2017. Том 58, № 8

Ноябрь – декабрь

C. 1638 – 1647

УДК 544.223.22:548.713.022.723

ПЕРВОПРИНЦИПНОЕ И ФЕНОМЕНОЛОГИЧЕСКОЕ МОДЕЛИРОВАНИЕ ФОНОННЫХ СПЕКТРОВ КРИСТАЛЛОВ BeMN₂ (*M* = C, Si, Ge, Sn)

Ю.М. Басалаев, А.В. Копытов, А.С. Поплавной, И.С. Рябчиков

Кемеровский государственный университет, Кемерово, Россия E-mail: ymbas@mail.ru

Статья поступила 6 февраля 2017 г.

Фононные спектры гипотетических кристаллов $BeMN_2$ (M = C, Si, Ge, Sn) с решеткой халькопирита вычислены на основе первопринципного метода функционала плотности в центре зоны Бриллюэна и интерполированы по всей зоне Бриллюэна с использованием феноменологической модели Китинга. Параметры взаимодействия найдены путем сравнения ИК и КР активных частот, полученных в феноменологической модели, с расчетами, выполненными с помощью первопринципного подхода. Численные значения корот-кодействующих констант и зарядов находятся в соответствии с вычисленными из первых принципов характеристиками химической связи. Эти параметры имеют прозрачный физический смысл и химическую природу и в дальнейшем могут использоваться как для количественных оценок каких-либо физических и физико-химических величин, так и для количественных вычислений фононных спектров изоструктурных соединений.

DOI: 10.26902/JSC20170816

Ключевые слова: халькопирит, BeCN₂, BeSiN₂, BeGeN₂, BeSnN₂, модель Китинга, химическая связь, колебательный спектр.

введение

Супертвердые материалы, обладающие к тому же интересными полупроводниковыми свойствами, привлекают в последние годы внимание исследователей [1—13]. Повышенная твердость обеспечивается сильным ковалентным связыванием соединений, сформированных из элементов В, С, N. К сожалению, такие широкозонные проводники как алмаз ($E_g \sim 5,5$ эВ) и с-BN ($E_g \sim 6,4$ эВ) имеют непрямую энергетическую щель. Из бинарных широкозонных полупроводников с прямой зонной щелью известен только AlN ($E_g \sim 6,2$ эВ). До недавнего времени один из легких элементов, бериллий, мало привлекался к исследованиям из-за его токсических свойств. Однако потребность в супертвердых широкозонных материалах с прямой зонной щелью, перспективных для электрооптических применений в ультрафиолетовой области, привели к интенсивным исследованиям тройных соединений с бериллием.

Первопринципное моделирование электронного и колебательного строения кристаллов B_2CN , BC_2N , BC_2N , BCN_2 было выполнено в работах [1, 2]. Одним из ближних аналогов этих супертвердых кристаллов является соединение $BeCN_2$ — наиболее изученное среди тройных бериллийсодержащих халькопиритоподобных кристаллов с химической формулой $BeMX_2$, где M = C, Si, Ge и X = N, P, As, Sb [3—12]. Сведения о гипотетическом $BeCN_2$ со структурой, подобной структуре халькопирита, получены в работе [3], в которой по аналитическим формулам вычислены параметры решетки, предсказана величина запрещенной зоны (~8,2 эВ) и определен ее

[©] Басалаев Ю.М., Копытов А.В., Поплавной А.С., Рябчиков И.С., 2017

псевдопрямозонный характер. Затем появился ряд теоретических работ [4—12], в которых разными авторами из первых принципов были изучены электронные и колебательные свойства уже не только кристаллов $BeCN_2$, но и его изоструктурных и изоэлектронных аналогов $BeSiN_2$, $BeGeN_2$, $BeCP_2$ и $BeSiP_2$. Анализ публикаций показывает наличие интереса к кристаллам с решеткой халькопирита, в частности, в работе [13] вычислены параметры решетки и предсказаны значения ширины запрещенных зон для 200 кристаллов, в том числе 32 тройных гипотетических бериллийсодержащих кристаллов. Следует отметить, что в большинстве перечисленных теоретических работ применялось локальное приближение функционала плотности, приводящее к заниженным значениям запрещенных зон по сравнению с ожидаемыми экспериментальными значениями.

Основное внимание в первопринципных теоретических исследованиях бериллийсодержащих кристаллов уделялось электронным и оптическим свойствам. Фононные спектры вычислены для кристалла BeCN₂ в орторомбической и тетрагональной [8], тетрагональной и вюртцитоподобной [9] фазах. В настоящей работе представлены результаты моделирования фононных спектров кристаллов Be MN_2 (M = C, Si, Ge, Sn) с решеткой халькопирита на основе как первопринципного, так и феноменологического методов.

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА

Наиболее вероятными структурными фазами для гипотетических кристаллов BeMN₂ (M=C, Si, Ge, Sn) являются [13-16]: 1) гранецентрированная кубическая (ГЦК) структура сфалерита (пространственная группа F43m) со среднестатистическим распределением атомов Ве и М по двум эквивалентным катионным подрешеткам; 2) объемноцентрированная тетрагональная (ОЦТ) структура халькопирита (пространственная группа I-42d), которая по сути является удвоенной структурой сфалерита, но с упорядоченным расположением катионов в соответствующих подрешетках; и 3) орторомбическая структура (пространственная группа Pna21) — аналог структуры вюртцита. Число атомов в элементарной ячейке соответствующей фазы равно 8, 8 и 16. Первопринципные расчеты показали [13-16], что более выгодной по энергии для кристаллов BeMX₂ является структура халькопирита, обладающая рядом особенностей [1, 3, 10—12]. Координационный многогранник для этой структуры — тетраэдр, в котором каждый катион (атомы Ве и M) окружен четырьмя анионами (N), а каждый анион окружен двумя атомами Ве и двумя атомами M (C, Si, Ge, Sn). Основными параметрами для структуры халькопирита являются постоянные решетки *a* и *c*, их отношение $\gamma = c/a$ и смещение анионов из узлов гранецентрированной подрешетки, определяемое параметром и. Координаты атомов в элементарной ячейке кристалла BeMN₂ могут быть заданы в единицах (a, a, c) следующим образом: Be — (0, 0, 0), (0, 0, 5, 0, 25); M — (0, 0, 0, 5), (0, 0, 5, 0, 75); N — (u, 0, 25, 0, 125), (-u, 0, 75, 0, 125), (-u, 0, 12 (0,125), (0,75, u, 0,875), (0,25, -u, 0,875).

Отсутствие экспериментальных данных о структуре кристаллов $BeMN_2$ в первую очередь требует определения постоянных решетки *a* и *c*, тетрагонального сжатия $\gamma = c/a$ и смещения анионов *u*, которые вычислялись нами по формулам из работы [3], учитывающим геометрию решетки халькопирита и индивидуальные данные атомов — их радиусы. Затем на основе этих параметров выполняли релаксацию кристаллической решетки путем стандартной процедуры оптимизации геометрии моделируемых кристаллов $BeMN_2$, которая заложена в программном коде CRYSTAL [17]. Полученные таким образом равновесные параметры кристаллической структуры для $BeMN_2$ представлены в табл. 1, они использовались нами в расчетах зонной структуры, электронной плотности и колебательных частот.

Как видно из таблицы, вычисленные нами параметры удовлетворительно согласуются с данными других авторов. При этом кристаллы $BeSiN_2$, $BeGeN_2$ и $BeSnN_2$ чуть растянуты вдоль оси c ($\gamma > 2$), тогда как $BeCN_2$ — сильно сжат ($\gamma < 2$). Возможно, наличие в составе атомов азота и растянутость вдоль тетрагональной оси создают трудности в искусственном получении моделируемых кристаллов $BeMN_2$, подобно тому, как это имеет место в случае их изоэлектронных Mg-содержащих аналогов [18—20].

Соединение	Ссылка	<i>a</i> , Å	<i>c</i> , Å	$\gamma = c/a$	и
BeCN ₂	Наш расчет	3,65546	6,82942	1,868	0,28984
	[3]	3,847	6,7938	1,766	0,313
	[21]	3,847	6,7938	1,766	0,313
	[5]	3,71	7,27	1,96	0,30
BeSiN ₂	Наш расчет	3,94554	7,99001	2,025	0,24224
	[5]	4,10	8,364	2,04	0,29
BeGeN ₂	Наш расчет	4,12994	8,34549	2,021	0,21386
BeSnN ₂	Наш расчет	4.36451	8.81717	2.020	0.18990

Структурные параметры $BeMN_2$ (M = C, Si, Ge, Sn)

ПЕРВОПРИНЦИПНОЕ ВЫЧИСЛЕНИЕ ХАРАКТЕРИСТИК ХИМИЧЕСКОЙ СВЯЗИ И ДЛИННОВОЛНОВЫХ ФОНОННЫХ ЧАСТОТ В КРИСТАЛЛАХ Ве*M*N₂

Метод и параметры расчета. Моделирование и изучение электронной и колебательной структуры кристаллов $BeMN_2$ в структуре халькопирита проводили с использованием возможностей теории функционала плотности (DFT — density functional theory), реализованных в программном коде CRYSTAL. Точность расчетов обеспечивалась выбором: 1) полноэлектронного валентно-расщепленного базиса гауссовых орбиталей TZVP (Triple-Zeta Valence), генерированного в коде CRYSTAL; 2) сетки из специальных точек $4 \times 4 \times 4$ (при расчете зонного спектра и распределения плотности заряда валентных электронов) и $16 \times 16 \times 16$ (при расчете плотности состояний, колебательной структуры); обрыва кинетической энергии при 40 Ry. Такой выбор в сочетании с приближением функционала B3LYP позволил получить сходимость по полной энергии не хуже 10^{-3} эВ/атом и уровень сходимости фононных частот в пределах нескольких десятых долей см⁻¹. Использование гибридного обменно-корреляционного функционала B3LYP, являющегося наиболее востребованным среди гибридных DFT приближений, в данной работе обусловлено сочетанием его низкой затратности с высокой степенью точности результатов расчетов.

Качественное представление о характере химической связи дают карты распределения деформационной плотности $\Delta\rho(\mathbf{r})$ для плоскости, содержащей атомы разного сорта. На рис. 1 в качестве примера приведены карты деформационной плотности в кристаллах BeCN₂ и BeSiN₂. На рисунке хорошо видны отличия связей С—N и Si—N в этих кристаллах, отражающие тенденцию изменения химической связи М—N в ряду BeSiN₂ \rightarrow BeGeN₂ \rightarrow BeSnN₂. В частности, нулевой контур (жирная линия) охватывает все три атома в BeCN₂, а в BeSiN₂, так же как и в BeGeN₂ и BeSnN₂, пересекает анион-катионные связи Si—N, Ge—N и Sn—N. Отсутствие экспериментальных данных по распределению деформационных плотностей пока не позволяет подтвердить эти особенности химической связи. Количественными характеристиками химической связи являются тензоры эффективных зарядов Борна, которые вычислены нами для BeMN₂ (M = C, Si, Ge, Sn) и представлены в табл. 2.

Рис. 1. Деформационная плотность $\Delta \rho$ в кристаллах BeCN₂ и BeSiN₂

Атом		Be			С			Ν	
Q	$\begin{pmatrix} 1,71 \\ -0,07 \\ 0,00 \end{pmatrix}$	0,07 1,71 0,00	0,00 0,00 1,49	(1,91 0,15 0,00	-0,15 1,91 0,00	$0,00 \\ 0,00 \\ 2,19$	$ \left(\begin{array}{c} -1,65\\ 0,00\\ 0,00 \end{array}\right) $	0,00 -1,96 0,12	$\begin{array}{c} 0,00\\ 0,19\\ -1,81 \end{array} \right)$
Атом		Be			Si			Ν	
Q	$ \begin{pmatrix} 1,79 \\ -0,21 \\ 0,00 \end{pmatrix} $	0,21 1,79 0,00	0,00 0,00 1,61	$ \begin{pmatrix} 3,03 \\ 0,29 \\ 0,00 \end{pmatrix} $	-0,29 3,03 0,00	$\begin{array}{c} 0,00\\ 0,00\\ 3,36 \end{array}$	$ \begin{pmatrix} -2,35 \\ 0,00 \\ 0,00 \end{pmatrix} $	0,00 -2,47 0,20	$\begin{array}{c} 0,00\\ 0,20\\ -2,49 \end{array}$
Атом		Be			Ge			Ν	
Q	(1,81 -0,35 0,00	0,35 1,81 0,00	0,00 0,00 1,66	$ \begin{pmatrix} 2,98 \\ 0,39 \\ 0,00 \end{pmatrix} $	-0,39 2,98 0,00	$ \begin{array}{c} 0,00\\ 0,00\\ 3,34 \end{array} \right) $	$ \left(\begin{array}{c} -2,31 \\ 0,00 \\ 0,00 \end{array}\right) $	0,00 -2,47 0,06	$\begin{array}{c} 0,00\\ 0,06\\ -2,50 \end{array}$
Атом		Be			Sn			Ν	
Q	$ \begin{array}{r} 1,89 \\ -0,54 \\ 0,00 \end{array} $	0,54 1,89 0,00	0,00 0,00 1,81	$ \left(\begin{array}{c} 3,18\\ 0,45\\ 0,00 \end{array}\right) $	-0,45 3,18 0,00	$\begin{array}{c} 0,00\\ 0,00\\ 3,54 \end{array}$	$ \begin{array}{c} -2,44 \\ 0,00 \\ 0,00 \end{array} $	0,00 -2,63 -0,12	$ \begin{array}{c} 0,00 \\ -0,12 \\ -2,68 \end{array} $

Величины эффективных зарядов Борна Q в единицах заряда электрона

Эффективные заряды Борна. Борновские заряды играют фундаментальную роль для динамики кристаллической решетки, определяя степень ковалентности или ионности в кристалле, величину дестабилизирующего вклада межъячеечного диполь-дипольного взаимодействия в частоты поперечных оптических мод (TO), а также характеризуя силы осцилляторов и определяя величину LO—TO расщепления для ИК активных длинноволновых оптических мод колебаний решетки.

Из табл. 2 видно, что эффективные заряды всех атомов имеют более низкие величины, чем их формальные заряды для Ве, M и N атомов +2, +4 и –3 соответственно, а для BeCN₂ эти отклонения от их формальных зарядов оказываются наибольшими, что соответствует более высокой ковалентности связи в этом соединении. Для кристаллов BeMN₂ наблюдается увеличение эффективного заряда атома Be, а также зарядов атомов C, Si и Sn при переходе от BeCN₂ к BeSiN₂, BeGeN₂ и BeSnN₂, за исключением атома Ge. Все это говорит о последовательном увеличении ионной составляющей в рассматриваемых соединениях. О нарастании ионной составляющей свидетельствует и уменьшении анизотропии тензорного заряда атома Be при последовательном увеличении массы катиона IV группы.

Частоты колебаний атомов и векторы поляризации вычислены посредством метода, детально изложенного в работе [21], который составляет основу вычислительной процедуры в пакете CRYSTAL и является дальнейшим развитием метода функционала плотности в области определения динамических характеристик твердых тел. Результаты вычислений в центре зоны Бриллюэна представлены ниже и обсуждаются вместе с результатами феноменологических расчетов.

ВЫЧИСЛЕНИЕ ФОНОННЫХ ЧАСТОТ ПО МОДЕЛИ КИТИНГА

В качестве феноменологического метода моделирования колебательных спектров гипотетических соединений $BeMN_2$ (M = C, Si, Ge, Sn) нами выбрана модель валентного силового поля, описывающего потенциальную энергию с применением внутренних координат, соответст-

Соеди-	A	CRYSTAL			KEATING	Соеди-	A		CRYS	KEATING	
нение	AIOM	$\sqrt{\epsilon}$	Q	$Q^* = Q/\sqrt{\varepsilon}$	Q*	нение	HUE ATOM $\sqrt{\varepsilon}$ Q $Q^* = Q$	$Q^* = Q/\sqrt{\varepsilon}$	Q*		
BeCN ₂	Be	2,34	1,64	0,70	0,63	BeGeN ₂	Be	2,31	1,76	0,76	0,84
	С		2,00	0,86	0,71		Ge		3,10	1,34	1,14
	Ν		-1,82	-0,78	-0,68		Ν		-2,43	-1,05	-0,99
$BeSiN_2$	Be	2,56	1,74	0,68	0,64	BeSnN ₂	Be	2,49	1,86	0,75	0,86
	Si		3,14	1,22	1,16		Sn		3,30	1,33	1,54
	Ν		-2,44	-0,95	-0,90		Ν		-2,58	-1,04	-1,20

Средние борновские (Q) и динамические заряды (Q^*)

вующих изменениям длин связей и валентных углов. Для кристаллов с тетраэдрической структурой широкое применение получил вариант, предложенный Китингом для кристалла типа алмаза [22] и обобщенный Мартином на кристаллы с решеткой сфалерита [23]. Затем модель Китинга с успехом применялась и для кристаллов с решеткой халькопирита [24, 25]. К достоинствам этой модели следует отнести инвариантность потенциальной энергии относительно вращений и перемещений кристалла как целого, наглядность используемых параметров, допускающих простую химическую интерпретацию, возможность перенесения силовых характеристик ковалентной связи из соединения в соединение.

Для кристаллов с решеткой халькопирита число параметров модели равно шести, из которых четыре параметра короткодействующих сил: две константы центрального взаимодействия α_1 (связь Be—N) и α_2 (связь *M*—N), две угловые константы β_1 и β_2 , дальнодействующие кулоновские силы учитываются двумя эффективными зарядами Q_1 и Q_2 в единицах заряда электрона.

Короткодействующие силы ответственны за средневзвешенные положения частот, в то время как заряды — за LO—TO расщепления оптических частот, приводящие к неаналитическому поведению этих частот в центре зоны Бриллюэна. Естественно, что при моделировании колебательного спектра, состоящего из 24 ветвей, используя столь малое число параметров, можно в целом надеяться лишь на его качественное описание. Обычно подгонка параметров ведется под ИК и КР активные частоты, и эта часть спектра, как правило, описывается в модели Китинга достаточно хорошо и количественно. Именно эти частоты, вычисленные из первых принципов, использовались нами при определении параметров Китинга путем программной оптимизации. Значения зарядов определялись из первопринципных LO—TO расщеплений оптических частот. Определенные таким образом численные значения параметров приведены в табл. 3, заряд $Q_N(e_0)$ определен из условия электронейтральности.

В табл. 3 приведено сравнение средних борновских зарядов, вычисленных из табл. 2, и экранированных зарядов ($Q^* = Q/\sqrt{\varepsilon}$, где ε — среднее значение высокочастотной диэлектрической проницаемости) с зарядами, рассчитанными в модели Китинга. Из этой таблицы видно, что результаты, полученные с помощью принципиально различных подходов, достаточно хорошо согласуются между собой.

Как видно из табл. 4, константы центрального взаимодействия α_2 (связь *M*—N) существенно больше α_1 (связь Be—N), что находится в соответствии с вычисленными длинами связей (см. табл. 1) и качественным видом карт электронной плотности (см. рис. 1). Вычисленные из LO-TO расщеплений заряды атомов коррелируют со средними значениями диагональных элементов матриц динамических зарядов Борна, полученных в первопринципной теории. Таким образом, феноменологические параметры Китинга качественно и количественно согласуются с величинами, вычисленными в первопринципной теории. Анализ табл. 4 показывает увеличение ионной и уменьшение ковалентной составляющей химической связи при переходе от соединения BeCN₂ к BeSiN₂, BeGeN₂ и BeSnN₂, о чем свидетельствует уменьшение параметров связи α_1 и α_2 (за исключением кристалла BeSiN₂), а также увеличение эффективных зарядов $Q_{Be}(e_0)$ и $Q_M(e_0)$.

Соединение	$\alpha_1 \cdot 10^3$, дин/см	$\alpha_2 \cdot 10^3$, дин/см	$\beta_1 \cdot 10^3$, дин/см	$\beta_2 \cdot 10^3$, дин/см	q_1, e_0	q_2, e_0
BeCN ₂	105,15	130,03	25,09	19,39	0,63	0,71
BeSiN ₂	61,50	131,49	4,76	15,73	0,64	1,16
BeGeN ₂	58,33	125,74	1,51	2,04	0,84	1,14
BeSnN ₂	41,72	101,00	1,02	3,09	0,86	1,54

Параметры модели Китинга

Полученные нами фононные спектры в наиболее симметричных точках и направлениях зоны Бриллюэна и функции плотности частот кристаллов $BeMN_2$ приведены на рис. 2. Как видно из рисунка, фононный спектр имеет весьма сложную топологическую структуру, в которой трудно выделить отдельные связки оптических ветвей, что связано с близостью масс соответствующих элементов и различием параметров центрального силового взаимодействия α_1 и α_2 (см. табл. 4). Из анализа фононных спектров видно, что верхняя группа оптических частот, происходящих из оптических ветвей "сфалеритного аналога", отделена от оптических частот, происходящих из акустических ветвей "сфалеритного аналога" в кристаллах $BeCN_2$ и $BeSiN_2$.

Puc. 2. Фононные спектры и функции плотности частот $BeMN_2$ (M = C, Si, Ge, Sn)

Симмет	иметрия BeCN ₂ BeS		SiN ₂	iN ₂ BeGeN ₂		BeS	SnN ₂		
	T_d^2	KEATING	CRYSTAL	KEATING	CRYSTAL	KEATING	CRYSTAL	KEATING	CRYSTAL
Γ_1	W_1	885	917	759	760	688	681	622	648
Γ_2	W_1	897	1040	864	897	803	770	760	720
	X_1	840	901	685	719	604	669	564	624
Γ_3	W_2	1042	1179	832	895	766	834	689	728
	X_3	991	1082	745	881	637	720	567	670
	W_2	611	759	478	507	283	313	230	238
Γ_4	Γ_{15}	1138/1270	1079/1253	935/1088	932/1085	817/984	817/983	748/900	712/877
TO/LO	W_2	1038/1038	1055/1076	823/832	841/877	748/762	764/784	674/679	698/707
	W_2	613/614	750/752	499/504	505/517	378/383	389/418	350/358	335/369
Γ_5	Γ_{15}	1211/1336	1161/1315	916/1076	914/1067	806/981	816/983	708/857	727/877
TO/LO	W_4	1085/1085	1058/1059	846/852	855/889	771/776	761/764	680/696	670/670
	X_5	1061/1061	1014/1029	811/812	812/812	738/739	726/731	645/645	640/640
	W_3	1025/1025	996/996	710/711	775/775	572/572	627/634	489/491	600/601
	W_4	612/612	814/821	498/501	539/547	405/410	467/486	364/372	422/448
	X_5	581/581	624/624	428/428	425/425	339/239	251/251	181/181	185/185

Рассчитанные длинноволновые частоты (см⁻¹) Be MN_2 (M = C, Si, Ge, Sn)

Для соединений $BeGeN_2$ и $BeSnN_2$ нет такого разделения оптических частот, однако в нижней части фононного спектра наблюдается отщепление фононных ветвей, имеющих сходную топологию для этих объектов.

В табл. 5 и 6 приведены рассчитанные нами длинноволновые фононные частоты как с помощью первопринципных подходов, так и с помощью феноменологической модели Китинга, а также вклады различных атомов в векторы поляризации соответствующих оптических частот. Во втором столбце табл. 5 и 6 указана симметрия точек сфалеритного аналога.

В табл. 6 мы привели вклады лишь для поперечных оптических колебаний, хотя для продольных колебаний эти вклады несколько меняются и это существенно для мод с большим LO—TO расщеплением. Колебания с симметрией Γ_1 и Γ_2 , как следует из теоретико-группового анализа, связаны исключительно со смещениями подрешетки углерода, поэтому мы обсудим вклады атомов в частоты симметрии Γ_3 , Γ_4 и Γ_5 . Из табл. 5 видно, что частоты, рассчитанные двумя принципиально разными подходами, обнаруживают достаточно хорошее согласие для верхней группы частот. Для нижних оптических частот имеются отличия, однако качественный характер спектров в двух моделях сохраняется.

Частоты с симметрией Γ_3 . Атомы Ве и *M* смещаются только вдоль оси симметрии четвертого порядка (ось *z*), при этом атомы Ве колеблются в противофазе, также как и атомы *M*, а вот атомы азота смещаются исключительно в плоскостях, перпендикулярных оси *z*. При этом атомы в подрешетке азота разбиваются на две пары, в которых смещения имеют противоположный знак внутри каждой пары. Из табл. 6 видно, как меняются вклады колебаний ионов для трех мод симметрии Γ_3 в различных соединениях. Для верхней частоты симметрии $\Gamma_3(W_2)$ с увеличением массы катиона IV группы происходит уменьшение доли вклада этих катионов с 55 в BeCN₂ до 46 % в BeSiN₂, а затем до 0 % в BeGeN₂ и BeSnN₂. В кристаллах BeCN₂ и BeSiN₂ эта частота в основном определяется колебаниями катионных подрешеток II и IV групп, то в кристаллах BeGeN₂ и BeSnN₂ это колебания легких подрешеток Be и N. Для частоты $\Gamma_3(X_3)$ нет устойчивой зависимости от изменения массы катиона IV группы. Для нижней частоты $\Gamma_3(W_2)$ происходит последовательное увеличение доли вклада катиона этой группы с 12 в BeCN₂ до 93 % в BeSnN₂, при этом доля вклада катиона Be падает с 63 до 3 % соответственно.

Таблица б

			BeCl		BeSiN ₂				BeGeN ₂				BeSnN ₂				
Симметрия		c. av ⁻¹	В	клад,	,%	0 m ⁻¹	вклад, %		c) av ⁻¹	вклад, %			_1	вклад, %			
		ω, см	Be	С	N	ω, см	Be	Si	Ν	ω, см	Be	Ge	Ν	ω, см	Be	Sn	Ν
Γ_1	W_1	917	0	0	100	760	0	0	100	681	0	0	100	648	0	0	100
Γ_2	W_1	1040	0	0	100	897	0	0	100	770	0	0	100	720	0	0	100
2	X_1	901	0	0	100	719	0	0	100	669	0	0	100	624	0	0	100
Γ_3	W_2	1179	31	55	14	895	40	46	14	834	66	0	34	728	38	0	62
	X_3	1082	6	34	60	881	36	2	62	720	28	13	59	670	59	7	34
	W_2	759	63	12	25	507	23	53	24	313	6	86	8	238	3	93	4
$\Gamma_4(TO)$	Γ_{15}	1079	7	23	70	932	1	22	77	817	59	0	41	712	5	3	91
	W_2	1055	25	28	47	841	55	0	45	764	3	7	90	698	60	0	40
	W_2	750	50	25	25	505	31	34	35	389	30	26	44	335	30	19	51
$\Gamma_5(TO)$	Γ_{15}	1161	6	56	38	914	2	25	73	816	69	0	31	727	62	1	37
	W_4	1058	0	70	30	855	36	13	51	761	72	0	28	670	17	5	78
	X_5	1014	72	3	25	812	62	7	31	726	4	9	87	640	76	2	22
	W_3	996	60	23	17	775	64	32	4	627	25	17	58	600	19	8	73
	W_4	814	17	19	64	539	13	23	64	467	21	19	60	422	19	17	64
	X_5	624	26	5	69	425	10	57	33	251	2	87	11	185	1	92	7

Значения частот и вклады колебаний подрешеток для $BeMN_2$ (M = C, Si, Ge, Sn)

Частоты с симметрией Γ_4 . Атомы Ве и M также смещаются только вдоль оси симметрии четвертого порядка, а атомы N колеблются исключительно в плоскостях содержащих эту ось. Верхняя частота симметрии $\Gamma_4(\Gamma_{15})$ в соединениях BeCN₂ и BeSiN₂ в основном обусловлена колебаниями подрешеток С—N и Si—N соответственно, в то время как в BeGeN₂ и BeSnN₂ это колебания Be и N, при этом доля вклада аниона N достигает 91 % в BeSnN₂. Следующая частота $\Gamma_4(W_2)$ в BeSiN₂ и BeGeN₂ формируется за счет колебаний подрешеток Be и N, а в BeCN₂ участвуют все подрешетки, в то время как в BeSnN₂ основную роль играет подрешетка азота. Нижняя частота симметрии $\Gamma_4(W_2)$ во всех соединениях определяется колебаниями всех подрешеток, при этом следует отметить достаточно плавный характер уменьшения доли колебаний подрешетки Be и, наоборот, рост доли вклада подрешетки N при переходе BeCN₂ \rightarrow BeSiN₂.

Частоты с симметрией Γ_5 . Атомы Ве и M смещаются только в плоскостях, перпендикулярных оси симметрии четвертого порядка, в то время как атомы N колеблются в плоскостях, содержащих эту ось.

Верхние моды $\Gamma_5(\Gamma_{15})$ и $\Gamma_5(W_4)$ во всех соединениях Be MN_2 определяются в основном колебаниями анионной и одной из катионных подрешеток. В кристаллах BeCN₂ и BeSiN₂ такую подрешетку составляют катионы IV группы, а для BeGeN₂ и BeSnN₂ это подрешетка из катионов Be. Следующая частота $\Gamma_5(X_5)$ фактически обусловлена колебаниями подрешеток Be и N во всех четырех соединениях, за исключением BeGeN₂, в котором эта мода имеет явно выраженный анионный характер. Для частоты $\Gamma_5(W_3)$ в соединениях BeCN₂ и BeSiN₂ характерными являются колебания двух катионных подрешеток, а для BeGeN₂ и BeSiN₂ основную роль играют колебания подрешеток Be и N. Частота $\Gamma_5(W_4)$ характеризуется слабыми изменениями зависимости вкладов подрешеток при последовательном переходе от соединения к соединению. Для самой низкой оптической частоты наблюдается стабильная тенденция нарастания доли вклада катионов IV группы и уменьшение доли вкладов ионов Be и N при переходе C \rightarrow Si \rightarrow Ge \rightarrow Sn.

ЗАКЛЮЧЕНИЕ

Главное достоинство первопринципных методов — обобществление электронного газа (иногда с включением внутренних электронных состояний), учет спина и корреляции, максимально точное решение задачи на уровне современной техники, что в конечном итоге оборачивается вуалированием индивидуальных свойств отдельных атомов, химических связей. Это, в частности, приводит к анализу рядовых зависимостей в группах изоэлектронных соединений на качественном уровне. Различные первопринципные методы вычисления характеристик структурных единиц — ионных зарядов, заселенностей связей и т.п. — трудносопоставимы и нередко приводят к значительным количественным отличиям. В то же время в феноменологических методах с самого начала в основу моделирования взаимодействия структурных единиц закладываются параметры, имеющие прозрачный физический смысл и химическую природу. Если эти параметры определяются путем подгонки под надежные экспериментальные или теоретические данные, то полный фононный спектр может быть восстановлен с достаточно высокой точностью. Определенные при этом параметры могут в дальнейшем использоваться как для качественных оценок каких-либо физических или физико-химических величин, так и для количественных вычислений в рядах изоструктурных соединений. Последнее оказывается возможным из-за свойств "переносимости" (с последующей корректировкой) параметров взаимодействия. Найденные феноменологические потенциалы используются, в частности, при моделировании методами молекулярной динамики, поскольку первопринципные методы развиты пока еще слабо и используются достаточно редко. Разумное сочетание первопринципных и феноменологических методов особенно полезно при моделировании колебательных спектров гипотетических соединений. Здесь при дефиците (или полном отсутствии) экспериментальных данных целесообразно вычислить структурные параметры, а также фононный спектр в центре зоны Бриллюэна на основе первопринципных методов. Эти расчеты могут служить основой для применения какого-либо феноменологического метода моделирования полного фононного спектра. Определенные при этом параметры силового взаимодействия будут полезными при исследовании соответствующих изоэлектронных рядов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Басалаев Ю.М., Копытов А.В., Павлова Т.Ю., Поплавной А.С. // Изв. вузов. Физика. 2015. **58**, № 7. С. 94 101. (Basalaev Yu.M., Kopytov A.V., Pavlova T.Yu., Poplavnoi A.S. // Russ. Phys. J. 2015. **58**, N 7. Р. 978.)
- 2. Басалаев Ю.М. // Журн. структур. химии. 2016. 57, № 1. С. 15 20. (Basalaev Yu.M. // J. Struct. Chem. 2016. 57, N 1. Р. 8.)
- 3. Jaffe J.E., Zunger A. // Phys. Rev. B. 1984. 29, N 4. P. 1882.
- 4. Lambrecht W.R.L., Segall B. // Phys. Rev. B. 1992. 45, N 3. P. 1485.
- 5. Petukhov A.G., Lambrecht W.R.L., Segall B. // Phys. Rev. B. 1994. 49, N 7. P. 4549.
- 6. Chiker F., Abbar B., Bouhafs B., Ruterana P. // Phys. Stat. Sol. (b). 2004. 241, N 2. P. 305.
- 7. Gou H.-Y., Gao F.-M., Zhang J.-W., Li Z.-P. // Chin. Phys. B. 2011. 20, N 1. P. 016201 016210.
- 8. Yan H., Wei Q., Chang S., Guo P. // J. Phys. Chem. Sol. 2011. 72, N 6. P. 667.
- 9. Ma C.-G., Liu D.-X., Hu T.-P., Wang Y., Tian Y., Brik M.G. // Sci. Adv. Mater. 2016. 8, N 2. P. 466.
- Басалаев Ю.М. Электронное строение, химическая связь и оптические свойства некоторых рядов алмазоподобных соединений. Дисс. докт. ... физ.-мат. наук. – Кемерово: КемГУ, 2009.
- 11. Басалаев Ю.М., Поплавной А.С. Электронное строение тройных алмазоподобных соединений со структурой халькопирита. Кемерово: ИНТ, 2009.
- 12. Basalaev Yu.M., Poplavnoi A.S. In: Chalcopyrite: Chemical Composition, Occurrence and Uses / Ed. D. Cronin. – New York: Nova Science Publishers, Inc., USA, 2014.
- 13. Suh Ch., Rajan K. // Appl. Surf. Sci. 2004. 223, N 1-3. P. 148.
- 14. Полупроводники $A^2 B^4 C_2^5$ / Под ред. Н.А. Горюновой, Ю.А. Валова. М.: Сов. Радио, 1974.
- 15. Eckerlin Von P. // Z. Anorg. All. Chem. 1967. 353, N 5-6. P. 225.
- 16. Römer S.R., Kroll P., Schnick W. // J. Phys.: Condens. Matter. 2009. 21, N 27. P. 275407.

- 17. Dovesi R., Orlando R., Civalleri B., Roetti C., Saunders V.R., Zicovich-Wilson C.M. // Zeit. Kristallogr. 2005. 220, N 5-6. P. 571.
- 18. Басалаев Ю.М., Демушин П.В. // Журн. структур. химии. 2010. **51**, N 6. С. 1225. (Basalaev Y.M., Demushin P.V. // J. Struct. Chem. 2010. **51**, N 6. Р. 1226).
- 19. Басалаев Ю.М., Демушин П.В., Николаева Е.В., Силинин А.В. // Вестн. МГУ. Сер. 3. Физика и астрономия. – 2011. – 66, № 1. – С. 39. (Basalaev Yu.M., Demushin P.V., Nikolaeva E.V., Silinin A.V. // Moscow University Physics Bulletin. – 2011. – 66, N 1. – P. 39.)
- Басалаев Ю.М., Демушин П.В., Николаева Е.В., Поплавной А.С., Силинин А.В. // Изв. вузов. Физика. – 2011. – 54, № 10. – С. 82. (Basalaev Yu.M., Demushin P.V., Nikolaeva E.V., Poplavnoi A.S., Silinin A.V. // Russ. Phys. J. – 2012. – 54, N 10. – P. 1145.)
- 21. Pascale F., Zicovich-Wilson C.M., Lopez Gejo F., Civalleri B., Orlando R., Dovesi R .// J. Comput. Chem. 2004. 25, N 6. P. 888.
- 22. Keating P.N. // Phys. Rev. 1966. 145, N 2. P. 637.
- 23. Martin R.M. // Phys. Rev. B. 1970. 1, N 10. P. 4005.
- 24. Копытов А.В., Поплавной А.С., Уфимцев М.К. // Журн. структур. химии. 2013. **54**, № 5. С. 815. (Kopytov A.V., Poplavnoi A.S. Ufimtsev М.К. // J. Struct. Chem. 2013. **54**, N 5. P. 843.)
- 25. *Копытов А.В., Рябчиков И.С.* // Фундаментальные проблемы современного материаловедения 2016. **13**, № 4. С. 427.