2011. Том 52, № 3

Май – июнь

C. 547 – 553

УДК 541.49:548.736:542.952.6

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА СОЛЬВАТА [Cd₂L₂Cl₄]·CH₂Cl₂ (L = ПИРАЗОЛИЛХИНОЛИН — ПРОИЗВОДНОЕ МОНОТЕРПЕНОИДА (+)-З-КАРЕНА) И ФОТОЛЮМИНЕСЦЕНЦИЯ ХИРАЛЬНОГО КОМПЛЕКСА CdLCl₂

© 2011 С.В. Ларионов¹*, З.А. Савельева¹, <u>Р.Ф. Клевцова</u>¹, Л.А. Глинская¹, Е.М. Усков¹, М.И. Рахманова¹, С.А. Попов², А.В. Ткачев²

¹Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

²Учреждение Российской академии наук Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН

Статья поступила 22 июня 2010 г.

По данным PCA (150 K, автодифрактометр Bruker X8 Apex CCD, MoK_a -излучение) определена кристаллическая структура соединения $[Cd_2L_2Cl_4] \cdot CH_2Cl_2$ (L = пиразолилхинолин — производное монотерпеноида (+)-3-карена). Кристаллы моноклинные, разb = 16,8491(4),a = 10,7005(4),c = 11,9658(4) Å, элементарной ячейки: меры $\beta = 93,308(1)^\circ$, пр. гр. P2₁. Структура построена из дискретных ацентричных молекул двухъядерного комплекса $[Cd_{2}L_{2}Cl_{4}]$ и некоординированных молекул CH₂Cl₂. Ионы Cd²⁺ координируют атомы N бидентатных хелатообразующих лигандов L, что приводит к замыканию двух пятичленных хелатных циклов CdN₃C. В координационную сферу атомов Cd входят также три атома Cl (два мостиковых и концевой), в результате образуются два координационных узла CdCl₃N₂, а также металлоцикл Cd₂Cl₂. Полиэдры Cl₃N₂ имеют форму искаженных тетрагональных пирамид. Молекулы CH₂Cl₂, расположенные в каналах, образованных комплексами, соединены с ними слабыми Н-связями. В спектре возбуждения L и соединения CdLCl₂ имеются полосы с λ_{max} 352 и 360 нм соответственно. В спектре фотолюминесценции L при 300 K и $\lambda_{\text{возб}}$ 350 нм наблюдается достаточно интенсивная широкая расщепленная полоса с λ_{max} 372 и 386 нм. В спектре фотолюминесценции соединения CdLCl2 имеется широкая полоса с λ_{max} 418 нм. Интенсивность фотолюминесценции этого соединения значительно меньше, чем для L.

Ключевые слова: комплекс, сольват, кадмий(II), структура, хиральность, фотолюминесценция.

В связи с поиском новых функциональных материалов, обладающих люминесцентными свойствами, возрос интерес к синтезу и исследованию строения координационных соединений, проявляющих люминесценцию [1—5]. В частности, изучаются координационные соединения цинка(II) и кадмия(II) [6,7]. Ранее методом РСА мы исследовали структуру одноядерного комплекса ZnCl₂ с ахиральным 2-(3,5-диметилпиразол-1-ил)-4-метилхинолином, обладающего яркой фотолюминесценцией (ФЛМ) в синей области спектра [8]. Позднее получен и охарактеризован методом PCA комплекс ZnCl₂ с хиральным пиразолилхинолином (L) — (3bS,4aR)-3,4,4-триметил-1-(4-метилхинолин-2-ил)-3b,4,4a,5-тетрагидро-1H-циклопропа[3,4]циклопента[1,2-с]пиразолом — производным природного монотерпеноида (+)-3-карена [9]. Этот правовращающий одноядерный комплекс проявляет яркую белую ФЛМ, т.е. является хиральным люминофором.

^{*} E-mail: lar@niic.nsc.ru

Данные о синтезе и строении люминесцирующих комплексов хиральных производных природных монотерпеноидов с ионами Cd²⁺, по-видимому, отсутствуют. Цель данной работы синтез, изучение строения и люминесцентных свойств соединения хлорида кадмия(II) с L.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реагент L получали по методике [10], $[\alpha]_{589}^{21}$ + 323 (с 2,15, CHCl₃). Для синтеза использовали CdCl₂·2,5H₂O квалификации ЧДА, EtOH — ректификат, CH₂Cl₂ квалификации XЧ. Комплекс [ZnLCl₂] получали по методике [9].

Синтез CdLCl₂ (I). К смеси 0,046 г (0,2 ммоля) CdCl₂·2,5H₂O и 4 мл EtOH добавляли раствор 0,060 г (0,2 ммоля) L в 6 мл CH₂Cl₂. При перемешивании реакционной смеси CdCl₂·2,5H₂O растворяется. Полученный раствор фильтровали через бумажный фильтр, затем потоком воздуха испаряли растворители до минимального объема. Выпавший белый осадок отфильтровывали с отсасыванием, промывали EtOH и сушили на воздухе. Выход 0,084 г (87 %). $[\alpha]_{589}^{21}$ + 88,6 (с 1, ДМФА).

Найдено, %: С 48,9, Н 4,2, N 8,6, Cl 13,7. Для С₂₀Н₂₁N₃CdCl₂ вычислено, %: С 49,3, Н 4,3, N 8,6, Cl 14,6.

Для получения монокристаллов к смеси 0,023 г (0,1 ммоля) CdCl₂·2,5H₂O и 4 мл EtOH добавляли раствор 0,030 г (0,1 ммоля) L в 8 мл CH₂Cl₂, затем смесь перемешивали. Полученный раствор фильтровали через бумажный фильтр и выдерживали в стакане, прикрытом часовым стеклом, на воздухе при комнатной температуре. Через 3 суток образовались кристаллы соединения [Cd₂L₂Cl₄]·CH₂Cl₂ (**II**), пригодные для PCA.

ИК спектр II (приведены наиболее интенсивные полосы в области 1700—500 см⁻¹): 1597, 1516, 1481, 1438, 1367, 1290, 1094, 846, 762, 740, 689, 604 см⁻¹.

Микроанализы выполняли на анализаторах Hewlett Packard 185 и Carlo Erba 1106. ИК спектры регистрировали в области 4000—500 см⁻¹ на ИК—Фурье спектрометре Scimitar FTS 2000. Образцы II готовили в КВг. Величину угла оптического вращения измеряли на поляриметре Polamat A. Спектры возбуждения и ФЛМ соединений L, I и [ZnLCl₂] в твердой фазе получены на спектрофлуориметре Varian Eclipse при 300 К в одинаковых условиях для всех образцов. Исследование образца I методом РФА проводили на автоматизированном порошковом дифрактометре ДРОН-3М (R = 192 мм, Си K_{α} -излучение, Ni-фильтр) в области углов 20 от 3 до 60°.

Для РСА отобрали бесцветный прозрачный монокристалл слюдоподобной формы. Параметры элементарной ячейки и интенсивности рефлексов измеряли при низкой температуре (150 K) на автодифрактометре Bruker X8 Арех ССD, оснащенном двухкоординатным детектором, по стандартной методике (Мо K_{α} -излучение, $\lambda = 0,71073$ Å, графитовый монохроматор). Кристаллографические характеристики, детали рентгеновского дифракционного эксперимента и уточнения структуры соединения **II** приведены в табл. 1. Пространственная группа кристалла соединения **II** выбрана на основе анализа погасаний в массиве интенсивностей, подкрепленного проведенными расчетами. Структура решена прямым методом и уточнена полноматричным МНК по F^2 в анизотропном для неводородных атомов приближении по комплексу программ SHELXL-97 [11]. Позиции атомов H рассчитаны геометрически и включены в уточнение

549

Таблица 1

Кристаллографические характеристики, детали эксперимента и уточнения структуры сольвата $[Cd_2L_2Cl_4]\cdot CH_2Cl_2$

Соединение	Π
Эмпирическая формула	$C_{41}H_{44}Cd_2Cl_6N_6$
Молекулярная масса	1058,32
Сингония	Моноклинная
Пространственная группа	$P2_1$
<i>а, b, c,</i> Å; β, град.	10,7005(4), 16,8491(4), 11,9658(4); 93,308(1)
$V, Å^3$	2153,76(12)
Z; $\rho_{\rm BHY}$, $\Gamma/c m^3$	2; 1,632
μ , MM^{-1}	1,397
Размеры кристалла, мм	0,29×0,21×0,12
Область сканирования, θ, град.	2,09—26,00
Число измер. / независ. отражений; R(int)	14658 / 7217; 0,0171
Число отражений с $I > 2\sigma(I)$	6733
Число уточняемых параметров	546
GOOF по F^2	1,035
R -фактор, $I > 2\sigma(I); R_1, wR_2$	0,0260, 0,0673
R -фактор (по всем I_{hkl}); R_1, wR_2	0,0296, 0,0690
Абсолютный структурный параметр	-0,01(2)
Остаточная электронная плотность (max/min), $e\cdot \mathring{\mathbb{A}}^{-3}$	0,724 / -0,784

в изотропном приближении совместно с неводородными атомами. Окончательные значения основных межатомных расстояний приведены в табл. 2. Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджской базе структурных данных (ССDC 777664) и могут быть получены у авторов.

Т	a 6	5л	И	ц	а	2
---	-----	----	---	---	---	---

Связь	d, Å	Связь	<i>d</i> , Å	Связь	d, Å	Связь	d, Å
Cd(1)—N(2)	2,287(4)	Cd(2)—N(2a)	2,291(4)	C(5)—C(6)	1,420(7)	C(5a)—C(6a)	1,408(7)
Cd(1) - N(1)	2,392(4)	Cd(2)—N(1a)	2,350(4)	C(6)—C(7)	1,380(7)	C(6a)—C(7a)	1,365(7)
Cd(1)— $Cl(1)$	2,428(1)	Cd(2)—Cl(4)	2,435(1)	C(7)—C(8)	1,379(8)	C(7a)—C(8a)	1,400(8)
Cd(1)— $Cl(3)$	2,5656(9)	Cd(2)— $Cl(3)$	2,583(1)	C(8)—C(9)	1,378(9)	C(8a)—C(9a)	1,347(8)
Cd(1)—Cl(2)	2,578(1)	Cd(2)—Cl(2)	2,5855(9)	C(11)—C(12)	1,371(6)	C(11a)—C(12a)	1,353(6)
N(1)—C(1)	1,306(6)	N(1a)—C(1a)	1,317(6)	C(11)—C(14)	1,505(6)	C(11a)—C(14a)	1,504(6)
N(1)—C(5)	1,377(6)	N(1a)—C(5a)	1,391(6)	C(12)—C(13)	1,409(6)	C(12a)—C(13a)	1,388(6)
N(2)—C(13)	1,335(5)	N(2a)—C(13a)	1,347(5)	C(12)—C(16)	1,486(6)	C(12a)—C(16a)	1,493(6)
N(2)—N(3)	1,369(5)	N(2a)—N(3a)	1,375(5)	C(13)—C(20)	1,492(7)	C(13a)—C(20a)	1,497(6)
N(3)—C(11)	1,372(5)	N(3a)—C(11a)	1,380(5)	C(14)—C(15)	1,544(6)	C(14a)—C(15a)	1,521(6)
N(3)—C(1)	1,419(6)	N(3a)—C(1a)	1,414(6)	C(15)—C(17)	1,495(7)	C(15a)—C(17a)	1,524(7)
C(1)—C(2)	1,408(7)	C(1a)—C(2a)	1,388(7)	C(15)—C(16)	1,539(7)	C(15a)—C(16a)	1,552(7)
C(2)—C(3)	1,363(8)	C(2a)—C(3a)	1,390(7)	C(16)—C(17)	1,524(7)	C(16a)—C(17a)	1,519(6)
C(3)—C(4)	1,432(8)	C(3a)—C(4a)	1,434(8)	C(17)—C(18)	1,492(6)	C(17a)—C(18a)	1,499(6)
C(3)—C(10)	1,522(9)	C(3a)—C(10a)	1,483(9)	C(17)—C(19)	1,511(7)	C(17a)—C(19a)	1,522(7)
C(4)—C(5)	1,408(7)	C(4a)—C(5a)	1,409(7)	Cl(1s)— $C(1s)$	1,64(1)	Cl(2s)— $C(1s)$	1,72(1)
C(4)—C(9)	1,416(7)	C(4a)—C(9a)	1,418(7)				

Основные межатомные расстояния d, Å в структуре сольвата [Cd₂L₂Cl₄] · CH₂Cl₂

Puc. 1. Строение ацентричной молекулы комплекса [Cd₂L₂Cl₄] в двух проекциях с нумерацией неводородных атомов. Термические эллипсоиды показаны на уровне 50%-й вероятности

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты элементного анализа соединения I соответствуют эмпирической формуле $C_{20}H_{21}N_3CdCl_2$, т.е. комплексу CdLCl₂. Аналогичную формулу имеет соединение [ZnLCl₂], которое по данным PCA является одноядерным комплексом [9]. Исследование соединения II методом PCA свидетельствует о более сложном строении комплекса кадмия(II), входящего в его состав.

Кристаллическая структура соединения II построена из дискретных ацентричных молекул двухъядерного комплекса [Cd₂L₂Cl₄] и некоординированных молекул CH₂Cl₂. Следовательно, соединение II является сольватом. Строение молекулы комплекса [Cd₂L₂Cl₄] показано в двух проекциях на рис. 1, a, δ .

В результате координации к каждому из ионов Cd^{2+} двух атомов N бидентатных хелатообразующих лигандов L замыкаются два пятичленных хелатных цикла CdN_3C , которые незначительно искажены и имеют конформацию *конверта*. Среднеквадратичное отклонение от плоскостей четырех атомов этих циклов (3N+C) равно 0,022(2) и 0,003(2) Å, а атомы Cd отклоняются от этих плоскостей на 0,458(8) и 0,407(8) Å соответственно. Расстояния Cd—N различаются: расстояния Cd—N (пиразольный цикл) заметно меньше (2,287(4) и 2,291(4) Å), чем расстояния

551

Сd—N (пиридиновый цикл), равные 2,392(4) и 2,350(4) Å. В координационную сферу атомов Cd входят также три атома Cl (два мостиковых и концевой), что приводит к образованию двух координационных узлов CdCl₃N₂, а также металлоцикла Cd₂Cl₂. Полиэдры Cl₃N₂ имеют форму искаженных тетрагональных пирамид, основания которых образованы атомами N лиганда L и двумя мостиковыми атомами Cl (Cl(2) и Cl(3)); расстояния Cd—Cl близки между собой (2,5656(9), 2,578(1) Å и 2,583(1), 2,5855(9) Å). Аксиальные вершины пирамид занимают концевые атомы Cl(1) и Cl(4) на более коротких расстояниях (2,438(1) и 2,435(1) Å). Атомы Cd(1) и Cd(2) смещены из плоскостей оснований к вершинам пирамид на 0,810(2) и 0,819(2) Å соответственно. Полиэдры Cl₂N₃ имеют общее ребро Cl(2)…Cl(3) (см. рис. 1, *a*). Металлоцикл Cd₂Cl₂ — плоский, среднее отклонение атомов этого цикла равно 0,023(1) Å. Расстояние Cd...Cd в металлоцикле составляет 3,857(2) Å, углы при атомах Cl(2) и Cl(3) равны 96,7 и 97,0° соответственно. Длины связей в координационных узлах комплекса [Cd₂L₂Cl₄] близки к значениям, приводимым для двухъядерного комплекса CdCl₂ с 2-(2-пиридил)бензимидазолом [12]. Концевые атомы Cl(1) и Cl(4) имеют *трансоидное* расположение по отношению к металлоцикл у Cd₂Cl₂.

Профиль молекулы двухъядерного комплекса имеет форму части лестницы, ступеньки которой заметно отличаются по строению (см. рис. 1, δ). Все четыре цикла одноядерного фрагмента (обозначенного буквой "а") и часть хелатного цикла (атомы CN₃) имеют практически плоское строение: среднее отклонение атомов равно 0,072(4) Å. Во втором фрагменте (без обозначения) два хинолиновых цикла и часть хелатного цикла (атомы CN₃) также плоские, располагаются практически параллельно плоскости, имеющейся во фрагменте "а" (отклоняются от нее лишь на 4°). Два пятичленных цикла (пиразольный и карбоцикл) второго фрагмента, в отличие от фрагмента "а", составляют угол 152,3(1)° с остальными тремя циклами того же фрагмента. Диметилциклопропановые циклы в обоих фрагментах составляют с плоскостями пятичленных карбоциклов углы 115,4(2) и 113,2(2)° соответственно.

Упаковка молекул в кристаллической структуре соединения **II** на плоскость (100) представлена на рис. 2. Кратчайшие контакты между соседними молекулами комплекса $[Cd_2L_2Cl_4]$ соответствуют расстояниям C(7)...C(2a) 3,261(7), C(18)...C(1a) 3,263(6) Å, связывающим атомы на одном уровне, параллельном плоскости (010). Молекулы CH₂Cl₂, расположенные в каналах, образованных комплексами, соединены с ними слабыми H-связями. Так, атомы Cl(1s) и C(1s) молекулы CH₂Cl₂ образуют H-связи с атомами Cl(4) и C(10) соседних молекул комплекса: Cl(4)...H(1s1)—C(1s), Cl(1s)...H(10a)—C(10) (расстояния Cl(4)...C(1s) 3,45(1), Cl(1s)...C(10) 3,509(7) Å, угол Cl(4)H(1s1)C(1s) 136,6, a Cl(1s)H(10a)C(10) 124,3°).

В ИК спектре сольвата II имеется полоса при 740 см⁻¹, которую можно отнести к колебаниям молекулы CH_2Cl_2 . В ИК спектре соединения I эта полоса отсутствует, положения остальных полос практически не отличаются от положения полос в спектре сольвата. Экспериментальная дифрактограмма соединения I (20, град.: 6,98, 8,61, 10,73, 14,00, 20,18) не совпадает с теоретической дифрактограммой одноядерного тетраэдрического комплекса $ZnLCl_2$ [9], рассчитанной из данных РСА (20, град.: 9,72, 11,96, 13,81, 17,96, 19,52). По-видимому, строение соединения I аналогично строению комплекса [Cd₂LCl₄] в сольвате II.

В спектре возбуждения L (рис. 3) имеется полоса с $\lambda_{max} = 352$ нм. Спектр возбуждения соединения I имеет более широкую полосу с $\lambda_{max} \approx 360$ нм, немного смещенную в длинноволновую область по сравнению со спектром L. В спектре возбуждения комплекса [ZnLCl₂] наблюдается широкая полоса с $\lambda_{max} \approx 350$ нм. На основании этих данных мы выбрали длину волны возбуждения при записи спектров ФЛМ ($\lambda_{возб} = 350$ нм).

Реагент L обладает достаточно высокой интенсивностью (*I*) фотолюминесценции в ультрафиолетовой и синей области спектра (рис. 4). В спектре ФЛМ наблюдается широкая расщепленная полоса (ширина полосы на 1/2 высоты составляет \approx 60 нм) с λ_{max} 372 и 386 нм, а также плечо при 404 нм. В спектре синей ФЛМ соединения I имеется более широкая полоса (ширина полосы на 1/2 высоты составляет \approx 80 нм) с λ_{max} 418 нм. Следовательно, наблюдается бато-

Рис. 2. Упаковка молекул в структуре сольвата **II** в проекции на плоскость (100). Пунктирными линиями показаны водородные связи C1…H—C

хромное смещение спектра ФЛМ CdLCl₂ по отношению к спектру ФЛМ свободного L. Соединение I проявляет значительно меньшую *I* ФЛМ по сравнению с L. Если сравнить *I* ФЛМ лиганда L при λ_{max} 386 нм с *I* ФЛМ соединения I при λ_{max} 418 нм, то *I* ФЛМ лиганда выше примерно в 5 раз. При λ_{max} 418 нм *I* ФЛМ лиганда выше *I* ФЛМ соединения I примерно в 3 раза.

В спектре яркой белой ФЛМ комплекса [ZnLCl₂] наблюдается очень широкая полоса (ширина полосы на 1/2 высоты составляет \approx 120 нм) с λ_{max} 452 нм. Следовательно, характер смещения спектра ФЛМ по отношению к спектру свободного L такой же, как для соединения I.

Рис. 3. Спектры возбуждения фотолюминесценции соединений: 1 — L, 2 — [ZnLCl₂], 3 — CdLCl₂ при 300 К (щель 5 нм)

Рис. 4. Спектры фотолюминесценции соединений: *1* — L, *2* — [ZnLCl₂], *3* — CdLCl₂ при 300 К и $\lambda_{возб}$ 350 нм (щель 5 нм)

Вместе с тем величина смещения значительно больше. При $\lambda_{max} = 452$ нм интенсивность ФЛМ [ZnLCl₂] превышает *I* ФЛМ лиганда в 2 раза, а *I* ФЛМ соединения **I** — в 3,7 раза. Различный характер ФЛМ соединений **I** и [ZnLCl₂] позволяет легко идентифицировать эти комплексы.

Явление повышения $I \Phi ЛМ$ комплекса по сравнению с $I \Phi ЛМ$ свободного лиганда называют эффектом усиления $\Phi ЛМ$, вызванного хелатообразованием (CHEF) [6, 13]. Очевидно, что в случае соединения CdLCl₂ CHEF отсутствует. Мы предположили, что соединение CdLCl₂ имеет такое же двухъядерное строение, какое имеет комплекс [Cd₂L₂Cl₄] в составе сольвата **II**. В таком случае не только отсутствие CHEF, но и тушение $\Phi ЛМ$ по сравнению с L, возможно, связано с двухъядерным строением [Cd₂L₂Cl₄], в котором наблюдается сравнительно небольшое расстояние Cd...Cd (3,857(2) Å). В одноядерном [ZnLCl₂] расстояние Zn...Zn составляет 7,994(2) Å. По-видимому, особенности строения соединения **I**, в отличие от [ZnLCl₂], не позволяют уменьшить фотоиндуцированный перенос электронной плотности от донорных атомов N лиганда в π -систему его флуорофорных фрагментов [6].

Авторы выражают благодарность Д.Ю. Наумову за проведение рентгеноструктурного эксперимента, Л.А. Шелудяковой и Н.И. Алферовой — за съемку ИК спектров, А.В. Алексееву за съемку дифрактограмм.

СПИСОК ЛИТЕРАТУРЫ

- 1. Wang K.Z., Li L.J., Liu W.M. et al. // Mater. Res. Bull. 1996. 31, N 8. P. 993.
- 2. De Sa J.F., Malta O.L., de Mello Donega C. et al. // Coord. Chem. Rev. 2000. 196. P. 165.
- 3. Каткова М.А., Витухновский А.Г., Бочкарев М.Н. // Успехи химии. 2005. 74, № 12. С. 1193. [Russ. Chem. Rev. 2005. 74. Р. 1089 (Engl. Transl.)].
- 4. Fujii A., Ohmori Y., Morishima C. et al. // Synth. Metals. 1995. 71. P. 2015.
- 5. Richter M.M. // Chem. Rev. 2004. 104. P. 3003.
- 6. Williams N.J., Yan W., Reibenspies J.H., Hancock R.D. // Inorg. Chem. 2009. 48, N 4. P. 1407.
- 7. Гарновский А.Д., Бурлов А.С., Метелица А.В. и др. // Журн. общей химии. 2010. 80, № 2. С. 267.
- 8. Савельева З.А., Попов С.А., Клевцова Р.Ф. и др. // Изв. АН. Сер. хим. 2009. № 9. С. 1780.
- 9. Ларионов С.В., Савельева З.А., Клевцова Р.Ф. и др. // Журн. структур. химии. 2010. **51**, № 3. С. 537.
- 10. Popov S.A., Shakirov M.M., Tkachev A.V., De Kimpe N. // Tetrahedron. 1997. 53, N 52. P. 17735.
- 11. Sheldrick G.M., SHELX-97, Release 97-2. Göttingen (Germany): Univ. of Göttingen, 1998.
- 12. Xia Ch.-K., Wu W., Huang L.-Y. // Acta Crystallogr. 2007. E63. P. 2981.
- 13. De Silva A.P., Gunaratne H.Q.N., Gunnlaugsson T. et al. // Chem. Rev. 1997. 97, N 4. P. 1515.
- 14. Shannon R.D. // Acta Crystallogr. A. 1976 A32, N 5. P. 751.