УДК 662.749.31 DOI: 10.15372/KhUR2022413 EDN: REJVIU

Термолиз α₂-фракции каменноугольного пека: характеристика структуры кокса

С. А. СОЗИНОВ, А. Н. ПОПОВА, С. Ю. ЛЫРЩИКОВ, З. Р. ИСМАГИЛОВ

Федеральный исследовательский центр угля и углехимии СО РАН, Кемерово (Россия)

E-mail: sozinov71@mail.ru

Аннотация

Методами сканирующей электронной микроскопии, ЯМР-спектроскопии, рентгеновской дифрактометрии, термического анализа, хромато-масс-спектрометрии проведены исследования состава, структуры и морфологии частиц порошков α_2 -фракции, выделенной по методике избирательно растворимых групп из среднетем-пературного каменноугольного пека. Показано, что α_2 -фракция представляет собой преимущественно смесь конденсированных ароматических соединений, содержащих гетероатомы N, O и S, при этом сера содержится в основном в виде термоустойчивых тиофеновых соединений. Исследование частиц кокса, образующихся в процессе термолиза α_2 -фракции, показало, что в интервале температур от 300 до 600 °C из веществ α_2 -фракции формируется плотная структура с содержанием углерода 90–93 %. Дальнейшее нагревание до 1200 °C приводит к росту содержания углерода до 97 %, при этом у коксовых частиц формируется слоистая с выраженной анизотропией структура, приближающаяся по размерам в продольном и поперечном направлении кристаллических доменов (L_a и L_c соответственно) к игольчатым коксам "премиум класса".

Ключевые слова: а,-фракция, каменноугольный пек, термолиз, кокс

введение

С ростом мировой потребности в новых функциональных материалах на основе углерода стоит задача все более эффективной и глубокой переработки угля в продукцию с высокой добавленной стоимостью [1, 2]. Одним из ценных продуктов углепереработки является каменноугольный пек (КУП). Пек используется в качестве связующего при производстве анодов для алюминиевой промышленности, для синтеза углеродных волокон и нановолокон, адсорбентов и для получения широкого ряда разнообразных композиционных материалов, в связи с чем потребность в производстве пека ежегодно растет [3, 4]. Каменноугольный пек - система высококонденсированных карбо- и гетероциклических соединений, а также продуктов их уплотнения, различающихся степенью ароматичности, составом, свойствами, молекулярной

© Созинов С. А., Попова А. Н., Лырщиков С. Ю., Исмагилов З. Р., 2022

структурой [5]. Каждой из этих фракций приписывается определенное значение, влияющее на эксплуатационные свойства получаемых с использованием пека материалов. Так, с содержанием α-фракции связаны выход кокса и его физико-механические свойства. В работах [6, 7] показано, что при пиролизе сырья с разным содержанием полициклических ароматических углеводородов (ПАУ) формируется различная структура частиц коксового остатка, что указывает на различные механизмы коксования. Необходимо отметить, что технологии получения и переработки каменноугольного пека отягощаются образованием множества побочных компонентов, в том числе канцерогенов [6-9], поэтому остро стоит вопрос о разработке новых, технологичных и экологичных способов переработки в этой отрасли. В связи с этим необходимо получение новых знаний о фракционном составе пека и отдельных его компонентов и об

Рис. 1. Схема выделения α₂-фракции из каменноугольного пека (КУП).

их влиянии на процессы пиролиза и термолиза, а также на процесс коксования и структуру формирующегося кокса.

Настоящая работа посвящена исследованию физико-химических свойств α_2 -фракции каменноугольного пека с целью поиска прекурсоров с уникальными свойствами для разработки экологичных технологий получения функциональных углеродных материалов различного применения и одновременно расширению представления о роли индивидуальных компонентов пека в процессах структурирования углеродного каркаса при карбонизации.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

На рис. 1 приведена схема выделения α_2 -фракции из КУП с использованием методики избирательно растворимых групп. В работе использовали промышленный среднетемпературный КУП с температурой размягчения ≈ 87 °C, зольностью <0.1 % и выходом летучих веществ 54 %. Содержание элементов С, Н, N, S в пеке, а также в α_2 -фракции определяли с помощью автоматического элементного анализатора Flash 2000 (Thermo Scientific, Великобритания). Результаты элементного анализа приведены в табл. 1.

Из 1 кг гранулированного пека методом квартования отбирали 50 г. Для выделения α-фракции брали 30 г измельченного пека до частиц размером не более 0.25 мм согласно ГОСТ 10200-2017, по которому определяется массовая

ТАБЛИЦА 1

Химический состав α2-фракции каменноугольного пека

Образец*	Элементный состав, мас. %							
	С	Н	S	Ν	0			
Пек	91.93	4.12	0.54	1.72	1.69			
$\alpha_{2}^{}(T_{300}^{})$	89.90	3.60	0.30	2.10	4.10			
$\alpha_{2}^{}(T_{600}^{})$	92.80	2.60	0.20	1.80	2.60			
$\alpha_{2}^{}(T_{1200}^{})$	97.10	0.10	0.20	1.50	1.10			

* В скобках указана температура, до которой предварительно был нагрет образец в инертной атмосфере. доля веществ, не растворимых в толуоле и хинолине. Далее проводили растворение в толуоле из расчета 1 г пека на 40 мл толуола. Из не растворимого в толуоле остатка экстрагировали вещества α_2 -фракции растворением в хинолине. При добавлении к экстракту толуола выпадает осадок, который отфильтровывали и промывали смесью толуола и гексана, затем сушили в течение 1 ч при 240 °С. Выделенная α_2 -фракция представляет собой порошок черного цвета, частицы которого частично спекаются при температуре сушки. Выход α_2 -фракции составил около 45 %.

Морфологию частиц полученных порошков исследовали при помощи сканирующего электронного микроскопа JSM 6390 SEM (JEOL, Япония).

Данные по распределению атомов водорода и углерода по различным углеводородным структурам получены по спектрам ЯМР ¹³С на спектрометре Avance III 300 WB (Bruker, Германия, 300 МГц). Спектры ¹³С регистрировались с использованием стандартной методики кроссполяризации с вращением под магическим углом и развязкой от протонов (CPMAS) при частоте 75 МГц. Время контакта 1000 мкс, накопление 4096 сканов, задержка между сканами 2 с, частота вращения образца 5 кГц. Образцы помещались в 7 мм ротор из оксида циркония и закрывались Kel-F крышкой. Измерение спектров проводилось при комнатной температуре. Химические сдвиги указаны относительно тетраметилсилана. Количественные расчеты по спектрам ЯМР проводили по методикам, описанным в [10, 11].

Термические превращения исследовали с помощью синхронного термического анализатора 409 PG Luxx (Netzsch, Германия) при нагреве до 1200 °C в инертной атмосфере аргона, скорость нагрева 10 °C/мин. Для исследований использовали навеску массой 100 мг.

Анализ компонентного состава летучих продуктов, выделившихся при термолизе, проводили с использованием хроматографа Agilent 6890N (Agilent Technologies, США, капиллярная колонка HP-5ms) с масс-селективным детектором Agilent 5973. Идентификация разделенных компонентов проводилась по масс-спектрам с использованием библиотеки NIST11. Выходящие из термоанализатора газообразные продукты собирали, пропуская через трубку, заполненную стекловолокном, при этом трубку охлаждали до температуры 0 °C. Далее делали смыв осажденных на волокна летучих продуктов гексаном.

Анализ фазового состава и структуры исходных порошков α_2 -фракции и коксовых частиц, полученных в процессе термолиза, осуществляли согласно методике [12–14] с использованием дифрактометра D8 ADVANCE A25 (Bruker, Германия) при $\lambda = 0.15406$ нм (Cu K_{α} излучение).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Вещества α₂-фракции формируют сыпучий порошок черного цвета и состоят из отдельных частиц неправильной формы с размерами от долей до одного микрометра, и их агрегатов с размерами до 10 мкм (рис. 2). Вероятно, изменяя условия осаждения, можно варьировать форму и размер частиц, что было показано ранее авторами для β-фракции [15].

В табл. 1 представлены результаты химического анализа α_2 -фракции КУП и коксовых остатков после термолиза. Видно, что вещества фракции характеризуются высоким содержанием углерода. При этом относительное содержание углерода в α_2 -фракции выше, чем в β -фракции. Кроме того, α_2 -фракция отличается от β -фракции более высоким содержанием кислорода [7]. Как известно, фракции β и α_2 различаются своей активностью по отношению к кислороду, и кислород может присоединяться к веществам фракций в процессе выделения из пека [5]. Содержание азота практически одинаковое, а содержание серы в α_2 -фракции ниже, чем в β -фракции.

Спектры ЯМР ¹³С фракций КУП содержат широкие полосы, соответствующие резонансному поглощению атомов углерода в составе ароматических ($\delta = 0-70$ м. д.) и насыщенных алифатических ($\delta = 100-170$ м. д.) структур. Рассчитанная по соотношению интегральных интенсивностей, относящихся к углероду в ароматическом кольце и в насыщенных алифатических структурах, степень ароматичности ($f_{\rm ar}$) равна 0.98. Данные о распределении углерода по структурным фрагментам молекул представлены в табл. 2.

<u>5 мкм</u>

Рис. 2. Электронно-микроскопические изображения порошков α₂-фракций каменноугольного пека.

Сопоставление данных для α_2 -фракции (см. табл. 2) с данными, полученными ранее для β-фракции [15], показало, что вещества α,-фракции имеют более высокую степень ароматичности и большее содержание атомов углерода, связанных с кислородом, что согласуется с результатами элементного анализа. Данные о распределении углерода по функциональным группам, содержащим гетероатомы, имеют большую степень неопределенности, поэтому часто при построении гипотетических структурных единиц органической массы учет гетероатомов сводят к допущению, что они представлены в основном атомами кислорода [16]. Наибольшую сложность представляет исследование методом ЯМР распределения в макромолекулах функциональных групп, содержащих гетероатомы, особенно это касается азота.

Для уточнения строения структурных фрагментов, содержащих атомы N и S, был проведен термический анализ со сбором и исследованием состава летучих продуктов и коксового остатка. При нагреве α_2 -фракции в инертной атмосфере до 1200 °C снижается содержание азота (см. табл. 1), а соотношение содержания серы к

ТАБЛИЦА 2

Распределение атомов углерода по структурным фрагментам молекул по данным ЯМР $^{13}\mathrm{C}$

Фрагмент (согласно [10])	Доля, %	Диапазон б $^{13}\mathrm{C},$ м. д.
CH ₃	0.97	0-25
CH_2	0.97	25-51
OCH ₃	0	51-67
C-O-C	0	67-93
Ar-H	43.01	93-125
Ar-C	49.88	125-148
Ar-O	4.74	148-171
СООН	0.42	171-187
C=O	0	187-235

Рис. 3. ТГ- и ДТГ-кривые разложения $\alpha_2\text{-}фракции при термолизе.$

углероду практически не изменяется, из чего можно заключить, что сера находится в виде термоустойчивых тиофеновых соединений, а азот содержится в составе летучих продуктов терморазложения.

Следует отметить, что характер термического разложения α_2 -фракции отличается от ранее исследованной β -фракции [7]. Так, выявлено, что процесс потери массы α_2 -фракции происходит в широком температурном интервале последовательно в несколько стадий (рис. 3), при этом интенсивность образования продуктов, находящихся в газообразной форме в интервале температур от 200 до 600 °С, ниже в сравнении с β -фракцией [7], а выход кокса при температуре 600 °С для α_2 -фракции составил 89 %, что на 34 % выше, чем для β -фракции [7].

Дополнительную информацию о компонентном составе фракций и термических превращениях дают исследования состава летучих продуктов, образующихся при термолизе. Ранее нами было показано [7], что в составе летучих продуктов, образующихся при термическом разложении β -фракции КУП, в основном присутствуют ПАУ, при этом до 19 % состава ПАУ – это бенз(а)пирен. Хромато-масс-спектрометрический анализ гексанового экстракта летучих продуктов α_2 -фракции выявил, что в нем содержится на порядок меньшее количество ПАУ, чем для β -фракции, и в целом это может быть связано с более низким выходом летучих веществ при термолизе α_2 -фракции.

Исследование методом сканирующей электронной микроскопии частиц кокса, образующихся в процессе термолиза, показало, что до температуры 300 °С происходит формирование коксовых частиц с различной морфологией. Можно выделить две группы частиц - это частицы неправильной формы с губчатой структурой поверхности и сферические полые частицы с гладкой поверхностью. Формирование губчатой структуры, по-видимому, происходит при спекании отдельных частиц и их агломератов. Согласно данным термического анализа, происходящее при температуре 300 °C газовыделение приводит к формированию полых частиц сферической формы. Исследование стенок сферических частиц на сколах показало (рис. 4, *a*), что стенки имеют плотную практически однородную структуру, которая сохраняется до температуры 600 °C (см. рис. 4, б). Поверхность излома имеет характерную сетку линий сколов, которая образует шероховато-раковистую поверхность, формирующуюся при разрушении стекловидных (аморфных) тел. Коксовые частицы, образующиеся после нагрева до 600 °C, практически полностью представляют собой полые сферы. При этом структура стенок частиц такая же, как у частиц, отобранных при температуре 300 °C. При температуре 900 °C и выше наблюдается процесс расслоения изначально плотной изотропной структуры стенок сфер (см. рис. 4, в, г), т. е. происходит формирование слоистой структуры, характерной для игольчатых коксов [17]. Проведенные исследования показали, что частицы кокса, полученные из α₂-фракции, отличаются по морфологии от частиц кокса, полученных из β-фракции [7]. И в том, и другом случае частицы кокса формировались при одинаковых условиях (температура, давление, среда).

Исследование методом рентгеновской дифракции структуры частиц α_2 -фракции и полученных из нее коксовых остатков выявило, что при рассеянии рентгеновских лучей на этих частицах формируются два дифракционных максимума (рис. 5), связанных с диффузным рассеянием, характерным для аморфных веществ с некоторой степенью упорядоченности структуры, сформированной конденсированными ароматическими ядрами, объединенными в "графитоподобные" пакеты.

Слабый дифракционный пик (10) на дифрактограммах исследуемых образцов имел характерную асимметричную форму с более значительным размытием в сторону больших углов. Такая дифракционная картина обычно характеризует турбостратную структуру графита, т. е. структуру, в которой графеновые слои накладываются друг на друга случайным образом (со случайным вектором смещения одного слоя относительно другого). Дифракционные максимумы (002) также имели асимметричный про-

Рис. 4. Электронно-микроскопические снимки коксовых остатков α₂-фракции, полученных при различных температурах, °C: 300 (*a*), 600 (*b*), 900 (*b*), 1200 (*c*). Ув. 500.

филь, что является следствием немонофазности образцов. В связи с этим проводили разложение профиля пика (002) по методике [12, 13] на компоненты, соответствующие разным фазам, различающимся межплоскостным расстоянием. Фаза 1 (табл. 3) относится к турбостратным структурам (с большим межплоскостным расстоянием), а фаза 2 – к графитоподобным. Структурный анализ выявленных фаз показал, что они различаются толщиной пакетов, содержащих 4-5 слоя в первой фазе с большим межплоскостным расстоянием и 10-11 - во второй фазе с меньшим межплоскостным расстоянием. В диапазоне температур от 300 до 600 °C какихлибо существенных изменений фазового состава и структуры фаз коксового остатка не отмечено. При нагревании до температуры 1200 °С наблюдается уменьшение количества первой фазы с 80 до 60 % и увеличение второй от 20 до 40 % соответственно. При этом количество слоев в пакете не изменяется, однако при температуре 600 °С и выше на рентгенограммах фиксировали отражение от плоскости (110), которое позволило определить размеры кристаллитов по базисной плоскости (L_a). Из данных табл. 3 видно, что при повышении температуры нагрева до 1200 °C параметр L_a графитоподобной фазы возрастает, следовательно, увеличивается степень кристалличности этой фазы в коксовом остатке. При этом кристаллиты графитоподобной фазы в коксе, полученном при 1200 °С, имеют анизотропию формы, что проявляется в наблюдаемой слоистой структуре частиц кокса (см. рис. 4, в, г). По фазовому составу и структурным параметрам коксовый остаток, полученный после нагрева α₂-фракции до 1200 °C, приближается к образцам нефтяного игольчатого кокса "премиум класса" (см. табл. 3).

ЗАКЛЮЧЕНИЕ

Полученные по методике избирательно растворимых групп порошки α_2 -фракции представляют собой преимущественно смесь арома-

Параметр	раметр α ₂ -Фракция (300 °C) Фаза		α ₂ -Фракция (600 °C) Фаза		α ₂ -Фракция (1200 °С) Фаза		Игольчатый промышленный кокс "премиум" [17] Фаза	
	1	2	1	2	1	2	1	2
d ₀₀₂ , Å	3.60	3.43	3.53	3.44	3.62	3.46	3.46	3.43
L _c , Å	13	33	18	37	11	25	19	40
Доля фазы	0.8	0.2	0.8	0.2	0.6	0.4	0.6	0.4
Количество ламелей	5	11	6	12	4	8	6	13
в пакете, шт.								
L _a , Å	-	-	22	27	20	70	99	81

ТАБЛИЦА 3

Структурные характеристики коксовых частиц, полученных при различных температурах термолиза α₂-фракции

Примечание. d_{002} – межплоскостное расстояние; L_c – размер в поперечном направлении кристаллических доменов (пакет полиареновых слоев); L_a – размер в продольном направлении кристаллических доменов.

тических соединений, содержащих гетероатомы N, O и S, при этом сера содержится в основном в виде термоустойчивых тиофеновых соединений. Исследование частиц кокса, образующихся в процессе термолиза α_2 -фракции, показало, что в интервале температур от 300 до 600 °C из веществ α_2 -фракции формируется плотная структура с содержанием углерода 90–93 %. Дальнейшее нагревание до 1200 °C проводит к росту содержания углерода до 97 %, при этом у коксовых частиц формируется слоистая с выраженной анизотропией структура, приближающаяся по характеристикам графитоподобной фазы к игольчатым коксам "премиум класса".

Исследование проведено с использованием оборудования Центра коллективного пользования (КемЦКП) ФИЦ УУХ СО РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1 Яновский А. Б., Исмагилов З. Р., Конторович А. Э., Мочальников С. В. Углехимия – это будущее // Химия уст. разв. 2016. Т. 24, № 3. С. 277–283.
- 2 Андрейков Е. И. Сырье для углеродных материалов на базе продуктов коксохимии и термического растворения углей // Химия уст. разв. 2016. Т. 24, № 3. С. 317-323.
- 3 Сидоров О. Ф., Селезнев А. Н. Перспективы производства и совершенствования потребительских свойств каменноугольных электродных пеков // Рос. хим. журн. 2006. Т. 50, № 1. С. 16-24.
- 4 Кузнецов П. Н., Маракушина Е. Н., Бурюкин Ф. А., Исмагилов З. Р. Получение альтернативных пеков из углей // Химия уст. разв. 2016. Т. 24, № 3. С. 325-333.
- 5 Привалов В. Б., Степаненко М. А. Каменноугольный пек. М.: Металлургия, 1981. 208 с.
- 6 Xiong Zh., Syed-Hassan S. S. A., Hu X., Guo J., Qia J., Zhao X., Su Sh., Hu S., Wang Y., Xiang J. Pyrolysis of the aromatic-poor and aromatic-rich fractions of bio-oil: Characterization of coke structure and elucidation of coke for-

mation mechanism // Applied Energy. 2019. Vol. 239. P. 981–990.

- 7 Созинов С. А., Сотникова Л. В., Попова А. Н., Хицова Л. М. Исследование продуктов термической деструкции гексаннерастворимых асфальтенов каменноугольного пека // Кокс и химия. 2018. № 11. С. 29–35.
- 8 Сидоров О. Ф. Канцерогенная активность каменноугольных пеков в зависимости от технологии их получения // Кокс и химия. 2006. № 6. С. 36–39.
- 9 Маракушина Е. Н., Храменко С. А., Голоунин А. В. Выделение канцерогенных ПАУ при карбонизации каменноугольного пека // Кокс и химия. 2010. № 3. С. 32–36.
- 10 Калабин Г. А., Каницкая Л. В., Кушнарев Д. Ф. Количественная спектроскопия ЯМР природного органического сырья и продуктов его переработки. М.: Химия, 2000. 408 с.
- 11 Solum M. S., Pugmire R. J., Grant D. M. ¹³C Solid-state NMR of Argonne premium coals // Energy Fuels. 1989. No. 3. P. 187–193.
- 12 Попова А. Н. Оценка кристаллографических параметров структурированных углеродных материалов на примере графита методом рентгеновской дифракции // Кокс и химия. 2017. № 9. С. 32-36.
- 13 Хохлова Г. П., Барнаков Ч. Н., Попова А. Н. Рентгеноструктурный анализ углеродных материалов, полученных карбонизацией каменноугольного пека с графитовыми добавками // Кокс и химия. 2016. № 1. С. 32–39.
- 14 Barnakov C. N., Khokhlova G. P., Malysheva V. Y., Popova A. N., Ismagilov Z. R. X-ray diffraction analysis of the crystal structures of different graphites // Solid Fuel Chem. 2015. Vol. 49, No. 1. P. 25–29.
- 15 Созинов С. А., Сотникова Л. В., Попова А. Н., Исмагилов З. Р. Исследование асфальтенов каменноугольного пека в качестве прекурсоров для получения углеграфитовых наноструктурированных материалов // Химия уст. разв. 2019. Т. 27, № 6. С. 650-655.
- 16 Patrakov Yu. F., Fedyaeva O. N., Kamyanov V. F. A structural model of the organic matter of barzas liptobiolith coal // Fuel. 2005. Vol. 84, No. 2–3. P. 189–199.
- 17 Исмагилов З. Р., Созинов С. А., Попова А. Н., Запорин В. П. Комплексное исследование игольчатых коксов методами рентгеноструктурного анализа и сканирующей электронной микроскопии // Кокс и химия. 2019. № 4. С. 10–18.