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Вычисление вязкости материала как его кинетической характеристики сталкивается 
с определенными трудностями. Одна из них — разнообразие методов и их связь с ограничен-
ным числом объектов. 

При изучении деформации твердого тела предполагается, что данный процесс совершается 
обратимым образом. Однако реальная скорость деформации не является бесконечно малой, 
твердое тело не находится в равновесии в любой момент времени, имеют место релаксацион-
ные процессы и диссипация энергии. 

Один из путей диссипации — преодоление внутреннего трения, т. е. вязкости. Как показа-
но в [1], мерой уменьшения механической энергии твердого тела в единицу времени является 
диссипативная функция. Для деформируемого твердого тела диссипативная функция имеет вид 

 
2

21
3 2ik ik il ilR v v v = − + 

 
ζη δ , 

где η, ζ — коэффициенты вязкости; vik — производные тензора деформации по времени.  
Учет вязкости в уравнениях движения может быть осуществлен введением добавочных 

слагаемых в компоненты тензора напряжений ik ik′+σ σ . При этом 

 2 ( 1/ 3 )ik ik ik li li ikv v v′ = − ⋅ +σ η δ ζ δ .   
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Параметры вязкости в первую очередь определяют характеристики распространения упру-
гих волн в твердом теле и их затухания. Диссипация механической энергии в теле задается вы-
ражением  

 ( )2 2E T dV RdV
T

= − ∇ − 
κ ,              

где Т — температура; R — диссипативная функция (1). Первый член обусловлен теплопровод-
ностью, второй — вязкостью.  

Коэффициент поглощения звука находится как отношение средней диссипации энергии 
к удвоенному среднему потоку энергии в волне. В изотропных аморфных телах (ископаемый 
уголь и горные породы) коэффициенты поглощения поперечных и продольных волн зависят от 
частоты волны и коэффициентов вязкости [1]. Для твердых тел вязкостью называется способ-
ность материала поглощать в заметных количествах, не разрушаясь, механическую энергию 
в необратимой форме. Вязкость твердых тел обычно отождествляют с ударной вязкостью, про-
тивопоставляя ее хрупкости. Ударная вязкость интерпретируется как способность материала со-
противляться действию удара.   

Силы вязкости, возникающие при течении жидкости, отличаются от сил упругости, возни-
кающих в твердом теле в ответ на напряжения сдвига, сжатия или растяжения. В последнем 
случае напряжение пропорционально деформации сдвига, в жидкости оно пропорционально 
скорости деформации с течением времени.  

Однако многие жидкости (включая воду) при воздействии внезапного напряжения на ко-
роткое время вступают в реакцию, подобную упругим твердым частицам. И наоборот, многие 
твердые вещества (даже гранит) будут течь как жидкость, хотя и очень медленно, даже при 
сколь угодно малом напряжении. Такие материалы описываются как вязкоупругие, т. е. обла-
дающие как эластичностью (реакция на деформацию), так и вязкостью (реакция на скорость 
деформации). В геологии известны материалы, которые демонстрируют вязкую деформацию, 
на три порядка превышающую их упругую деформацию. 

Механизм вязкости связан с наличием дефектов в кристаллической структуре [2]. Прило-
женные напряжения вызывают направленное движение ионов и соответственно дефектов. Это 
приводит к возникновению направленной деформации, т.е. ползучести. 

Диффузионная ползучесть происходит благодаря диффузии атомов через внутренние обла-
сти кристаллических зерен, когда к ним приложены напряжения. Диффузионная ползучесть 
приводит к такой деформации, которую можно рассматривать как течение ньютоновской вяз-
кой жидкости (напряжение пропорционально скорости деформации): =σ ηε . 

Дислокации — это нарушения порядка расположения атомов в кристаллической решетке. 
Все дислокации могут быть представлены в виде суперпозиции двух основных видов, краевых 
и винтовых дислокаций. Приложенные напряжения вызывают направленное перемещение дис-
локаций, т. е. деформацию. Дислокационная ползучесть приводит к нелинейной (степенной) 
зависимости скорости деформации от напряжения. По оценкам вязкости горных пород, при 
напряжениях ниже 10–2 МПа преобладает диффузионная ползучесть, а при напряжениях выше 
10–1 МПа — дислокационная. 

Вязкость по границам зерен связана с деформированием межзеренного пространства по 
механизму, сходному с диффузионной ползучестью. Она также приводит к линейному соот-
ношению между напряжением и скоростью деформации. Однако деформации по границам зе-
рен ограничены предельной величиной * 5/ 10d −ε δ  ,  где δ — межзеренное расстояние; d — 
диаметр зерен.  
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При больших значениях происходит деформация зерен. Оценки показывают, что вязкость 
по границам зерен по крайней мере на 10 порядков ниже, чем вязкость, связанная с деформа-
цией зерен. 

При распространении упругих волн в горных породах (быстром процессе)  
 0 cos ( )u u k x vt= − ,  

где 6
0 10u −  м, деформация  

 9 *
0 10x

xx
u u k
x

−∂
∂

ε ε    .  

Полагаем, что деформация при распространении сейсмических волн обеспечена межзерен-
ной деформацией. В таком случае затухание сейсмических волн обусловлено вязкостью по 
границам зерен. В горных породах, где имеется открытая пористость и трещиноватость, запол-
ненная флюидом, эффективная вязкость и затухание волн во многом определяются вязкостью 
флюида, движущегося при деформации в поровом пространстве, и 4 710 10−η   Па⋅с. При бо-
лее медленных процессах (тектоническом движении) 4 *10−ε ε   и 19 2010 10−η   Па⋅с. 

Вязкость каменноугольного вещества — свойство, обратное его хрупкости, как физическая 
величина недостаточно исследована. Она зависит от генетических факторов: наиболее вязкие 
сапропелевые угли (богхеды, сапроколлиты), менее — гумусовые, среди которых зольные уг-
ли — самые вязкие. 

В материаловедении вязкость как кинетический параметр часто заменяют прочностными 
характеристиками. Так, вязкость разрушения — критический коэффициент интенсивности 
напряжений, при которой распространение трещины внезапно становится быстрым и неогра-
ниченным. Ударная вязкость — способность материала поглощать механическую энергию 
в процессе деформации и разрушения под действием ударной нагрузки. 

Основным отличием ударных нагрузок от испытаний на растяжение – сжатие или изгиб яв-
ляется высокая скорость выделения энергии. Таким образом, ударная вязкость характеризует 
способность материала к быстрому поглощению энергии. Обычно оценивается работа до раз-
рушения или разрыва испытываемого образца при ударной нагрузке, отнесенной к площади 
его сечения в месте приложения нагрузки. Однако эти параметры, представляющие несомнен-
ный интерес по причине их корреляций с прочностью угля [3], тем не менее не характеризуют 
базовые закономерности деформации угольного вещества. 

Особый вопрос — вязкость вещества в измельченном состоянии. Проблема заключается 
в том, насколько измеряемые характеристики гранулированного вещества соотносятся с харак-
теристиками монолита. В определенной мере ответ дают феноменологические теории прессо-
вания, но они по большей части сосредоточены на механических свойствах монолита и порош-
ка (предел прочности, модуль Юнга). Вопрос о взаимосвязи вязкости порошка и исходного ма-
териала до сих пор не решен. Несмотря на это, можно говорить о корреляции кинетических 
свойств измельченного и неизмельченного материала. При изменении свойств порошка разум-
но предположить, что и свойства монолита также изменились. 

В отличие от вязкости монолита, вязкость вещества в измельченном состоянии в значи-
тельной мере определяется поверхностным сцеплением и взаимодействием частиц. 

ОСНОВНЫЕ МОДЕЛИ 

Для характеристики вязкости измельченных (сыпучих) тел применяются методы определе-
ния эффективной вязкости жидкостей. В частности, имеется метод Оствальда – Пинкевича, ос-
нованный на измерении времени истечения известного объема жидкости через капилляр, одна-
ко он не может быть использован при повышенном давлении. Метод падающего шарика, кото-
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рый лишен этого недостатка и может быть использован в скважинных условиях, не пригоден 
для непрозрачных и высоковязких жидкостей. Ротационный метод определения вязкости пред-
полагает использование прецизионного оборудования в виде крутильных весов. Общий недо-
статок указанных методов — невозможность определить вязкость в условиях, близких к тем, 
в которых находятся природные и конструкционные материалы, испытывающие деформации 
и пребывающие под давлением.  

Тем не менее имеются способы определения вязкости измельченных материалов в экстре-
мальных условиях. Один из них основан на эффекте Бриджмена, который состоит в реализации 
низковязкой текучести твердой дисперсной среды при быстром динамическом нагружении об-
разца при высоком давлении в рамках гидродинамического режима [4]. В наковальнях Бридж-
мена давление создается в тонком слое вещества, заключенного между коническими поршня-
ми. В настоящее время эффект Бриджмена не только является модельным для изучения меха-
нической устойчивости диэлектриков в условиях высоких давлений, но и позволяет изучать 
пределы механической устойчивости минералов, находящихся в горных выработках с часто 
происходящими горными ударами [5]. 

Как отмечалось в [6], образец в наковальнях Бриджмена квазистатически нагружается 
до критического порога, а затем разрушается до мелкодисперсного состояния. Дисперсный ма-
териал становится подобным квазижидкости и испытывает сильное давление. В результате он 
весь или частично выбрасывается за пределы зоны сжатия. Скорость сближения поршней 
представима в виде  

 
3

2
Phv

S
=

η
,  

где P  — нагрузка на поршни-пластины; h  — расстояние между пластинами; S  — площадь 
пластин; η  — эффективная вязкость квазижидкости (совокупности частиц разрушенного мате-
риала). Соответственно эффективная вязкость может быть вычислена как 

 
3

2
Ph
vS

=η .   

Еще одной моделью, позволяющей вычислить вязкость измельченного материала по ре-
зультатам его сжатия, является реологическая модель Фарбмана. Модель описывает сжатие 
сыпучих твердых тел [7]. 

Фарбман предложил трехзвенную реологическую модель, в которой начальный период 
прессования моделируется телом Гука с защелкой на конце, второй этап — звеном, состоящим 
из соединенных параллельно тел Ньютона и Сен-Венана. Третий этап моделируется телом 
Кельвина. Суммарная деформация насыпки измельченного материала равна 1 2 3= + +ε ε ε ε . 
Ее зависимость от времени имеет вид  

 ( )
1 3

21 2
2 1 3

1 1 2

1 exp E t
t

E E

 
− − 

 = + − +
ησε σ σ σ

η
 .    (1) 

Здесь E1, E2 — модули упругости на первом и третьем этапе сжатия навески; η1, η2 — вязкость на 
этих же этапах; 1σ , 2σ , 3σ  — нагрузка в конце каждого из этапов; t2, t3 — длительность второго 
и третьего этапов сжатия. Из (1) можно найти 2η  — вязкость измельченного материала в сжатом 
состоянии. 

Модели Бриджмена и Фарбмана основаны на разных предпосылках, но обе дают возмож-
ность определить вязкость измельченного твердотельного материала, базируясь на результатах 
экспериментов по его сжатию. 



Г. П. Стариков, Т. Н. Мельник, С. В. Шатохин 

 57

ЭКСПЕРИМЕНТЫ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ 

Вязкость измельченного материала определяли по результатам экспериментов, положенных 
в основу экспресс-метода определения прочности горных пород [8, 9]. Суть метода состоит в отбо-
ре из измельченного материала фракций с зернами нескольких размеров, их сжатии 
и последующем анализе полученных кривых “напряжение – относительная деформация” (отноше-
ние изменения высоты порошковой навески к ее исходной высоте). Использование измельченного 
материала обусловлено тем, что в случае применения стандартных методик к оценке механических 
и кинетических характеристик угля и горных пород получение образцов регламентированной 
формы, размера и качества обработки поверхности может оказаться затруднительным [10, 11]. 

Вначале проводили отбор образцов нарушенной породы, из которых отсеивались фракции 
с частицами разных размеров. Порошки различных фракций поочередно (т. е. для каждого экс-
перимента отдельно) насыпали в цилиндрический контейнер высокого давления, который 
устанавливали на пресс с вертикальным поршнем и регистрирующей аппаратурой. Далее 
навеску в контейнере нагружали до максимального давления 250 – 400 МПа (записывались 
давление и смещение поршня, рис. 1). Поскольку коэффициент внешнего трения хрупких ма-
териалов значительно меньше коэффициента внутреннего трения (для угля по стали — вдвое), 
дополнительная смазка стенок контейнера не применялась. 

 
Рис. 1. Схема установки одноосного сжатия: 1 — шток пресса; 2 — шток камеры; 3 — камера; 
4 — установочная плита; 5 — индикатор часового типа; 6 — образец  

Образцы угля отбирали на шахте им. А. А. Скочинского. Породные образцы измельчались 
до размера зерен 1 – 5 мм. Отбирались фракции с различным диаметром гранул 1.0 и 2.0 – 3.0 мм 
с навеской по 25 г. Диаметр гранул второго материала (кварца) составлял 0.1, 1.0 и 2.0 – 3.0 мм. 

Результаты измерений позволили построить графики “нагрузка – относительная деформа-
ция” для каждой из фракций и разность “деформация – нагрузка” (одинаковая для всех фрак-
ций) (рис. 2 и 3). 

Если рассмотреть сжатие навесок с гранулами разного размера, то, согласно модели Фарб-
мана, разность деформации порошков из гранул разного размера при одном и том же нагруже-
нии будет записываться как 

 
1 3

3 1 32 1

1 2 2 2

( ) exp exp
E t

E t s
s E

  Δ  +    − Δ    Δ = ⋅ + − − − 
   

    

σ
σσ σ σε

η η η
. (2) 
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Рис. 2. Экспериментальные кривые “нагрузка – относительная деформация” для горных пород 
различной литологии: уголь (а), кварц (б). Размер гранул указан на кривых 

 
Рис. 3. Деформация навесок гранул разного размера при одной и той же нагрузке для угля (а) 
и кварца (б) 

Разница во времени наступления второго периода (рис. 4), вызванная разным временем вы-
теснения свободного объема при разном размере гранул, равна Δ /σ S  при постоянной скоро-
сти нагружения s.  

На границе второго и третьего этапа 3 2 /t σ S= , поэтому (2) запишем в виде 
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Рис. 4. Стадии сжатия кварцевого порошка с диаметром гранул 1 мм 

Зависимость Δε(σ2) имеет точку экстремума при  
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2 2 2 1

1 1 3 1 2

ln 1 exp .s E E
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−
  Δ Δ= − −  

  

η σ η σσ
η σ η

  (4) 

В этой точке поведение кривой (3) изменяется из-за смены процесса, происходящего при 
сжатии (уплотнение сменяется разрушением гранул). Считаем это значение окончанием перво-
го этапа сжатия гранулированного материала.  

Точное вычисление предела прочности по диаграмме “нагружение – деформация” требует 
вычисления модулей упругости и вязкости на каждом из этапов сжатия методом секущих. 
Оценка модуля упругости на этапе сжатия выполняется по формуле E = dσ / dε, а вязкости 
η = σ / έ, где έ — производная от деформации по времени, но при условии постоянной скорости 
нагружения s получаем έ = dε / dt = sdε / dσ. В этом случае вязкость на разных стадиях сжатия 
вычисляется как / /s d d= ⋅η σ σ ε . 

Наибольший интерес представляет величина η2, поскольку она характеризует состояние 
гранул под нагрузкой вблизи предела прочности. Этот диапазон связан с возможным прогно-
зированием поведения материала под нагрузкой в реальных условиях. Из (2) может быть полу-
чена зависимость вязкости от разности деформаций гранул разных размеров: 

 
2 1

3

2
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E

Δ−
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Применив к интерпретации результатов эксперимента модель Бриджмена, получим  

 
2 3

0
22 (1 )

h t
R

=
−

σ εη
π ε

,   (6) 

где σ  — нагрузка; h0 — исходная толщина навески; ε  — относительная деформация навески; 
R — радиус поршня и контейнера; t — длительность сжатия. 

Результаты расчета вязкости по обеим моделям в целом совпадают. Для угля с выходом лету-
чих 35 % вязкость составляет (1.3 – 1.5) ∙ 1013 Па∙с. Вязкость измельченного кварца, рассчитанная 
на основе модели Фарбмана, составила 1.4∙1015 Па∙с. В модели Бриджмена это значение оказалась 
равным 1∙1015 Па∙с. Расчеты вязкости других горных пород по модели Бриджмена, основанные 
на данных [9], позволили оценить вязкость диспергированного песчаника и песчаного сланца как 
9∙1013 Па∙с, а глинистого сланца как 1.9∙1013 Па∙с. Видно, что увеличенное содержания кварца 
в диспергированной горной породе соответствует повышенной вязкости измельченного вещества. 
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Поэтому представляется возможным на основании расчетов вязкости делать выводы об уровне со-
держания кварца в горных породах. Корреляция обусловлена тем, что прочность и поверхностное 
сцепление частиц кварца выше, чем соответствующие параметры вмещающей породы. Характер-
ные значения прочности для кварца превышают таковые для сланца или песчаника почти на поря-
док. При наличии набора экспериментальных данных о процентном содержании кварца в породе 
и вязкости ее измельченных фракций несложная интерполяция дает возможность судить о про-
центном содержании кварца в исследуемом диспергированном материале по его вязкости. 

ВЫВОДЫ 

Определение вязкости измельченного материала может служить средством косвенной оценки 
его механических и прочностных характеристик. Корреляция между свойствами монолитного об-
разца и свойствами порошка, образовавшегося в результате его измельчения, позволяет делать выво-
ды об эволюции прочностных характеристик монолита. При этом исследование измельченного ма-
териала является более быстрым способом анализа, не требующим тщательной подготовки образца.  

Применение моделей Бриджмена и Фарбмана к расчетам на основе данных о сжатии порошко-
вых навесок (диаграмм “напряжение – деформация”) дает сходные результаты, поэтому обе модели 
могут использоваться для оценки состояния материала, подвергшегося измельчению. Расчеты вяз-
кости диспергированного материала дают качественные (а при наличии наработанных экспери-
ментальных данных — и количественные) выводы о составе кварцесодержащих горных пород. 
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