведенных результатов видно, что при малых расходах процессы ионизации и перезарядки могут приводить к падению скорости ионного потока на отдельных участках разрядного прохождения.

Литература

3. Жаринов А. В., Сапончик Ю. В. Динамика тяжелых частиц вблизи отрицательно заряженной стенки в плотной полностью ионизованной плазме. — Физика плазмы, 1983, т. 9, вып. 2.
10. Попов Ю. С., Золотаев Ю. М. Влияние перезарядки на характеристики электрического разряда в сильном поперечном магнитном поле. — ЖТФ, 1974, т. 41, № 6.

Поступила 14/XI 1985 г.