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Установление механизма разрушения при сдвиговой ползучести мягких трещиноватых пород 
является крайне актуальным вопросом в горнотехнической инженерной практике. С помощью 
метода дискретных элементов построена численная модель мягких трещиноватых пород, кото-
рая имитирует сдвиговую ползучесть массива при различных значениях коэффициента шеро-
ховатости трещины (JRC), нормального напряжения и направления сдвига. Выполнен анализ 
влияния этих факторов на деформацию ползучести мягких пород. Результаты показали, что 
деформация ползучести значительно снижается при увеличении шероховатости трещины, 
а также при увеличении нормального напряжения. Влияние направления сдвига на деформа-
цию ползучести относительно небольшое.  
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В горнотехнической практике вопрос структурной устойчивости сложных геологических 
формаций, характеризующихся трещиноватостью и содержанием мягких пород, имеет чрезвы-
чайную важность. Трещины не только снижают прочность и жесткость мягкой породы, но 
и изменяют поле напряжений и деформаций, что приводит к образованию и развитию микро-
трещин [1 – 2]. Под нагрузкой мягкие трещиноватые породы демонстрируют нелинейные, не-
упругие и необратимые механические свойства, что усложняет характер ползучести по сравне-
нию с другими породами [3].  

Теория ползучести горных пород преимущественно базируется на эмпирических и упруго-
пластических моделях. В основе эмпирических моделей лежит аппроксимация эксперимен-
тальных данных, позволяющая получить логарифмические, экспоненциальные и показатель-
ные функциональные зависимости между напряжением, деформацией и временем [4]. В [5] 
рассмотрен характер проявления ползучести различных пород в условиях одноосного сжатия. 
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В [6] проведены реологические испытания высокого основания плотины, в [7] — вязкоупругие 
испытания мягких пород. На основании результатов реологических испытаний выполнен ана-
лиз направления упругого вязкопластического потока [8].  

Механические свойства мягких трещинованых пород зависят от прочности и деформируе-
мости внутренних трещин, которые влияют на устойчивость объектов недропользования. 
В [9] осуществлены прямые испытания различных материалов на сдвиг и установлено, что ха-
рактеристики заполнителей трещин значительно влияют на их механические свойства. 
В [10] разработана экспериментальная модель определения прочности трещины на сдвиг, а в [11] 
рассмотрено влияние на нее различных заполнителей.  

В [12] выполнена адаптация системы полигональных элементов для представления трещи-
новатой структуры горной породы и реализован метод двухмерного блокового моделирования. 
Метод дискретных элементов получил широкое распространение в исследованиях в сфере ме-
ханики горных пород. В [13] предложена модель ползучести, описывающая характеристики 
деформации трещин при циклических динамических нарушениях. В [14] разработана модель 
сдвиговой ползучести на основе классической модели Нишихары, в [15, 16] — аналитическая 
модель определения прочности трещин на сдвиг. 

Несмотря на большой объем исследований механизма сдвигового разрушения трещинова-
тых пород, количество работ, рассматривающих мягкие породы, относительно мало. В настоя-
щей работе на примере филлита с помощью программного обеспечения PFC2D методом дис-
кретных элементов построена модель мягкой породы с различной шероховатостью трещин. 
Для более глубокого понимания характеристик сдвиговой ползучести мягких трещиноватых 
пород проведены соответствующие испытания.  

ИСПЫТАТЕЛЬНАЯ УСТАНОВКА ДЛЯ ИССЛЕДОВАНИЯ СДВИГОВОЙ ПОЛЗУЧЕСТИ 

Подготовка образцов. Для моделирования реальных горнотехнических условий использо-
вано ПО PFD2D, реализующее метод дискретных элементов. В данном ПО построена числен-
ная модель, согласующаяся с условиями проведения лабораторных испытаний (рис. 1).  

 
Рис. 1. Модель прямой сдвиговой ползучести: контейнер с жесткими стенками 1 – 6; σ, τ — вер-
тикальные и горизонтальные напряжения 

Для анализа выбраны методы прямого сдвига. Первым шагом построения модели стало со-
здание гексагонального контейнера с жесткими стенками, который заполнялся шарообразными 
частицами на площади 100 × 50 мм. Для обеспечения устойчивости модели ее основание огра-
ничено тремя зафиксированными стенками (стенки 4, 5, 6), которые предотвращали любое 
смещение в процессе приложения нагрузки. Вертикальное напряжение σ приложено к верхней 
стенке контейнера (стенка 2) и моделирует вертикальную нагрузку. Горизонтальное напряже-
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ние τ приложено к левой стенке (стенка 3) с направлением приложения направо. Установка для 
испытания прямого сдвига выполнена в лабораторных условиях путем точного мониторинга 
значений и направления напряжений.  

Для моделирования структурных характеристик мягкой породы ее пористость установлена 
на значении 5 % (рис. 2а). Для моделирования контакта между частицами использовано соче-
тание модели параллельной связи и модели Бюргерса (рис. 2б – г) [17 – 19].  

 
Рис. 2. Схема соприкосновения частиц между собой: а — образец породы; б — силовая цепь со-
прикосновения частиц; в — линейная модель параллельной связи; г — модель Бюргерса 

Калибровка параметров на микроскопическом уровне. Калибровка параметров на микроско-
пическом уровне в ПО PFC2D необходима для решения задач настоящего исследования. Соб-
ственные инструменты калибровки в ПО PFC2D не подходят для модели с множественными кон-
тактами. Для решения проблемы выполнена адаптация метода проб и ошибок [20] с помощью 
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сравнения следующих методов: метода унификации [21], многоцелевого генетического алгоритма 
[22] и метода XGBoost [23]. Эти методы позволили скорректировать параметры на микроскопиче-
ском уровне для соответствия их с параметрами породы на макромеханическом уровне.  

Для моделирования макромеханических свойств филлита (рис. 3а [24]) важно правильно 
установить отношение подобия между макромеханическими свойствами образцов и породного 
массива. Данный вопрос детально изучен в [25 – 27]. В настоящей работе определены локаль-
ные параметры породного массива и коэффициент подобия в процессе численного моделиро-
вания на основе критерия разрушения Хука – Брауна, а также системы классификации пород по 
индексу геологической прочности GSI [28]:  
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где Erm — модуль упругости испытуемого образца породы; Ei — модуль упругости породного 
массива на макроуровне; σc — прочность образца на одноосное сжатие; σci — прочность по-
родного массива на одноосное сжатие на макроуровне; D — коэффициент нарушения; c — ко-
гезионная прочность массива; ϕ — угол внутреннего трения массива; σ1′ — первое девиаторное 
главное напряжение; e — отношение пористости образца; σ3n′ — третье нормальное девиатор-
ное главное напряжение. 

Эмпирические параметры mb и a определяются типом породы и являются безразмерными. 
Коэффициент s отражает степень фрагментации породного массива и изменяется в диапазоне 
от 0 до 1. Параметры mb, a и s определены по методу Хука [28] на основе индекса геологиче-
ской прочности GSI:  

 

GSI 100exp ;
28 14
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В окружающих тоннели зонах со сложными геологическими условиями мягкие горные по-
роды имеют индекс геологической прочности GSI 20 и коэффициент нарушения 0.2. 
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Указанные параметры и результаты лабораторных испытаний [24] преобразованы в актуаль-
ные параметры локального массива по (1) – (6). Моделирование образца мягкой породы выполнено 
при отношении подобия 1 : 50, которое является общепринятым значением и позволяет соотносить 
результаты с другими работами. Параметры массива и образцов представлены в табл. 1. 

ТАБЛИЦА 1. Параметры породы до и после преобразования 

Образец 
Порода Трещина 

γ, кН/м3 E, МПа c, кПа ϕ, град c, кПа ϕ, град 
До преобразования 19.68 1593 910 25 100 20 
После преобразования 19.68 31.9 18.2 25 2 20 

 
На основе отношения подобия выполнена калибровка параметров образца на микроскопи-

ческом уровне методом проб и ошибок (рис. 3, сплошная линия). Путем сравнения этой кривой 
с кривой “напряжение – деформация” (штриховая линия) и с результатами лабораторных испы-
таний схожих материалов сделан вывод, что результаты моделирования согласуются с лабора-
торными результатами, что подтверждает надежность численных экспериментов [24].  

 
Рис. 3. Калибровка численной модели. Боковое давление, кПа: 1 — 300; 2 — 200; 3 — 100; 4 — 0 

Схема испытания сдвиговой ползучести. Для более детального изучения свойств сдвиговой пол-
зучести мягкой трещиноватой породы создан ряд тестовых схем, учитывающих ключевые факторы 
влияния: коэффициент шероховатости трещины JRC, нормальное напряжение σ, направление сдвига 
(сдвиг вправо определен как положительное направление). Коэффициент шероховатости определял-
ся по прямой трещине и кривой Бартона [29] для пяти характерных значений, представленных 
на рис. 4. Для моделирования эффекта ослабления трещины точки соприкосновения частиц на обеих 
сторонах трещины выбраны с наименьшими параметрами параллельной связи. 

С помощью сервоуправления стенкам контейнера обеспечена требуемая нагрузка в верти-
кальном и горизонтальном направлении с учетом параметров табл. 2. Сначала образец подвер-
гается постоянному нормальному напряжению σ, при этом нижняя торцевая стенка контейнера 
зафиксирована (рис. 1). Затем к верхней стенке 1 прикладывается горизонтальное постоянное 
напряжение, обеспечивающее синхронное движение стенок 2, 3, 1 и моделирующее условия 
сдвиговой ползучести.  

Для исключения экспериментальных ошибок, возникающих из-за неравномерности об-
разца, использована унифицированная численная геометрическая модель и механические 
параметры на микроскопическом уровне, моделирующие различные условия двухосного 
нагружения. 
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Рис. 4. Шероховатость трещины и силовые цепи соприкосновения частиц при JRC: 0 (а);  
2 – 4 (б); 6 – 8 (в); 10 – 12 (г); 14 – 16 (д); 18 – 20 (е) 

ТАБЛИЦА 2. Параметры проведения экспериментальных исследований  

Параметр JRC σ, кПа Направление 
Шероховатость трещины 0 – 20 5 Прямое 
Нормальное напряжение 10 – 12 5 – 20 Прямое 
Горизонтальное напряжение  10 – 12 5 Прямое / обратное 

 
Для более глубокого анализа механических свойств образца на микроскопическом уровне 

до численных испытаний активировалась функция fracture.p2fis для отслеживания образова-
ния и расширения микротрещин. Данная функция представлена в ПО PFC2D и является ос-
новным инструментом мониторинга и регистрации разрушения связей между частицами 
в модели. При разрушении связи данная функция регистрирует это событие и добавляет со-
ответствующую информацию о трещине в дискретную сеть трещин (DFN). Кроме того, эта 
функция выявляет фрагменты внутри образца, которые потеряли связь с другими частями из-
за разрушения связей.  

АНАЛИЗ РЕЗУЛЬТАТОВ МОДЕЛИРОВАНИЯ 

В работе использовался пошаговый подход к нагружению образца. Для уточнения уровней 
пошагового нагружения выполнены испытания образцов мягкой породы с различной шерохо-
ватостью трещин на прямой сдвиг при различных значениях нормального напряжения. По-
средством анализа соотношения напряжения сдвига и деформации определена прочность на 
сдвиг (рис. 5). Выбраны следующие уровни пошагового нагружения: 60, 70, 80 и 90 % 
от прочности на сдвиг. Каждое нагружение состояло из 300 тыс. шагов. 

На рис. 5 показаны зависимости напряжений сдвига от деформации для образцов мягких 
пород. Видно заметное снижение напряжения после достижения пикового значения сдвига. 
Далее напряжение стабилизируется на относительно высоком уровне остаточной прочности.  
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Рис. 5. Кривые “напряжение сдвига – деформация” образцов с различной шероховатостью трещины 

По причине мелкозернистой слоистой структуры и наличия козегионных минералов (сери-
цит и хлорит) в филлите, для численного моделирования характеристик связывания частиц 
между собой использована комбинированная модель, сочетающая модель параллельной связи 
и модель Бюргерса. Благодаря изменению параметров когезии Cks и Cms из модели Бюргерса 
образец показал высокую когезию и высокую остаточную прочность после разрушения сдвига. 
Остаточная прочность повышается при увеличении нормального напряжения.  

Характеристики сдвиговой ползучести при различной шероховатости трещин. Использо-
вались шесть кривых Бартона для моделирования различной шероховатости трещин в образцах 
для испытания прямой сдвиговой ползучести при нормальном напряжении 5 кПа. Деформации 
образцов с различным уровнем шероховатости трещин при шаговом нагружении показаны на 
рис. 6.  

Рассмотрим в качестве примера образец с коэффициентом шероховатости трещин 18 – 20. 
После нагружения до 60 % от предельной прочности на сдвиг образец быстро деформируется за 
30 тыс. шагов; деформация достигает 0.32 мм. Затем скорость деформирования заметно снижа-
ется, т. е. наблюдается переход в фазу ползучести. Этот цикл повторяется каждые 300 тыс. шагов 
при увеличении напряжения сдвига от 10 до 90 %. Кривые деформации для различных уровней 
шероховатости трещины имеют аналогичный тренд развития, однако магнитуды деформации 
значительно различаются. Чем больше шероховатость, тем меньше деформация ползучести.  

 
Рис. 6. Изменение деформации и напряжений сдвига образцов с различной шероховатостью 
трещины при пошаговом нагружении 
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На рис. 7 представлены деформация и развитие трещины в образцах с различной шерохо-
ватостью в процессе испытаний на прямую сдвиговую ползучесть. Характер разрушения в зна-
чительной мере связан с шероховатостью трещины. При приложении напряжения сдвига обра-
зец разрушается вдоль трещин. Из-за механических свойств более низких иерархических уров-
ней в образце развиваются микротрещины. Также наблюдается отрицательная корреляция 
между деформацией ползучести и шероховатостью трещины, т. е. при увеличении шероховато-
сти деформация сдвиговой ползучести уменьшается.  

Для выявления механизма деформации ползучести при пошаговом нагружении выполнен 
микроскопический анализ образцов различных уровней напряжения с помощью данных о сме-
щении, диаграмм развития трещин и диаграмм силовых цепей. Поскольку процесс деформации 
каждого образца примерно аналогичен, рассмотрен процесс деформации образца с шерохова-
тостью 10 – 12 при различных уровнях напряжения (рис. 8). 

 
Рис. 7. Деформации сдвига и картины развития микротрещин в образцах с различной шерохова-
тостью основной трещины: а — JRC = 0; б — JRC = 2 – 4; в —  JRC = 6 – 8; г — JRC = 10 – 12; д — 
JRC = 14 – 16; е — JRC = 18 – 20 

 
Рис. 8. Изменение напряжений и деформаций при пошаговом нагружении образца с шерохова-
тостью 10 – 12 
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На рис. 9 показано распределение силовых цепей и развитие трещины в образце с шерохо-
ватостью трещины 10 – 12 при уровнях напряжения 60 и 90 % от предельного. Видно (рис. 9а), 
что в результате постоянного воздействия нормального напряжения и напряжения сдвига в об-
разце образуется наклонная волокнообразная структура силовых цепей. Данная структура от-
четливо прослеживается в местах концентрации напряжений в окрестностях трещины, особен-
но на ее продолжении. В окрестностях основной трещины образуются микротрещины. При 
увеличении уровня напряжения до 90 % от предельного наклон структуры силовых цепей ста-
новится более выраженным; повышается концентрация напряжений вблизи основной трещи-
ны, что приводит к большему количеству микротрещин, приближая образец к разрушению.  

a  б в г 

              
Рис. 9. Развитие трещин и силовых цепей для различных уровней напряжений при пошаговом 
нагружении: а, б — 60 %; в, г — 90 % от предельного уровня 

Характеристики сдвиговой ползучести при различных нормальных напряжениях. Выполнено 
испытание образцов на прямую сдвиговую ползучесть при шероховатости трещины 10 – 12 при 
следующих нормальных напряжениях: 5, 10, 15 и 20 кПа. Результаты испытаний показали, что 
сдвиговая ползучесть имеет аналогичный характер развития при изменении нормального напря-
жения (рис. 10). В процессе нагружения образцы проходили через стадии быстрой деформации, 
устойчивой ползучести, повышения напряжения и последующей стадии ускоренной деформации, 
которая достигла пика при 90 % от предельного напряжения сдвига. Значения деформаций зависят 
от нормального напряжения, т. е. чем больше нормальное напряжение, тем меньше деформация.  

На рис. 11 представлено развитие трещины при различных значениях нормального напря-
жения. При нормальном напряжении 5 кПа образец разрушается вдоль основной трещины из-
за напряжения сдвига с образованием микротрещин. При увеличении нормального напряжения 
наблюдается образование трещин в массиве образца ввиду малой прочности мягкой породы. 
Также наблюдается отрицательная корреляция между деформацией ползучести и нормальным 
напряжением, т.е. чем больше нормальное напряжение, тем меньше деформация ползучести. 

 
Рис. 10. Кривые деформаций и напряжений сдвига при различных значениях нормального 
напряжения 
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Рис. 11. Диаграммы деформаций сдвига и развития микротрещин при различных значениях 
нормального напряжения, кПа: а — τ  = 18.42;  б — τ  = 21.49; в — τ  = 24.56; г — τ  =  27.63 

Характеристики сдвиговой ползучести при различных направлениях сдвига. Испытывались 
образцы с шероховатостью трещины 10 – 12 при нормальном напряжении 5 кПа в прямом и об-
ратном направлении сдвига. Результаты показали аналогичный характер сдвиговой ползучести 
в разных направлениях сдвига (рис. 12, 13).  

 
Рис. 12. Кривые деформаций и напряжений при прямом и обратном направлении сдвига 

 
Рис. 13. Диаграммы деформаций и развития трещин в образцах при различных направлениях 
сдвига: а — прямое направление; б — обратное  
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Подобно результатам предыдущих испытаний, образцы прошли через стадии быстрой де-
формации, устойчивой ползучести, повышения напряжения и снова быстрой деформации. Из-
за неравномерного строения трещины деформация при обратном сдвиге немного превышает 
деформацию при прямом. 

Диаграммы развития микротрещин в зависимости от направления сдвига (рис. 13) показы-
вают, что характер разрушения образца слабо зависит от направления сдвига. Вне зависимости 
от направления сдвига в ходе нагружения образуются микротрещины вблизи основной трещи-
ны, которые приводят к разрушению образца.  

ВЫВОДЫ 

По результатам комплексного исследования сдвиговой ползучести мягких трещиноватых 
пород выполнен детальный анализ корреляций между шероховатостью трещины (JRC), нор-
мальным напряжением, направлением сдвига и морфологическим характером разрушения об-
разца, а также характером развития микротрещин. С помощью ПО PFC2D, реализующего ме-
тод дискретных элементов, построены модели породных образцов в различных условиях 
нагружения, позволяющие смоделировать сдвиговую ползучесть при пошаговом нагружении.  

В процессе сдвига образец мягкой породы проходит через следующие стадии: быстрая де-
формация, устойчивая ползучесть, повышение напряжения и последующая быстрая деформа-
ция. Напряжения сдвига концентрируются в окрестностях основной трещины, в результате че-
го образуются и развиваются микротрещины. При увеличении уровня напряжения в этих обла-
стях заметно увеличивается количество трещин, что в конечном итоге приводит к разрушению 
образца.  

Шероховатость трещины и нормальное напряжение оказывают основное влияние на сдви-
говую ползучесть образцов мягкой породы. При увеличении шероховатости и нормального 
напряжения деформация ползучести уменьшается.  
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