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ВЫЧИСЛИТЕЛЬНЫЙ АЛГОРИТМ ОБРАТНОГО ПРЕОБРАЗОВАНИЯ СУМУДУ  
НА ОСНОВЕ ИСКУССТВЕННОЙ НЕЙРОННОЙ СЕТИ В ЗАДАЧЕ НАЗЕМНОГО  

ЭЛЕКТРОМАГНИТНОГО ЗОНДИРОВАНИЯ МЕТОДОМ ПЕРЕХОДНЫХ ПРОЦЕССОВ
М.И. Эпов, К.Н. Даниловский, О.В. Нечаев, И.В. Михайлов
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Рассматриваются результаты разработки нейросетевого алгоритма обратного преобразования 
Сумуду применительно к задаче наземного нестационарного электромагнитного зондирования. Преоб-
разование Сумуду перспективно для решения прямых задач геоэлектрики в трехмерных моделях сред, 
поскольку, в отличие от использования преобразования Лапласа или Фурье, Сумуду-изображение дей-
ствительной функции также является действительной функцией. Таким образом, при последующих вы-
числениях не возникает необходимости прибегать к комплексным числам, что снижает вычислитель-
ные затраты и требования к оперативной памяти в случае успешного определения Сумуду-изображения 
функции. К недостаткам подхода можно отнести отсутствие явного способа вычисления обратного пре-
образования. Обращение можно осуществить путем решения соответствующего интегрального уравне-
ния Фредгольма первого рода, однако это является плохо обусловленной задачей и приводит к высоким 
требованиям к точности получения Сумуду-изображения. Применение современных технологий машин-
ного обучения может обеспечить получение метода, более устойчивого к шуму во входных данных. В ра-
боте описывается процесс создания обучающего набора данных и разработки нейросетевого алгоритма, 
оценивается точность и производительность разработанного решения. Предложенный способ позволит 
развивать новые подходы к моделированию физических процессов, анализу, обработке и интерпретации 
измеренных геофизических данных.

Электромагнитное зондирование, метод переходных процессов, алгоритм, геоэлектрическая мо-
дель, машинное обучение, искусственные нейронные сети
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The paper discusses the results of the development of a deep learning-based algorithm of the inverse 

Sumudu transform applied to the problem of on-ground non-stationary electromagnetic sounding. The Sumudu 
transform has potential for solving forward geoelectric problems in three-dimensional earth models because, 
unlike using the Laplace or Fourier transform, the Sumudu image of a real function is also a real function. Thus, 
there is no need to use complex numbers in subsequent calculations, which reduces computational costs and 
memory requirements in case of successful determination of the Sumudu image of the function. The disadvan-
tages of the approach include the absence of an explicit method for calculating the inverse transform. The inver-
sion can be done by solving the corresponding Fredholm integral equation of the first kind, but this is a poorly 
conditioned task leading to high requirements for the accuracy of the Sumudu image. The use of modern machine 
learning techniques can provide a method that is more robust to noise in the input data. This paper describes the 
process of creating a training dataset and developing a neural network algorithm; we evaluate the accuracy and 
performance of the obtained solution. The proposed method can contribute to the development of new approaches 
to physical processes modeling as well as to analysis, processing and interpretation of measured geophysical data.

Electromagnetic sounding, transient method, computational algorithm, geoelectric model, machine 
learning, artificial neural networks

введение

Электромагнитное зондирование земных недр методом переходных процессов (МПП) — метод, 
широко зарекомендовавший себя во всем мире для поисков и разведки полезных ископаемых, геологиче-
ского картирования, решения задач инженерной геологии, гидрогеологии, археогеофизики и многих дру-
гих [Кожевников, Антонов, 2022; Kozhevnikov et al., 2023]. Согласно последним публикациям, в настоя-
щее время активно развиваются такие направления МПП, как проведение измерений в условиях акваторий 
морского шельфа [Агеенков и др., 2022], картирование границ распространения многолетнемерзлых по-
род [Buddo et al., 2022], выделение газогидратных скоплений в криолитозоне [Мурзина и др., 2022].
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Моделирование физических полей и восстановление свойств среды по измеренным данным лежат 
в основе геофизической методологии. Постоянное увеличение сложности строения целевых геологиче-
ских объектов и повышающиеся требования к детальности исследований обусловливают необходи-
мость разработки новых подходов к моделированию физических процессов, анализу, обработке и интер
претации измеряемых данных. Трехмерное моделирование электромагнитных процессов, протекающих 
в геологической среде, требует значительных вычислительных ресурсов, поэтому разработка новых 
эффективных подходов к решению прямых и обратных задач электродинамики является актуальной за-
дачей геофизики.

Интегральное преобразование Сумуду было предложено в [Watugala, 1993] в качестве альтерна-
тивы преобразованию Лапласа. Рядом исследователей рассмотрено применение Сумуду-преобразова-
ния для моделирования электромагнитных процессов в областях с простой геометрией и физическими 
свойствами [Hussain, Belgacem, 2007; Belgacem, 2009; Belgacem et al., 2017].

В то же время преобразование Сумуду обладает значительным потенциалом для решения задач 
геоэлектрики в трехмерно-неоднородных сильноконтрастных средах. К важным свойствам этого преоб-
разования относится сохранение размерности функции: единицы измерения самой функции и ее изо-
бражения совпадают. Необходимо также отметить, что Сумуду-изображение действительной функции 
также является действительной функцией. Таким образом, при последующих вычислениях, в отличие 
от использования преобразования Лапласа или Фурье, не возникает необходимости прибегать к комп
лексным числам, что снижает вычислительные затраты и требования к оперативной памяти в случае 
нахождения Сумуду-изображения функции. Кроме того, вычисление электромагнитных сигналов на 
поздних временах после включения источника через Фурье-преобразование становится весьма затрат-
ным из-за необходимости интегрирования быстроосциллирующих и слабозатухающих подынтеграль-
ных выражений [Табаровский, Соколов, 1982]. Наиболее подробно свойства преобразования Сумуду 
рассматриваются в [Belgacem, Karaballi, 2006; Belgacem, 2006].

К недостаткам преобразования Сумуду следует отнести отсутствие явной формулы вычисления 
его обратного преобразования. Без использования свойств преобразования Сумуду и таблицы с изобра-
жениями для некоторых функций обращение можно осуществить путем решения соответствующего 
интегрального уравнения Фредгольма первого рода, что является плохо обусловленной задачей, и в 
контексте моделирования электромагнитных зондирований требует специального регуляризирующего 
оператора, учитывающего особенности измеряемого сигнала [Эпов и др., 2023]. В силу плохой обуслов-
ленности интегрального уравнения Фредгольма первого рода, вычисление обратного преобразования 
Сумуду при помощи данного подхода требует, чтобы соответствующее Сумуду-изображение обладало 
погрешностью, значительно меньшей, чем желаемая погрешность у результирующей функции. В слу-
чае, когда Сумуду-изображение является решением краевой задачи, полученным при помощи какого-
либо численного метода, обеспечение достаточно малой погрешности у решения может приводить к 
значительным вычислительных затратам. Таким образом, требуется разработка метода вычисления об-
ратного преобразования Сумуду, обладающего меньшей чувствительностью к уровню шума у Сумуду-
изображения. Это позволило бы смягчить требования к допустимой величине погрешности Сумуду-
изображения и, как следствие, привело бы к экономии вычислительных ресурсов.

В качестве эффективного инструмента для решения этой проблемы могут быть использованы со-
временные технологии машинного обучения — искусственные нейронные сети (ИНС), естественным 
свойством которых является способность к обобщению сложных нелинейных зависимостей и устойчи-
вость к зашумлению входных данных. Алгоритмы, основывающиеся на применении ИНС, в настоящее 
время активно применяются во многих областях, в том числе и при решении задач геоэлектрики [Ши-
мелевич и др., 2022; Даниловский и др., 2023].

Цель представленного исследования — предложить новый способ обратного преобразования Су-
муду на основе ИНС применительно к задаче нестационарных электромагнитных зондирований. Рас-
сматривается способ моделирования сигналов, процесс создания обучающего набора данных, разработ-
ка нейросетевого алгоритма, оценивается точность и быстродействие разработанного алгоритма.

МОДЕЛИРОВАНИЕ СИГНАЛОВ ЭЛЕКТРОМАГНИТНОГО ЗОНДИРОВАНИЯ 
ПРИ ПОМОЩИ ПРЕОБРАЗОВАНИЯ СУМУДУ

Рассмотрим процесс электромагнитного зондирования земных недр. В качестве источника будет 
выступать импульс тока в генераторной круглой петле радиуса r. Результатом зондирования является 
временная развертка электродвижущей силы (ЭДС), наведенная в круглой измерительной петле того же 
радиуса на удалении d от источника тока: d — расстояние между центрами генераторной (Г) и измери-
тельной (И) петель, причем d > 2r (рис. 1).

Математическая модель, описывающая процесс зондирования, выглядит следующим образом:
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где E(t) — напряженность электрического поля, J0 — плотность тока в генераторной петле, σ — удель-
ная электропроводность, ε0 — диэлектрическая и μ0 — магнитная проницаемости, ∂Ω — граница рас-
четной области Ω, удаленная от генераторной петли настолько, что напряженность поля на ней можно 
полагать равной нулю.

Используя преобразование Сумуду по времени, преобразуем математическую модель (1)—(4) к 
следующему виду:
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В зависимости от того, как удельная электропроводность среды изменяется в пространстве, мож-
но выбрать подходящий метод решения краевой задачи (5), (6) в частных производных, например, век-
торный метод конечных элементов [Эпов и др., 2007]. В результате получим Сумуду-изображение на-
пряженности электрического поля, интегрируя которое по контуру измерительной петли, можно найти 
Сумуду-изображение ЭДС, наведенной в этой петле. Для получения зависимости ЭДС от времени не-
обходимо провести обратное преобразование Сумуду. Поскольку полученное поле является решением 
задачи зондирования Земли, предположим, что ЭДС и ее Сумуду-изображение значимо отличаются от 
нуля только при 0 ≤ t ≤ b и 0 ≤ u ≤ b соответственно. Тогда для выполнения обратного преобразования 
Сумуду относительно изображения ЭДС, необходимо решить следующее интегральное уравнение:
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где E t� �  — ЭДС, наведенная в измерительной петле, E u� �  — ее Сумуду-изображение.
Использование преобразования Сумуду для моделирования сигналов электромагнитного зонди-

рования рассмотрим на следующем примере. Область моделирования разделена горизонтальной пло-
скостью на два однородных по физическим свойствам полупространства: верхнее полупространство — 
непроводящий воздух, нижнее полупространство — проводящая геологическая среда. На земной 
поверхности расположены круглые генераторная и измерительная петли. Пусть плотность тока в гене-
раторной петле во времени представляет из себя прямоугольный импульс достаточно большой продол-

жительности, чтобы к моменту выключения тока напряжен-
ность электрического поля стала близка к нулю. Выключение 
тока происходит в момент времени t = 0. Если при этом радиу-
сы петель достаточно малы по сравнению с расстоянием между 
их центрами, то генераторную петлю можно заменить верти-
кальным магнитным диполем, а ЭДС в измерительной катуш-
ке  — принять пропорциональной производной по времени от 
z-компоненты напряженности магнитного поля � � �

�

H t
t
z  в цент

ре измерительной петли.

Рис. 1. Схема зондирующей установки МПП, модель среды 
и импульс тока в генераторной петле.
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Для изображения Лапласа функции � � �
�

H t
t
z  в подобной постановке существует аналитическое 

выражение [Nabighian, 1988]:
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где a d� � �0 , σ — удельная электропроводность нижнего полупространства, d — расстояние между 
центрами петель, m — величина момента магнитного диполя. Воспользовавшись связью между преоб-

разованиями Лапласа и Сумуду, запишем Сумуду-изображение функции � � �
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z  следующим образом:
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Выполнив аналитическое обратное преобразование Лапласа для (7), получим следующее аналити-
ческое выражение для � � �

�

H t
t
z  [Nabighian, 1988]:

	
� � �
�

�
� � � � � �� � ���H t

t
m

u d
d d d d dz

2
9 2 9 6 4

0
5

1

2 2 2 4 4 2 2

� � �
� � � � �erf exp ���

�
�
�

�

�
�
�
, 	 (9)

где � � ��
0

4/ / t , erf(t) — функция ошибок:
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РАЗРАБОТКА НЕЙРОСЕТЕВОГО АЛГОРИТМА

В представленной работе для решения плохо обусловленной задачи обращения преобразования 
Сумуду используется метод подбора [Тихонов, Арсенин, 1979]. Суть метода заключается в выборе оп-
тимального элемента из заранее заданного компактного множества M потенциальных исходных функ-
ций. Для каждой функции из M выполняется прямое преобразование Сумуду, тем самым создается на-
бор Сумуду-изображений S[M]. Задача обращения решается путем выбора функции f(t) из M, на которой 
расстояние между ее Сумуду-образом и исходно заданным образом  g(u) минимально. В случае, если 
g(u) изначально не лежит в множестве S[M] (например, в силу искажения шумом), то полученная функ-
ция f(t) приближенно решает задачу и называется квазирешением [Тихонов, Арсенин, 1979]. Компакт-
ность множества M достигается за счет того, что его элементы — функции f(t) — соответствуют реше-
ниям задачи моделирования наземного электромагнитного зондирования, параметризованной замкну-
тым множеством конечномерного пространства (множество параметров рассматриваемой геофизической 
модели). Таким образом, разрабатываемый нейросетевой алгоритм нацелен на подбор элемента M, Су-
муду-образ которого находится на достаточно близком расстоянии от исходного Сумуду-образа. Чтобы 
алгоритм мог искать квазирешения исходной задачи, к Сумуду-образам, полученным в процессе моде-
лирования и входящим в S[M], добавляется шум определенного уровня, типичного для практических 
сценариев. В результате регуляризация исходной некорректной задачи обращения интегрального урав-
нения первого рода достигается за счет ограничения множества возможных решений.

Задача разработки нейросетевого алгоритма решается при помощи обучения «с учителем». В та
кой постановке на первом этапе необходимо получить набор данных, содержащий ряд обучающих при-
меров, каждый из которых представляет собой пару «функция f(t)»—«Сумуду-изображение g u S f t� � � � ��� ��

g u S f t� � � � ��� �� ». В рамках данного исследования такой набор данных формируется на базе результатов ма-
тематического моделирования для типичных геоэлектрических ситуаций и параметров зондирующих 
установок. Функции и их изображения представляются в виде векторов значений в заранее заданных 
точках ti = ui.
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Полученные пары данных нормируются умножением на значение 
1

max g u� �� � . Такое преобразо-

вание позволяет исключить характеристики измерительной установки: силу тока, радиусы петель, коли-
чество витков и др.

Для расширения обучающей выборки применяется аугментация данных — создание дополни-
тельных данных из уже имеющихся путем применения простых преобразований, не требующих значи-
тельных вычислительных ресурсов. Аугментация увеличивает как объем, так и разнообразие данных, 
что является эффективной стратегией борьбы с переобучением моделей машинного обучения, посколь-
ку помогает находить закономерности в данных [Krizhevsky et al., 2012]. Используя свойство линейно-
сти преобразования Сумуду, из двух пар данных (g1, f1), (g2, f2) можно получить третью за счет их ли-
нейной комбинации:

	 g a g b g3 1 2� � � � ,

	 f a f b f3 1 2� � � � ,

где a, b — константы. При этом полученные данные необходимо аналогичным способом отмасштаби-
ровать.

Для повышения устойчивости разрабатываемого алгоритма к входным данным g(u) добавляется 
нормально распределенный шум, среднеквадратичное отклонение которого пропорционально уровню 
самого сигнала и составляет 5 %, что соответствует ожидаемой точности измерения зондирующей уста-
новкой.

При анализе кривых зондирования в МПП более важной информацией является относительное 
изменение сигнала, а не его абсолютное значение. Поэтому в рамках исследования используется преоб-
разование обучающих данных, деформирующее пространства входных и выходных сигналов для более 
эффективного обучения ИНС. К результату расчета ИНС применяется соответствующая постобработка 
для восстановления необходимой размерности сигналов.

Для контроля за процессом обучения нейронной сети (предотвращения переобучения) получен-
ный набор данных (пар «Сумуду-изображение g(u)»—«функция f(t)») разделяется на две подвыборки: 
75 % непосредственно для обучения («обучающие данные») и 25 % для контроля («тестовые данные»).

Алгоритм обратного преобразования Сумуду реализуется на базе ИНС — классе математических 
моделей, являющихся универсальными аппроксиматорами [McCulloch, Pitts, 1943; Cybenko, 1989]. 
В общем виде ИНС представляет собой произвольную функцию от входных аргументов и внутренних 
параметров, которые подбираются в процессе обучения:

	 F g W f g W f g Wn, , , , , ,� � � � � � � �� �1

где g g gn� �� �1, ,  — входные аргументы, представленные значениями вектора Сумуду-образа; W — 
внутренние параметры ИНС, которые подбираются в процессе обучения; f fn1, ,…  — набор функций, 
аппроксимирующий вектор обратного преобразования Сумуду; n — количество элементов во входном 
и выходном векторах.

Таким образом, состоящая из комбинации линейных и нелинейных операций ИНС аппроксимиру-
ет обратное преобразование Сумуду, трансформируя Сумуду-образы функций в их исходное представ-
ление. При обучении результат применения нейронной сети на каждой итерации сравнивается с извест-
ными результатами расчетов, полученными 
математическим моделированием.

Архитектура разработанной ИНС (рис. 2) 
представляет собой многослойный перцеп-
трон (полносвязную нейронную сеть) и вклю-
чает входной слой, принимающий вектор из 
100 элементов (Сумуду-изображение функ-
ции), N скрытых слоев, каждый из которых со-

Рис. 2. Схематичное представление архи-
тектуры ИНС для аппроксимации обратно-
го преобразования Сумуду. 
N — число скрытых слоев ИНС, M — число нейронов в 
скрытых слоях ИНС.
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держит M нейронов, сопровождающихся 
применением нелинейной операции ReLu 
(англ. «rectified linear unit»), а также выход-
ной слой, на котором окончательно форми-
руется вектор, представляющий собой ре-
зультат обратного преобразования Сумуду 
(также состоящий из 100 элементов). Итого-
вая версия разработанной архитектуры ИНС 
содержит 4 скрытых слоя из 64 нейронов.

Весовые коэффициенты нейронов в 
слоях ИНС изначально задаются случайным образом и затем подбираются в процессе обучения. Опре-
деление оптимальных параметров ИНС в рассматриваемом случае является задачей обучения «с учите-
лем», которая решается с использованием алгоритма обратного распространения ошибки. Обучение 
осуществляется алгоритмом Adam, представляющим собой модификацию стохастического градиентно-
го спуска с адаптивной оценкой импульса первого и второго порядков [Kingma, Ba, 2015]. В качестве 
функции потерь (минимизируемой в процессе обучения) используется среднеквадратичное отклоне-
ние — MAE (англ. «mean absolute error»). Выбор такой функции потерь в сочетании со способом предо-
бработки данных из обучающего набора позволяет минимизировать относительное отклонение между 
результатом расчета ИНС и истинными кривыми зондирования. Для повышения эффективности обуче-
ния применяется последовательное уменьшение номинального шага градиентного спуска (скорости об-
учения) в зависимости от номера его итерации.

Полное время обучения финальной версии ИНС с архитектурой, выбранной по результатам экс-
периментов, составило 40 мин (количество эпох — 2000, рис. 3). Обучение алгоритма проводилось с 
использованием параллельных вычислений на базе графического ускорителя GPU RTX 2080.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

После получения оптимальных значений весовых коэффициентов обученная ИНС может исполь-
зоваться для выполнения обратного преобразования Сумуду. Тестирование разработанного алгоритма 
проводится на данных из отложенного набора, которые не были задействованы непосредственно при 
обучении ИНС (рис. 4). 

В окрестности точки перехода восстанавливаемого сигнала через ноль (на диаграммах — харак-
терный минимум в середине временной оси) в некоторых случаях наблюдается увеличение относитель-
ной погрешности по сравнению с другими временными интервалами (рис. 5). Это может быть связано с 
тем, что в этой окрестности абсолютное значение первой логарифмической производной данной функ-
ции (относительная скорость изменения функции) больше, чем на других временных интервалах.

В таблице 1 приводятся результаты оценки качества работы разработанного алгоритма на обучаю
щих и тестовых данных.

На рисунке 6 приведены сводные гистограммы поточечных невязок, полученные по данным из 
тестовой подвыборки, незадействованным непосредственно при обучении.

Как видно из приведенных данных, разработанный нейросетевой алгоритм позволяет выполнять 
обратное преобразование Сумуду с высокой точностью, достаточной для решения практических задач. 
Следует отметить, что при решении традиционными методами интегральных уравнений первого рода, 
в силу их плохой обусловленности, характерная погрешность в полученном решении оказывается зна-
чительно более высокой [Тихонов, Арсенин, 1979].

Рис. 3. Значения функции потерь, рассчи-
танные для обучающих (1) и тестовых (2) 
данных в зависимости от номера итера-
ции обучения ИНС.

Т а б л и ц а  1 . 	  Результаты оценки качества работы алгоритма

Функция потерь/метрика Результат 
(обучающие данные)

Результат 
(тестовые данные)

Средняя абсолютная невязка 1.6·10–3 1.8·10–3

Среднеквадратичная невязка 1.4·10–5 2.0·10–5
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Рис. 4. Примеры применения обученной ИНС (а, б). 
Слева — Сумуду-изображение функций (входные данные); справа — исходные функции в сравнении с результатами обратного 
преобразования Сумуду на основе ИНС. 1 — выходные данные g(u), 2 — выходные данные f(t), 3 — результат расчета ИНС.

Рис. 5. Примеры применения обученной ИНС (а, б). 
Слева — Сумуду-изображение функций (входные данные); справа — исходные функции в сравнении с результатами обратного 
преобразования Сумуду на основе ИНС. В окрестности точки перехода восстанавливаемого сигнала через ноль (минимум в сере-
дине временной оси) наблюдается увеличение относительной погрешности. Усл. обозн. см. на рис. 4.
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Оценка быстродействия разработанного алгоритма проводилась на базе центрального процессора 
CPU Intel i7-8700 (анализировалось время, затраченное на обратное преобразование одного Сумуду-
изображения). Усредненное по десяти тысячам запусков нейросетевого алгоритма время расчета в срав-
нении со временем расчета численным алгоритмом [Эпов и др., 2023] приведено в табл. 2. В результа-
тах не учитывается время загрузки ИНС и необходимых программных библиотек в оперативную память. 
Эти операции выполняются один раз при запуске программы и в дальнейшем не оказывают влияния на 
скорость расчета. Следует также отметить, что расчеты нейросетевым алгоритмом можно проводить в 
«пакетном» режиме, позволяя эффективно использовать параллельные вычисления на многопроцессор-
ных устройствах.

Таким образом, разработанный нейросетевой высокопроизводительный алгоритм характеризует-
ся качественно более высоким быстродействием при меньшей ресурсоемкости, что в совокупности с 
достигнутой точностью преобразования обеспечивает возможность его использования в рамках про-
граммного обеспечения для моделирования сигналов электромагнитных зондирований.

ЗАКЛЮЧЕНИЕ

Исследована возможность применения ИНС для создания алгоритма обратного преобразования 
Сумуду применительно к задаче наземного электромагнитного зондирования методом переходных про-
цессов. На базе результатов математического моделирования создана обучающая выборка, в которой к 
входным данным добавлен нормально распределенный шум, уровень которого пропорционален уровню 
самого сигнала и соответствует ожидаемой точности измерения зондирующей установкой. С примене-
нием параллельных вычислений на базе графического ускорителя обучена ИНС с архитектурой много-
слойного перцептрона.

Выполнено тестирование разработанного алгоритма с оценкой точности и быстродействия. Про-
демонстрирована высокая точность обращения Сумуду-образов функций в присутствии шума, что за-
труднительно при решении традиционными методами интегральных уравнений первого рода в силу их 
плохой обусловленности. Установлено, что разработанный алгоритм характеризуется качественно бо-
лее высоким быстродействием (в среднем более чем в 300 раз) в сравнении с численным решением при 
значительно меньшей ресурсоемкости.

Следует отметить, что предлагаемый в статье подход является гибким и может в дальнейшем 
быть адаптирован для решения более широкого круга геофизических задач. В рамках дальнейших ис-
следований планируется применение разработанного инструментария для инверсии данных, получен-
ных по результатам полевых геофизических измерений.

Рис. 6. Распределения поточечной линейной (а) и квадратичной (б) невязок исходных функций и 
результатов обратного преобразования Сумуду на ИНС (данные тестовой подвыборки).

Т а б л и ц а  2 .  	 Результаты оценки быстродействия разработанного алгоритма обратного  
	 преобразования Сумуду на основе ИНС в сравнении с численным решением

Численный алгоритм Нейросетевой алгоритм

9.3·100 с 2.9·10–2 с
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