УДК 539.3

МОДЕЛИРОВАНИЕ УПРУГО-НЕУПРУГИХ ПРОЦЕССОВ ПРИ КОНЕЧНЫХ ДЕФОРМАЦИЯХ В СПЛАВАХ С ПАМЯТЬЮ ФОРМЫ

А. А. Роговой, О. С. Столбова

Институт механики сплошных сред УрО РАН, 614013 Пермь E-mail: rogovoy@icmm.ru

С использованием формализованного подхода к построению определяющих соотношений сложных сред при конечных деформациях записано уравнение состояния для сплава с памятью формы. Полученные соотношения протестированы на связанных упругонеупругих краевых задачах о деформировании образца из материала с памятью формы при прямом и обратном мартенситных превращениях.

Ключевые слова: конечные деформации, память формы, связанная задача.

Введение. В работах [1-6] предложен подход к построению моделей, описывающих поведение сложных сред при конечных деформациях и структурных изменениях в материалах и удовлетворяющих принципам термодинамики и объективности. С использованием процедуры наложения малых деформаций на конечные деформации описана кинематика термоупруго-неупругого процесса. Термоупруго-неупругий процесс трактуется как упругий процесс с напряженной отсчетной конфигурацией, в качестве которой принимается промежуточная упругая конфигурация, близкая к текущей и получающаяся из нее при малой упругой разгрузке. Для формального описания указанной близости в вектор перемещения, определяющий положение точек в текущей конфигурации относительно промежуточной конфигурации, вводится малый положительный параметр. Это позволяет представить все кинематические величины в виде рядов по данному малому параметру, в которых удержаны только линейные слагаемые, и в результате построить для любого закона упругости определяющие уравнения с начальными напряжениями и функциями отклика материала на малые упругие деформации относительно промежуточной конфигурации. Предельным переходом при стремлении промежуточной конфигурации к текущей это определяющее уравнение сводится к точному эволюционному уравнению с объективной производной, следующей из этого предельного перехода.

В рамках указанного подхода в настоящей работе строятся корректные определяющие уравнения для конечных упруго-неупругих деформаций материалов, претерпевающих

Работа выполнена при финансовой поддержке Совета по грантам Президента РФ по государственной поддержке ведущих научных школ РФ (коды проектов НШ-8055.2006.1, НШ-3717.2008.1, НШ-7529.2010.1, НШ-5389.2012.1), в рамках программ фундаментальных исследований Отделения энергетики, машиностроения, механики и процессов управления РАН (коды проектов 09-T-1-1006, 12-T-1-1004), программ совместных фундаментальных исследований, выполняемых УрО РАН, СО РАН и ДВО РАН (коды проектов 09-C-1-1008, 12-C-1-1015), и при финансовой поддержке Федерального агентства по науке и инновациям (государственный контракт № 02.740.11.0442) и Российского фонда фундаментальных исследований (коды проектов 10-01-00055, 12-01-00419).

[©] Роговой А. А., Столбова О. С., 2013

мартенситно-аустенитный переход в процессе деформирования и изменения температуры. Тестирование этих уравнений осуществляется на связанных упруго-неупругих краевых задачах о деформировании тонкостенных конструкций. Считается, что изменение однородной температуры окружающей среды происходит достаточно медленно, поэтому в любой момент времени температура материала также является однородной и равна температуре окружающей среды. Это позволяет не рассматривать процесс установления температуры (уравнение теплопроводности не приводится).

1. Основные соотношения. В данном пункте приводятся общие определяющие и кинематические соотношения, которые конкретизируются для сплавов с памятью формы.

1.1. Определяющее соотношение. Среди эквивалентных форм представления определяющих соотношений для простого материала [1, 2], удовлетворяющих принципу объективности [7], выберем форму

$$T = J^{-1}F \cdot \tilde{g}(C_E, \Theta, q) \cdot F^{\mathrm{T}}.$$
(1.1)

Здесь T — тензор истинных напряжений; $\tilde{g}(C_E,\Theta,q)$ — функция отклика материала (тензор второго ранга); $C_E = F_E^{\rm T} \cdot F_E$ — мера Коши — Грина упругих деформаций; F_E упругий градиент места; $F \stackrel{L}{\longrightarrow}$ полный градиент места; $J = I_3(F)$ — третий инвариант F(якобиан, определяющий относительное изменение объема); Θ — абсолютная температура; q — скалярный параметр процесса (в сплавах с памятью формы (СПФ) — доля мартенситной фазы в объеме материала, зависящая от температуры). В представлении (1.1) тензор \tilde{g} , известный как второй (симметричный) тензор напряжений Пиолы — Кирхгофа, зависит от физико-механических свойств материала, характеризует его отклик на чистую деформацию, описываемую мерой деформации Коши — Грина C_E , определяется на элементарной площадке недеформированной начальной конфигурации и выражается через упругий потенциал $W(C_E, \Theta, q)$ с помощью соотношения $\tilde{g} = 2(\partial W(C_E, \Theta, q)/\partial C_E)$. При этом от величин Θ и q зависят только параметры функционального соотношения $W(C_E)$. Например, выражение для упрощенного потенциала Мурнагана с параметрами а и в записывается в виде $W = a(\Theta, q)[I_1(C_E) - 3] + b(\Theta, q)[I_2(C_E) - 3]$. Преобразование правой части (1.1) позволяет определить тензор T в текущей конфигурации. Свойства среды зависят от структуры материала и могут изменяться при деформировании и действии других физических полей. Элементарная ориентированная площадка определяется только кинематикой процесса.

В работах [1, 2] вводятся начальная \varkappa_0 , промежуточная \varkappa_* и текущая (актуальная) \varkappa конфигурации, причем конфигурации \varkappa_* и \varkappa близки. Эта близость характеризуется малым параметром ε , являющимся удобным средством формализации малости не только вектора перемещений, но и других величин, определяемых через перемещения. В работе [3] показано, что относительно промежуточной конфигурации \varkappa_* соотношение (1.1) с точностью до линейных по ε слагаемых представляется в виде

$$T = T_* + \varepsilon T',$$

$$T' = -I_1(e)T_* + h \cdot T_* + T_* \cdot h^{\mathrm{T}} + \theta(T_{,\Theta})_* + q'(T_{,q})_* + L_*^{\mathrm{IV}} \cdot \cdot e_E.$$
(1.2)

Здесь T_* — тензор истинных напряжений в промежуточной конфигурации; $h = (\stackrel{*}{\nabla} \boldsymbol{u})^{\mathrm{T}}$ градиент вектора малых полных перемещений; $\stackrel{*}{\nabla}$ — оператор Гамильтона относительно промежуточной конфигурации; $e = (h + h^{\mathrm{T}})/2$, e_E — тензоры малых полных и упругих деформаций относительно промежуточной конфигурации; \boldsymbol{u} — вектор перемещений из промежуточной конфигурации в близкую текущую; $I_1(e)$ — первый инвариант $e; \theta$ приращение температуры ($\Theta = \Theta_* + \varepsilon \theta$); q' — приращение q ($q = q_* + \varepsilon q'$); $(T_{,\alpha})_* \equiv (\partial T/\partial \alpha)_*$; величины с индексом "*" соответствуют промежуточной конфигурации; L_*^{IV} — тензор четвертого ранга, определяющий отклик материала на малые упругие деформации относительно промежуточной конфигурации (см. [3]):

$$L_*^{\rm IV} = 4J_*^{-1}F_* \cdot \left(F_* \stackrel{3}{\circ} \frac{\partial^2 W(C_E, \Theta_*, q_*)}{\partial C_E^2}\Big|_{C_E = C_{E*}} \stackrel{2}{*} F_*^{\rm T}\right) \cdot F_*^{\rm T},\tag{1.3}$$

 $A \stackrel{3}{\circ} B^{\text{IV}}$ — операция скалярного умножения слева тензора второго ранга A на третий базисный вектор тензора четвертого ранга B^{IV} ; $B^{\text{IV}} \stackrel{2}{*} A$ — операция скалярного умножения справа тензора второго ранга A на второй базисный вектор тензора четвертого ранга B^{IV} . Тензор малых упругих деформаций представляется через тензор малых температурных деформаций e_{Θ} и тензор малых фазовых деформаций e_{Ph} :

$$e_E = e - e_\Theta - e_{Ph}.\tag{1.4}$$

1.2. *Кинематические соотношения*. Согласно [3, 5] кинематические тензоры определяются выражениями

$$F = F_E \cdot F_{Ph} \cdot F_\Theta; \tag{1.5}$$

$$F_E = [g + \varepsilon(e_E + d_E)] \cdot F_{E*} = (g + \varepsilon h_E) \cdot F_{E*}; \qquad (1.6)$$

$$F_{Ph} = [g + \varepsilon F_{E*}^{-1} \cdot (e_{Ph} + d_{Ph}) \cdot F_{E*}] \cdot F_{Ph*} = (g + \varepsilon F_{E*}^{-1} \cdot h_{Ph} \cdot F_{E*}) \cdot F_{Ph*};$$
(1.7)

$$F_{\Theta} = [g + \varepsilon F_{Ph*}^{-1} \cdot F_{E*}^{-1} \cdot (e_{\Theta} + d_{\Theta}) \cdot F_{E*} \cdot F_{Ph*}] \cdot F_{\Theta*} =$$
$$= (g + \varepsilon F_{Ph*}^{-1} \cdot F_{E*}^{-1} \cdot h_{\Theta} \cdot F_{E*} \cdot F_{Ph*}) \cdot F_{\Theta*}. \quad (1.8)$$

Здесь F — полный градиент места; F_{Ph} — неупругий градиент места, зависящий от фазовых деформаций; F_{Θ} — градиент места, зависящий от температурных деформаций; g — единичный тензор; h_E , h_{Ph} , h_{Θ} — градиенты вектора малых упругих, фазовых и температурных перемещений; d_E , d_{Ph} , d_{Θ} — тензоры малых упругих, фазовых и температурных поворотов относительно промежуточной конфигурации. В работе [4] показано, что градиенты места F_{Ph} и F_{Θ} должны соответствовать чистым деформациям без вращений: $F_{Ph} = U_{Ph}, F_{\Theta} = U_{\Theta}$, т. е. в полярных разложениях $F_{Ph} = R_{Ph} \cdot U_{Ph}, F_{\Theta} = R_{\Theta} \cdot U_{\Theta}$ ортогональные тензоры R_{Ph} и R_{Θ} должны быть единичными: $R_{Ph} = R_{\Theta} = g$.

Как известно, тензор деформации скорости $D = (l + l^{\mathrm{T}})/2$ $(l = \dot{F} \cdot F^{-1} = (\tilde{\nabla} \boldsymbol{v})^{\mathrm{T}}; \boldsymbol{v}$ — скорость перемещения; $\tilde{\nabla}$ — оператор Гамильтона относительно текущей конфигурации) связан с тензором деформаций Альманси $\tilde{E} = (g - A)/2$ $(A = F^{-\mathrm{T}} \cdot F^{-1}$ — мера деформаций Альманси $\tilde{E} = (g - A)/2$ $(A = F^{-\mathrm{T}} \cdot F^{-1}$ — мера деформаций Альманси) соотношением $D = \tilde{E}^{CR}$, где $\tilde{E}^{CR} = \dot{E} + l^{\mathrm{T}} \cdot \tilde{E} + \tilde{E} \cdot l$ — объективная производная Коттера — Ривлина. Используя эти соотношения, можно показать, что тензору деформации скорости D_E соответствует тензор деформации Альманси $\tilde{E}_E = (g - \tilde{A}_E)/2$, где $\tilde{A}_E = A_E = F_E^{-\mathrm{T}} \cdot F_E^{-1}$. Тензор D_{Ph} соответствует тензору \tilde{E}_{Ph} , который определяется следующим образом:

$$E_{Ph} = (g - A_{Ph})/2,$$

$$\tilde{A}_{Ph} = F_{E*}^{-T} \cdot A_{Ph} \cdot F_{E*}^{-1}, \qquad A_{Ph} = F_{Ph}^{-T} \cdot F_{Ph}^{-1}.$$
(1.9)

Аналогично тензор D_{Θ} соответствует тензору \tilde{E}_{Θ} :

$$E_{\Theta} = (g - A_{\Theta})/2,$$
$$\tilde{A}_{\Theta} = F_{E*}^{-\mathsf{T}} \cdot F_{Ph*}^{-\mathsf{T}} \cdot A_{\Theta} \cdot F_{Ph*}^{-1} \cdot F_{E*}^{-1}, \qquad A_{\Theta} = F_{\Theta}^{-\mathsf{T}} \cdot F_{\Theta}^{-1}$$

В качестве примера рассмотрим соотношения (1.9). Выражение для тензора, обратного F_{Ph} , следует из (1.7) и имеет вид $F_{Ph}^{-1} = F_{Ph*}^{-1} \cdot (g - \varepsilon F_{E*}^{-1} \cdot h_{Ph} \cdot F_{E*})$, что нетрудно проверить ($F_{Ph} \cdot F_{Ph}^{-1} = F_{Ph}^{-1} \cdot F_{Ph} = g$ с точностью до линейных слагаемых относительно ε). С учетом этого выражения, сохраняя в (1.9) только линейные члены по ε , получаем

$$\tilde{A}_{Ph} = \tilde{A}_{Ph*} - \varepsilon h_{Ph}^{\mathrm{T}} \cdot \tilde{A}_{Ph*} - \varepsilon \tilde{A}_{Ph*} \cdot h_{Ph}.$$
(1.10)

Представляя это соотношение в виде $\tilde{A}_{Ph} - \tilde{A}_{Ph*} \equiv \Delta \tilde{A}_{Ph} = -\Delta h_{Ph}^{T} \cdot \tilde{A}_{Ph*} - \tilde{A}_{Ph*} \cdot \Delta h_{Ph}$ (вместо ε использовано обозначение Δ — приращение соответствующей величины), деля его на время перехода из промежуточной конфигурации в текущую Δt и устремляя промежуточную конфигурацию к текущей, имеем

$$\tilde{A}_{Ph} = -l_{Ph}^{\mathrm{T}} \cdot \tilde{A}_{Ph} - \tilde{A}_{Ph} \cdot l_{Ph}.$$
(1.11)

При этом учтено, что $\tilde{A}_{Ph*} \to \tilde{A}_{Ph}, \Delta \tilde{A}_{Ph}/\Delta t \to \tilde{A}_{Ph}$ и $\Delta h_{Ph}/\Delta t \to l_{Ph}$. Так как

$$\tilde{E}_{Ph}^{CR} = \tilde{E}_{Ph} + l_{Ph}^{\mathrm{T}} \cdot \tilde{E}_{Ph} + \tilde{E}_{Ph} \cdot l_{Ph},$$

то, подставляя в это равенство выражения для \tilde{E}_{Ph} из (1.9) и $\dot{\tilde{E}}_{Ph} = -\dot{\tilde{A}}_{Ph}/2$ из (1.11), получаем

$$D_{Ph} = \tilde{E}_{Ph}^{CR} = (l_{Ph} + l_{Ph}^{\mathrm{T}})/2$$

Таким образом, сформулированное выше соответствие доказано. Заметим, что согласно [3, 4] $l_{Ph} = F_E \cdot \dot{F}_{Ph} \cdot F_{Ph}^{-1} \cdot F_E^{-1} = (\tilde{\nabla} \boldsymbol{v}_{Ph})^{\mathrm{T}}.$

Используя соотношение (1.10), тензор фазовых деформаций Альманси \tilde{E}_{Ph} в (1.9), согласованный с тензором деформаций скорости D_{Ph} , целесообразно представить в виде

$$\tilde{E}_{Ph} = \tilde{E}_{Ph*} + \varepsilon (h_{Ph}^{\mathrm{T}} \cdot \tilde{A}_{Ph*} + \tilde{A}_{Ph*} \cdot h_{Ph})/2, \qquad (1.12)$$

где $\tilde{A}_{Ph*} = F_{E*}^{-T} \cdot A_{Ph*} \cdot F_{E*}^{-1}$; $A_{Ph*} = F_{Ph*}^{-T} \cdot F_{Ph*}^{-1}$. В случае малых деформаций промежуточная конфигурация совпадает с начальной. В результате $\tilde{A}_{Ph*} = g$, тензор \tilde{E}_{Ph*} становится нулевым и соотношение (1.12) принимает известный вид $\tilde{E}_{Ph} = \varepsilon e_{Ph} = \varepsilon (h_{Ph}^{T} + h_{Ph})/2$.

1.3. Сплавы с памятью формы. Как отмечено в работе [8], термомеханическое поведение СПФ характеризуется рядом эффектов и явлений, связанных с происходящими в этих материалах фазовыми и структурными превращениями: эффект накопления деформаций при прямом (мартенситном) превращении, явление ориентированного превращения, монотонная, реверсивная и обратимая память формы, резкое изменение при фазовых переходах упругих модулей и внутреннего трения, выделение или поглощение достаточно больших количеств латентного тепла фазовых превращений. Различные варианты моделей СПФ предложены в работах [9–18] (см. также библиографию к ним). Эти модели позволяют с различной степенью полноты описать указанные выше эффекты и явления. В данной работе используется наиболее полная модель, предложенная в работах [14–18].

Вводится скалярная внутренняя переменная q, трактуемая как доля низкотемпературной (мартенситной) фазы в объеме материала (при q = 0 материал находится полностью в аустенитном состоянии (высокотемпературная фаза), при q = 1 — полностью в мартенситном). Для того чтобы аппроксимировать диаграмму фазового перехода (зависимости объемной доли мартенситной фазы от температуры и напряжений при прямом $A \to M$ (аустенит — мартенсит) и обратном $M \to A$ (мартенсит — аустенит) превращениях (рис. 1)), используем следующие соотношения [17]:

Рис. 1. Зависимость объемной доли мартенситной фазы от температуры при прямом и обратном превращениях:

 $\mathrm{I-V}$ — области мартен
ситного и аустенитного состояний при прямом и обратном превращениях

$$q = \psi(\xi), \quad \psi(\xi) = \begin{cases} 0, & \xi \leqslant 0, \\ \psi(\xi), & 0 < \xi < 1, \\ 1, & \xi \geqslant 1; \end{cases}$$

$$\xi = \frac{M_s^{\sigma} - \Theta}{M_s - M_f}, \quad M_f^{\sigma} \leqslant \Theta \leqslant M_s^{\sigma} \quad (A \to M, \ dq > 0), \\ \xi = 1 + \frac{A_s^{\sigma} - \Theta}{A_f - A_s}, \quad A_s^{\sigma} \leqslant \Theta \leqslant A_f^{\sigma} \quad (M \to A, \ dq < 0).$$

$$(1.13)$$

Здесь M_s , M_f , A_s , A_f — температуры начала и завершения прямого и обратного мартенситных превращений в свободном от напряжений материале; M_s^{σ} , M_f^{σ} , A_s^{σ} , A_f^{σ} — температуры начала и завершения прямого и обратного мартенситных превращений в нагруженном материале. При прямом переходе $A \to M$ (см. рис. 1) материал находится полностью в аустенитном состоянии в области III \cup IV \cup V; область II переходная: в ней существуют и мартенситная, и аустенитная фазы с различными объемными долями; в области I материал находится полностью в мартенситном состоянии. При обратном переходе $(M \to A)$ материал находится полностью в мартенситном состоянии в области I \cup II \cup III; область IV переходная; в области V материал находится полностью в аустенитном состоянии.

Будем использовать линейные зависимости характерных температур от интенсивности напряжений

$$M_s^{\sigma} = M_s + k \,\sigma_i, \qquad M_f^{\sigma} = M_f + k \,\sigma_i, A_s^{\sigma} = A_s + k \,\sigma_i, \qquad A_f^{\sigma} = A_f + k \,\sigma_i,$$
(1.15)

где k — материальная константа (для СПФ в задачах, рассматриваемых в п. 2, k = 0,1 K/MПа); $\sigma_i = \sqrt{(3/2) S \cdot S}$ — интенсивность напряжений; $S = T - I_1(T)g/3$ — девиатор тензора истинных напряжений. Тогда, представляя выражения для q, ξ, Θ, σ_i в виде

$$q = q_* + \varepsilon q', \quad \xi = \xi_* + \varepsilon \xi', \quad \Theta = \Theta_* + \varepsilon \theta, \quad \sigma_i = (\sigma_i)_* + \varepsilon \sigma'_i, \tag{1.16}$$

где штрихом отмечены приращения соответствующих величин при переходе из промежуточной конфигурации в близкую к ней текущую (для приращения температуры использовано обозначение θ), при $0 < \xi < 1$ из (1.13)–(1.15) получаем

$$q_{*} = 0,5(1 - \cos(\pi\xi_{*})), \qquad q' = 0,5\pi\xi'\sin(\pi\xi_{*}),$$

$$\xi_{*} = \begin{cases} \frac{M_{s} + k(\sigma_{i})_{*} - \Theta_{*}}{M_{s} - M_{f}}, & A \to M, \ q' > 0, \\ 1 + \frac{A_{s} + k(\sigma_{i})_{*} - \Theta_{*}}{A_{f} - A_{s}}, & M \to A, \ q' < 0, \\ \xi' = \xi_{,\Theta}\theta + \xi_{,\sigma_{i}}\sigma'_{i}, \end{cases}$$

$$\xi_{,\Theta} = -\frac{1}{M_{s} - M_{f}}, \quad \xi_{,\sigma_{i}} = \frac{k}{M_{s} - M_{f}}, \quad A \to M, \ q' > 0, \\ \xi_{,\Theta} = -\frac{1}{A_{f} - A_{s}}, \quad \xi_{,\sigma_{i}} = \frac{k}{A_{f} - A_{s}}, \quad M \to A, \ q' < 0. \end{cases}$$
(1.17)

Представляя девиатор тензора напряжений в виде $S = S_* + \varepsilon S'$, подставляя это выражение в соотношение для интенсивности напряжений, разлагая полученное соотношение в ряд по ε и сохраняя только линейные относительно этого параметра слагаемые, имеем

$$(\sigma_i)_* = \sqrt{(3/2) S_* \cdots S_*}, \qquad \sigma'_i = \frac{3 S_* \cdots S'}{2(\sigma_i)_*} = \frac{3 S_* \cdots T'}{2(\sigma_i)_*},$$
(1.18)

где $S_* = T_* - I_1(T_*)g/3$ и учтено, что $S_* \cdots S' = S_* \cdots [T' - I_1(T')g/3] = S_* \cdots T'$ (определение T_* и T' см. в (1.2)).

Уравнения, описывающие развитие фазовых деформаций (без учета реверсивного эффекта памяти формы при обратных превращениях), приведены в [15] для малых деформаций. Обобщая эти соотношения на конечные деформации с учетом выражений, приведенных в конце подп. 1.2, имеем

$$D_{Ph} = \dot{e}_{Ph} = (\beta g + c_0 S + a_0 \tilde{E}_{Ph}) \dot{q}, \quad \dot{q} > 0;$$
(1.19)

$$D_{Ph} = \dot{e}_{Ph} = \left(\frac{a_0 E_{Ph}^{(0)}}{\exp\left(a_0 q_0\right) - 1} + a_0 \tilde{E}_{Ph}\right) \dot{q}, \quad \dot{q} < 0.$$
(1.20)

Здесь β , c_0 , a_0 — параметры материала (для СПФ в задачах, рассматриваемых в п. 2, $\beta = 1,17 \cdot 10^{-3}$, $c_0 = 0,283 \cdot 10^{-3}$ МПа⁻¹, $a_0 = 0,718$); \tilde{E}_{Ph} — текущая фазовая деформация, определяемая соотношением (1.12); q_0 , $\tilde{E}_{Ph}^{(0)}$ — значения параметра мартенситной фазы и фазовой деформации в начальной точке процесса обратного превращения. Соотношения (1.19), (1.20) являются корректными: во-первых, они удовлетворяют принципу объективности, во-вторых, кинематические тензоры D_{Ph} и \tilde{E}_{Ph} , содержащиеся в этих соотношениях, согласованы. В терминах малых, но конечных величин соотношения (1.19), (1.20) представляются в виде

$$\varepsilon e_{Ph} = (\beta g + c_0 S_* + a_0 \tilde{E}_{Ph*}) \varepsilon q', \quad q' > 0;$$

$$(1.21)$$

$$\varepsilon e_{Ph} = \left(\frac{a_0 E_{Ph}^{(0)}}{\exp\left(a_0 q_0\right) - 1} + a_0 \tilde{E}_{Ph*}\right) \varepsilon q', \quad q' < 0 \tag{1.22}$$

и определяют одну из составляющих в выражении (1.4). Для еще одной составляющей в выражении (1.4) — тензора малых температурных деформаций — примем закон линейного температурного расширения $e_{\Theta} = \beta_{\Theta} \theta g$, где β_{Θ} — коэффициент линейного температурного расширения.

В соотношения (1.6)–(1.8) входят не только тензоры малых упругих e_E , фазовых e_{Ph} и температурных e_{Θ} деформаций, но и тензоры малых упругих d_E , фазовых d_{Ph} и температурных d_{Θ} поворотов относительно промежуточной конфигурации. Согласно [5] для определения d_{Ph} используем соотношение

$$K_* \cdot d_{Ph} + d_{Ph} \cdot K_* = K_* \cdot e_{Ph} - e_{Ph} \cdot K_*, \quad K_* = F_* \cdot F_{E*}^{\mathsf{T}}, \tag{1.23}$$

которое позволяет выразить d_{Ph} через e_{Ph} . В результате получаем $d_E = d - d_{Ph}$, так как в соответствии с работой [5] $d_{\Theta} = 0$, если e_{Θ} определяется законом линейного температурного расширения.

Упругое поведение материала будем описывать упрощенным законом Синьорини [19, 20], используемым при умеренных упругих деформациях, которые могут иметь место, в частности, в металлах. В этом законе второй (симметричный) тензор напряжений Пиолы — Кирхгофа $P_{\rm II}$, имеющий смысл функции упругого отклика материала \tilde{g} в (1.1), принимает вид

$$P_{\rm II} \equiv \tilde{g} = \sqrt{I_3(C_E)} \left[(k_1 + k_2)C_E^{-1} - k_2C_E^{-2} \right], \tag{1.24}$$

где

$$k_1 = \Lambda(3 - I_1(C_E^{-1}))/2 + (\Lambda + G)(3 - I_1(C_E^{-1}))^2/8,$$

$$k_2 = G - (\Lambda + G)(3 - I_1(C_E^{-1}))/2,$$
(1.25)

 I_3 — третий главный инвариант соответствующего тензора; Λ , G — параметры материала, имеющие смысл параметра Ламе и модуля сдвига линейной упругости.

В работах [11, 21] на основе гипотезы об аддитивном представлении потенциала Гиббса, слагаемые которого пропорциональны объемным долям мартенситной и аустенитной фаз, зависимости упругих модулей от q ($0 \le q \le 1$) определяются соотношениями

$$\frac{1}{E(q)} = \frac{q}{E_M} + \frac{1-q}{E_A}, \qquad \frac{1}{G(q)} = \frac{q}{G_M} + \frac{1-q}{G_A},$$

из которых следует

$$E(q) = \frac{E_A}{1 + (\gamma_E - 1)q}, \qquad \gamma_E = \frac{E_A}{E_M},$$
$$G(q) = \frac{G_A}{1 + (\gamma_G - 1)q}, \qquad \gamma_G = \frac{G_A}{G_M}.$$

Здесь E_M , G_M , E_A , G_A — значения модуля Юнга и модуля сдвига для материала в мартенситном и аустенитном состояниях соответственно.

В настоящей работе используется зависимость упругих модулей от q

$$Z(q) = \begin{cases} Z_A, & q = 0, \\ Z_A - (Z_A - Z_M)(1 - \cos(\pi q))/2, & 0 < q < 1, \\ Z_M, & q = 1 \end{cases}$$
(1.26)

(Z = Eили Z = G), которая имеет непрерывную производную по q. При этом не используется гипотеза аддитивности потенциала. В общем случае Z_A при q = 0 и Z_M при q = 1 являются функциями температуры. Представляя выражение для Z в виде

$$Z = Z_* + \varepsilon Z',\tag{1.27}$$

где штрихом отмечено приращение Z при переходе из промежуточной конфигурации в близкую текущую, при 0 < q < 1 из (1.26) получаем

$$Z_* = Z_A - (Z_A - Z_M)(1 - \cos(\pi q_*))/2, \qquad Z' = (Z_{,q})_* q',$$

(1.28)
$$(Z_{,q})_* = \pi (Z_A - Z_M) \sin(\pi q_*)/2.$$

Используя известное представление параметра Ламе
 Λ через E и G,с учетом (1.27), (1.28) имеем

$$\Lambda = \Lambda_* + \varepsilon \Lambda', \quad \Lambda_* = \Lambda(q_*) = \frac{[E(q_*) - 2G(q_*)]G(q_*)}{3G(q_*) - E(q_*)}, \quad \Lambda' = (\Lambda_{,q})_*q',$$

$$(\Lambda_{,q})_* = \frac{[(E_{,q})_* - 2(G_{,q})_*]G_*}{3G_* - E_*} + \Lambda_* \frac{(G_{,q})_*}{G_*} + \Lambda_* \frac{[(E_{,q})_* - 3(G_{,q})_*]G_*}{3G_* - E_*}.$$
(1.29)

Поскольку в выражении для тензора напряжений, определенного в (1.24), параметры материала Λ и *G* зависят от температуры и объемной доли мартенситной фазы *q* (см. (1.26), (1.29)), а *q* в свою очередь зависит от температуры и интенсивности напряжений (см. (1.13)–(1.15)), учитывая зависимость (1.4), определяющее соотношение (1.2) для СПФ запишем в виде

$$T = T_* + \varepsilon T',$$

$$T' = -I_1(e)T_* + h \cdot T_* + T_* \cdot h^{\mathrm{T}} + \theta [Y_*(T, a(q), \Lambda, \Theta) + Y_*(T, a(q), G, \Theta)] + \sigma'_i [Y_*(T, 0, \Lambda, \sigma_i) + Y_*(T, 0, G, \sigma_i)] + L_*^{\mathrm{IV}} \cdot \cdot (e - e_{Ph} - e_{\Theta}). \quad (1.30)$$

Здесь $Y_*(\Phi, a, x, y) = (\Phi_{,x})_*[a(q_*)(x_{,\Theta})_* + (x_{,q})_*(q_{,y})_*]$ — тензорная функция тензорного аргумента Φ (тензор второго ранга) и скалярных аргументов $a(q_*)$, x, y, причем первое слагаемое в квадратных скобках учитывает зависимость от температуры величины x при неизменном параметре q_* ($q_* = 0$ или $q_* = 1$ в (1.26)): $a(q_*) = 1$ при $q_* = 0$ или $q_* = 1$ и $a(q_*) = 0$ при $0 < q_* < 1$, а второе слагаемое учитывает зависимость величины x от q_* при $0 < q_* < 1$. Принимая во внимание выражения (1.3), (1.24), (1.25), свертку $L_*^{IV} \cdots e_E$ можно представить в виде

$$L_*^{\text{IV}} \cdot e_E = [(k_1)_* + (k_2)_*][(C_1 \cdot e_E)C_1 - 2C_1 \cdot e_E \cdot C_1] - (k_2)_*[(C_2 \cdot e_E)C_1 + (C_1 \cdot e_E)C_2 - 2C_1 \cdot e_E \cdot C_2 - 2C_2 \cdot e_E \cdot C_1] + (\Lambda_* + G_*)(C_2 \cdot e_E)C_2, \quad (1.31)$$

где $C_1 = F_* \cdot C_{E*}^{-1} \cdot F_*^{\mathrm{T}}; C_2 = F_* \cdot C_{E*}^{-2} \cdot F_*^{\mathrm{T}}.$

В соотношении (1.30) приращение напряжения T' зависит от величины σ'_i , которая в соответствии с (1.18) в свою очередь зависит от T'. Эту связь можно учесть, подставляя в (1.18) выражение для T' из (1.30), в которое входит величина σ'_i , зависящая от свертки $S_* \cdots T'$. В результате получаем уравнение для определения этой свертки. Тогда предпоследнее слагаемое в выражении для T' в (1.30) принимает вид

$$\sigma'_{i}A_{*}(T) = \frac{3A_{*}(T)}{2(\sigma_{i})_{*} - 3S_{*} \cdots A_{*}(T)} S_{*} \cdots [-3S_{*}I_{1}(e) + h \cdot T_{*} + T_{*} \cdot h^{\mathrm{T}} + \theta B_{*}(T) + L_{*}^{\mathrm{IV}} \cdots (e - e_{Ph} - e_{\Theta})], \quad (1.32)$$

rge $A_{*}(T) = Y_{*}(T, 0, \Lambda, \sigma_{i}) + Y_{*}(T, 0, G, \sigma_{i}); B_{*}(T) = Y_{*}(T, a(q_{*}), \Lambda, \Theta) + Y_{*}(T, a(q_{*}), G, \Theta).$

Получим рекуррентные выражения типа (1.30) для производных $T_{,\Lambda}$ и $T_{,G}$, содержащихся в тензорной функции Y_* в (1.30). Заметим, что $\tilde{g}_{,\Lambda} = \tilde{g}$ при $\Lambda = 1$, G = 0 и $\tilde{g}_{,G} = \tilde{g}$ при $\Lambda = 0$, G = 1. Следовательно, в (1.30) $Y_*(\Phi, a(q_*), x, y) = 0$. Тогда

$$T_{,\Lambda} = [1 - \varepsilon I_1(e)](T_{,\Lambda})_* + \varepsilon h \cdot (T_{,\Lambda})_* + \varepsilon (T_{,\Lambda})_* \cdot h^{\mathrm{T}} + \varepsilon (L_{,\Lambda}^{\mathrm{IV}})_* \cdot (e - e_{Ph} - e_{\Theta}),$$

$$(L_{,\Lambda}^{\mathrm{IV}})_* = L_*^{\mathrm{IV}}|_{\Lambda=1, G=0};$$

$$T_{,G} = [1 - \varepsilon I_1(e)](T_{,G})_* + \varepsilon h \cdot (T_{,G})_* + \varepsilon (T_{,G})_* \cdot h^{\mathrm{T}} + \varepsilon (L_{,G}^{\mathrm{IV}})_* \cdot (e - e_{Ph} - e_{\Theta}),$$

$$(1.33)$$

$$G = [1 - \varepsilon I_1(e)](T_{,G})_* + \varepsilon h \cdot (T_{,G})_* + \varepsilon (T_{,G})_* \cdot h^{\mathrm{T}} + \varepsilon (L^{\mathrm{IV}}_{,G})_* \cdot (e - e_{Ph} - e_{\Theta}),$$

$$(L^{\mathrm{IV}}_{,G})_* = L^{\mathrm{IV}}_* \big|_{\Lambda = 0, \, G = 1}.$$
(1.34)

2. Вариационная постановка и решения краевых задач. Применяя стандартную процедуру Галеркина к уравнениям равновесия и граничным условиям в напряжениях, а также учитывая связи, наложенные на перемещения на поверхности S_u , получаем известную слабую (вариационную) постановку задачи в лагранжевой формулировке для текущей конфигурации в любой момент времени t

$$\int_{S} \boldsymbol{Q} \cdot \delta \boldsymbol{U} \, dS + \int_{V} \rho \boldsymbol{K} \cdot \delta \boldsymbol{U} \, dV - \int_{V} T \cdot \cdot \tilde{\nabla} \delta \boldsymbol{R} \, dV = 0.$$
(2.1)

Здесь Q — вектор поверхностных сил, заданных в текущей конфигурации на части поверхности S, ограничивающей объем V; K — вектор массовых сил; U = R - r — вектор перемещений из начальной конфигурации в текущую; R, r — радиус-векторы положения точек тела в текущей и начальной конфигурациях соответственно; δ — символ вариации.

Поверхность S и объем V в текущей конфигурации в общем случае неизвестны. Поэтому уравнение (2.1) следует переформулировать по отношению к какой-либо известной конфигурации. В частности, по отношению к начальной конфигурации (2.1) имеет вид

$$\int_{S_0} \boldsymbol{Q}_0 \cdot \delta \boldsymbol{U} \, dS_0 + \int_{V_0} \rho_0 \boldsymbol{K} \cdot \delta \boldsymbol{U} \, dV_0 - \frac{1}{2} \int_{V_0} P_{\mathrm{II}} \cdot \delta C \, dV_0 = 0.$$
(2.2)

Здесь $C = F^{\mathrm{T}} \cdot F$ — мера Коши — Грина полных деформаций; $\mathbf{Q}_0 = J\sqrt{\mathbf{n} \cdot C^{-1} \cdot \mathbf{n}} \mathbf{Q}$ — вектор сил, отнесенных к единичной площади поверхности S_0 , ограничивающей объем V_0 в начальной конфигурации; \mathbf{n} — внешняя единичная нормаль к поверхности в начальной конфигурации.

При отсутствии массовых и поверхностных сил вариационное уравнение (2.2) сводится к равенству

$$\int_{V_0} P_{\mathrm{II}} \cdot \delta C \, dV_0 = 0. \tag{2.3}$$

Учитывая, что $P_{\text{II}} = JF^{-1} \cdot T \cdot F^{-\text{т}}$, из соотношений (1.30), (1.32) получаем

$$P_{\mathrm{II}} = P_{\mathrm{II}*} + \varepsilon \Big\{ \theta B_*(P_{\mathrm{II}}) + \frac{3A_*(P_{\mathrm{II}})}{2(\sigma_i)_* - 3S_* \cdots A_*(T)} \left[-2(\sigma_i)_*^2 I_1(e) + 2S_* \cdots (T_* \cdot h^{\mathrm{T}}) + \theta S_* \cdots B_*(T) + S_* \cdots L_*^{\mathrm{IV}} \cdots (e - e_{Ph} - e_{\Theta}) \right] + J_* F_*^{-1} \cdot (L_*^{\mathrm{IV}} \cdots (e - e_{Ph} - e_{\Theta})) \cdot F_*^{-\mathrm{T}} \Big\}.$$

В этом соотношении одним из аргументов тензорных функций A_* и B_* являются производные $P_{\text{II},\Lambda}$ и $P_{\text{II},\text{G}}$, которые нетрудно получить из выражений (1.33), (1.34):

$$P_{\text{II},\Lambda} = (P_{\text{II},\Lambda})_* + \varepsilon J_* F_*^{-1} \cdot [(L_{,\Lambda}^{\text{IV}})_* \cdot \cdot (e - e_{Ph} - e_{\Theta})] \cdot (F_*^{-})^{\text{T}}, \quad (L_{,\Lambda}^{\text{IV}})_* = L_*^{\text{IV}}\big|_{\Lambda=1,\,G=0},$$

$$P_{\text{II},\text{G}} = (P_{\text{II},\text{G}})_* + \varepsilon J_* F_*^{-1} \cdot [(L_{,G}^{\text{IV}})_* \cdot \cdot (e - e_{Ph} - e_{\Theta})] \cdot (F_*^{-})^{\text{T}}, \quad (L_{,G}^{\text{IV}})_* = L_*^{\text{IV}}\big|_{\Lambda=0,\,G=1}.$$

С использованием соотношений (1.5)–(1.8) мера полных деформаций Коши — Грина относительно промежуточной конфигурации с точностью до квадратичных по ε слагаемых представляется в виде

$$C = C_* + 2\varepsilon F_*^{\mathrm{T}} \cdot e \cdot F_* + \varepsilon^2 F_*^{\mathrm{T}} \cdot h^{\mathrm{T}} \cdot h \cdot F_*.$$

Тогда

$$\delta C = 2\varepsilon F_*^{\mathrm{T}} \cdot \delta e \cdot F_* + \varepsilon^2 F_*^{\mathrm{T}} \cdot \delta h^{\mathrm{T}} \cdot h \cdot F_* + \varepsilon^2 F_*^{\mathrm{T}} \cdot h^{\mathrm{T}} \cdot \delta h \cdot F_*.$$

В результате при переходе из промежуточной конфигурации в близкую текущую вариационное уравнение (2.3), записанное относительно приращения вектора полного перемещения, связывающего промежуточную и текущую конфигурации, принимает вид

$$\int_{V_0} J_* T_* \cdots \delta e \, dV_0 + \int_{V_0} J_* (T_* \cdot h^{\mathrm{T}}) \cdots \delta h \, dV_0 + \theta \int_{V_0} J_* B_*(T) \cdots \delta e \, dV_0 + \\
+ \int_{V_0} J_* \frac{3A_*(T)}{2(\sigma_i)_* - 3S_* \cdots A_*(T)} \left[-2(\sigma_i)_*^2 I_1(e) + 2S_* \cdots (T_* \cdot h^{\mathrm{T}}) + \theta S_* \cdots B_*(T) + \\
+ S_* \cdots L_*^{\mathrm{IV}} \cdots (e - e_{Ph} - e_{\Theta}) \right] dV_0 + \int_{V_0} J_* (L_*^{\mathrm{IV}} \cdots (e - e_{Ph} - e_{\Theta})) \cdots \delta e \, dV_0 = 0. \quad (2.4)$$

Здесь $\delta e = (\stackrel{*}{\nabla} \delta \boldsymbol{u} + (\stackrel{*}{\nabla} \delta \boldsymbol{u})^{\mathrm{T}})/2; \delta h = (\stackrel{*}{\nabla} \delta \boldsymbol{u})^{\mathrm{T}}.$

Приведем решения трех задач, которые являются тестовыми при верификации предложенных формулировок и описании эффектов, возникающих при использовании СПФ.

Задача 1. Две пластины одинаковой длины l = 0,1 м (одна пластина толщиной $h_1 = 0,5 \cdot 10^{-3}$ м изготовлена из бериллиевой бронзы БрБ2, другая толщиной $h_2 = 10^{-3}$ м — из СПФ (равноатомного никелида титана)) скреплены по длине без натяга. Двухслойная пластина находится в условиях плоской относительно ширины деформации при температуре Θ_A , соответствующей полностью аустенитному состоянию СПФ. Один торец образца закреплен (на нем задаются нулевые перемещения), остальные поверхности свободны от нагрузок. Сначала образец охлаждается до температуры Θ_M , соответствующей полностью до температуры Θ_M , соответствующей полностью ЛПФ, а затем вновь нагревается до температуры Θ_A . Таким образом, в СПФ происходит сначала прямое мартенситное превращение, а затем обратное.

Задача 2. До скрепления двух пластин (см. задачу 1) пластина из СПФ толщиной $h_2 = 10^{-3}$ м при температуре Θ_A , соответствующей полностью аустенитному состоянию этого материала, подвергается одноосному однородному растяжению по длине напряжением 100 МПа. Это напряжение соответствует данным эксперимента, описанного в работе [22], в котором груз массой 1 кг растягивает пластину с поперечным сечением 3 мм × 40 мкм. Затем пластина охлаждается до температуры Θ_M , соответствующей полностью мартенситному состоянию СПФ, после чего нагрузка снимается. Пластины, имеющие одинаковую длину l = 0.05 м, скрепляются по длине без натяга при температуре Θ_M . Полагается, что при этой температуре пластина из бронзы имеет толщину $h_1 = 0.5 \cdot 10^{-3}$ м. Полученная двухслойная пластина, находящаяся в условиях плоской относительно ширины деформации, закрепляется по одному из торцов (на нем задаются нулевые перемещения), при этом остальные поверхности свободны от нагрузок. Пластина нагревается до температуры Θ_A , соответствующей полностью аустенитному состоянию СПФ, а затем охлаждается до температуры Θ_M .

Материал	$\rho \cdot 10^{-3},$ $_{\rm KG/M^3}$	E, ГПа	ν	G, ΓΠa	$\begin{array}{c} \beta_{\Theta} \cdot 10^6, \\ \mathrm{K}^{-1} \end{array}$	$c_T \cdot 10^3, \ { m MДж}/\ ({ m kr} \cdot { m K})$	$\lambda \cdot 10^5, \ \mathrm{MBt}/ \ (\mathrm{M} \cdot \mathrm{K})$	$\begin{array}{c} \alpha_S \cdot 10^6, \\ \mathrm{MBt}/\\ \mathrm{(M \cdot K)} \end{array}$	M_s, \mathbf{K} (A_s, \mathbf{K})	$\begin{array}{c} M_f, {\rm K} \\ (A_f, {\rm K}) \end{array}$	Источник
Бериллиевая бронза (БрБ2) Сплав с па-	8,2	135	0,35	50	16,6	0,38	17,0	18,0			[23-25]
Мартенсит Аустенит	$^{6,5}_{6,5}$	$28 \\ 84$	$0,3 \\ 0,3$	28 84	$^{6,6}_{11,0}$	$^{0,5}_{0,5}$	$^{1,0}_{1,0}$	$18,0 \\ 18,0$	$313 \\ 323$	293 343	$\begin{matrix} [12, \ 1518] \\ [12, \ 1518] \end{matrix}$

Механические и теплофизические характеристики материалов

Примечание. Значения теплоемкости, теплопроводности и коэффициента теплопередачи осреднены по двум фазам (мартенсит и аустенит).

Задача 3. Пластина из СПФ длиной l = 0.05 м и толщиной $h = 1.5 \cdot 10^{-3}$ м закрепляется по одному из торцов и при температуре Θ_A , находясь в условиях плоской относительно ширины деформации, изгибается касательным напряжением 20 МПа, приложенным к другому торцу, и охлаждается до температуры Θ_M , после чего нагрузка снимается. Полученная изогнутая пластина вновь нагревается до температуры Θ_A .

Механические и теплофизические характеристики материалов, для которых решаются указанные три задачи, приведены в таблице (ρ — плотность, E — модуль Юнга, ν — коэффициент Пуассона, G — модуль сдвига, β_{Θ} — коэффициент линейного температурного расширения, M_s , M_f , A_s , A_f — температуры фазовых переходов). В таблице приведены также значения теплоемкости c_T , теплопроводности λ и коэффициента теплопередачи α_S , которые в настоящей работе не используются.

Размеры h_1 и h_2 в задачах 1 и 2 выбираются из указанного в работах [23, 24] условия максимального прогиба двухслойной пластины. В [23, 24] угол изгиба при нагревании (охлаждении) пластины длиной l, состоящей из двух слоев толщиной h_1 , h_2 с модулями Юнга E_1 , E_2 и температурными коэффициентами линейного расширения β_1 , β_2 , определяется соотношением $\varphi = k_0 l \Delta \theta$, где $\Delta \theta$ — приращение температуры; коэффициент k_0 зависит от h_1 , h_2 , E_1 , E_2 , β_1 , β_2 и принимает наибольшее значение $\max k_0 = (3/2)(\beta_1 - \beta_2)/(h_1 + h_2)$ при условии $E_1h_1^2 - E_2h_2^2 = 0$, из которого следует, что $h_1/h_2 = \sqrt{E_2/E_1}$. Задавая для E_1 значение модуля Юнга для бронзы, а для E_2 значение модуля Юнга для мартенситной фазы СПФ, получаем $h_1/h_2 = 0.455 \approx 0.5$, откуда следует, что $h_1 = 0.5h_2$. Длина l выбиралась из условия получения достаточно большого угла φ и соответствующего ему достаточно большого перемещения w свободного конца двухслойной пластины. При наибольшем k₀ угол и перемещение определяются соотношениями $\varphi = 3 \Delta \epsilon l/(2(h_1 + h_2)), w = \varphi l/2$, где $\Delta \epsilon = (\beta_1 - \beta_2) \Delta \theta$. Согласно данным работы [23] наибольшее значение $\beta_1 - \beta_2$ для биметаллов, используемых в реальных приборах и конструкциях, составляет $20 \cdot 10^{-6} \text{ K}^{-1}$; при $\Delta \theta = 100 \text{ K}$ значение $\Delta \epsilon$ становится равным 0,002, т. е. 0,2 %. Для биметалла, рассматриваемого в настоящей работе, наибольшее значение $\beta_1 - \beta_2$ равно 10⁻⁵ K⁻¹, а интервал температур фазового перехода $\Delta \theta$ ($\Delta \theta = M_s - M_f$ или $\Delta \theta = A_f - A_s$) составляет примерно 30 К (см. таблицу). Следовательно, температурная деформация $\Delta \epsilon \approx 0.03$ %. При этом, как показано ниже, фазовые деформации могут быть на два порядка больше.

Вернемся к соотношениям (1.19), (1.20), которые при малых деформациях имеют вид

(0)

$$de_{Ph} = (\beta g + c_0 S + a_0 e_{Ph}) dq, \quad dq > 0;$$
(2.5)

$$de_{Ph} = \left(\frac{a_0 e_{Ph}^{(0)}}{\exp(a_0 q_0) - 1} + a_0 e_{Ph}\right) dq, \quad dq < 0.$$
(2.6)

Поскольку далее рассматриваются только фазовые деформации, для упрощения индекс Ph опускается. Рассмотрим прямолинейный стержень из СПФ, находящийся в одноосном напряженном состоянии (OHC) при постоянных напряжениях. Орт k направлен по оси стержня. Тогда напряжение равно $T = \tilde{T}kk$, а его девиаторная часть — $S = -(1/3)\tilde{T}(ii + jj) + (2/3)\tilde{T}kk$, причем \tilde{T} и S постоянны в процессе фазового перехода. В этом случае уравнения (2.5), (2.6) имеют простое решение. Из уравнения (2.5) для компоненты, соответствующей диаде kk, следует равенство

$$\frac{de_k}{\beta + 2c_0\tilde{T}/3 + a_0e_k} = dq \quad \Rightarrow \quad e_k = \frac{\beta + 2c_0T/3}{a_0} \left[\exp(a_0) - 1\right], \tag{2.7}$$

для компонент, соответствующих диадам ii и jj, — равенства

$$\frac{de_i}{\beta - c_0 \tilde{T}/3 + a_0 e_i} = dq \quad \Rightarrow \quad e_i = \frac{\beta - c_0 \tilde{T}/3}{a_0} \left[\exp\left(a_0\right) - 1\right]. \tag{2.8}$$

Здесь интегрирование по фазовым деформациям осуществляется от 0 до e_k или e_i , а по параметру q — от 0 до 1. При отсутствии напряжений соотношения (2.7) и (2.8) совпадают. Из уравнения (2.6) следует равенство

$$e_n = \frac{e_n^{(0)}}{\exp(a_0 q_0)} \left[\exp\left(-a_0\right) - 1\right] + e_n^{(0)} \exp\left(-a_0\right), \qquad n = i, j, k,$$
(2.9)

где интегрирование по фазовым деформациям осуществляется от $e_n^{(0)}$ до e_n , а по параметру q — от q_0 до 0; q_0 , $e_n^{(0)}$ — значения q и e_n в начальной точке процесса обратного мартенситного превращения. Задавая для $e_n^{(0)}$ деформации e_k (2.7) или e_i (2.8) и полагая $q_0 = 1$, из (2.9) получаем $e_n = 0$, т. е. в процессе прямого превращения возникают деформации, причем при отсутствии напряжения они одинаковы, а в процессе обратного превращения они исчезают.

Используя соотношение (2.7) и константы для СПФ (см. (1.15), (1.19), (1.20)), вычислим осевую деформацию e_k , возникающую в процессе полного прямого превращения. При отсутствии напряжения имеем $e_k = 0,0017$, что сопоставимо с температурными деформациями при изменении температуры на 100 К. При растягивающем напряжении T = 100 МПа имеем $e_k = 0,029$, что приблизительно в 100 раз больше сопровождающих этот процесс температурных деформаций.

Полученные выше оценки справедливы при малых перемещениях и деформациях, но позволяют обосновать выбор толщины каждого слоя пластины и ее длину.

Для решения всех трех задач используются лагранжевы (материальные) координаты. Представим алгоритм решения этих задач. Процесс охлаждения (нагревания) разбивается на ряд достаточно малых шагов. Величины с индексом "*" известны из решения задачи на предыдущем шаге. Задается изменение температуры θ . Численное решение уравнения (2.4) осуществляется методом конечных элементов. В результате определяем прираще-

ние вектора перемещений **u** на данном шаге. Зная **u**, строим поля $h = (\nabla \mathbf{u})^{\mathrm{T}}$, e и d. Используя (1.21), (1.22), определяем e_{Ph} , по известному значению θ получаем $e_{\Theta} = \beta_{\Theta} \theta g$ и из (1.23) находим d_{Ph} и d_{Θ} . С помощью этих величин можно построить тензоры $e_E = e - e_{Ph} - e_{\Theta}$ и $d_E = d - d_{Ph} - d_{\Theta}$, которые в свою очередь позволяют найти тензоры F_E , F_{Ph} , F_{Θ} (1.6)–(1.8), \tilde{E}_{Ph} (1.12) и все зависящие от них кинематические величины. По соотношениям (1.30)–(1.32) вычисляется T, по (1.16)–(1.18) — σ_i , ξ , q, Θ , по (1.27)–(1.29) — E, G, Λ и по (1.33), (1.34) — $T_{,\Lambda}$, $T_{,G}$. Все эти величины соответствуют концу предыдущего шага, являясь в то же время начальными для следующего. Присваивая указанным величинам

a — задача 1,
 b — задача 2,b — задача 3; штриховая линия — начальное состояние, сплошная — конечное состояние

индекс "*", решаем вариационное уравнение (2.4) для следующего шага. В начальный момент времени в ненагруженной и недеформированной конфигурации во всем материале $T_* = (T_A)_* = (T_G)_* = 0, F_* = F_{E*} = F_{Ph*} = F_{\Theta*} = g, q = 0, \Lambda = \Lambda_A, G = G_A.$

При численном решении всех трех задач использовались сетка треугольных конечных элементов и квадратичная аппроксимация поля приращения перемещений. На каждом шаге полагалось, что изменение температуры $\theta = 0.5$ K, и учитывалось температурное расширение материалов.

Задача 1 решалась на сетке размером 12 × 800: для бронзы — 4 × 800, для СПФ — 8 × 800. На рис. 2, *а* показана форма двухслойной пластины (нижний слой из СПФ) в начальном положении при температуре Θ_A (штриховая линия), в котором СПФ находится полностью в аустенитном состоянии, и при охлаждении до температуры Θ_M (сплошная линия), когда СПФ находится полностью в мартенситном состоянии. При охлаждении в бронзе и СПФ возникают деформации температурного сжатия, причем в бронзе они выше, чем в СПФ, так как коэффициент температурного расширения больше (см. таблицу). Поэтому СПФ находится в основном в растянутом состоянии и возникающие в нем наряду с температурными фазовые деформации при аустенитно-мартенситном переходе являются также в основном деформациями растяжения. Все это приводит к изгибу вверх двухслойной пластины. Рассчитанное значение перемещения свободного конца пластины (практически любой его точки) составляет 5,64 · 10⁻³ м (5,64 % длины). На рис. 2,*a* перемещение и длина пластины принимает ту же форму, что и в начальном состоянии (штриховая линия).

Задача 2 решалась на сетке размером 12×400 : для бронзы — 4×400 , для СПФ — 8×400 (так как длина пластины в два раза меньше, чем в задаче 1). На рис. 2,6 показана

форма двухслойной пластины (нижний слой из СПФ) в начальном положении (штриховая линия), когда пластина из СПФ, имеющая температуру Θ_A , соответствующую полностью аустенитному состоянию, подвергается одноосному однородному растяжению по длине напряжением 100 МПа. Затем пластина охлаждается до температуры Θ_M , соответствующей полностью мартенситному состоянию, и после снятия нагрузки скрепляется без натяга с пластиной из бронзы. При этом в пластине из СПФ накапливаются и "замораживаются" фазовые деформации растяжения, которые при последующем нагревании до температуры Θ_A исчезают. В результате двухслойная пластина стягивается и изгибается вниз (сплошная линия на рис. 2,6, перемещение и длина пластины представлены в одном масштабе). При этом свободный конец пластины (его средняя точка) смещается на расстояние, равное $2,8 \cdot 10^{-2}$ м (55,88 % длины). Последующее охлаждение двухслойной пластины до температуры Θ_M приводит к практически полному возвращению ее в начальное положение (штриховая линия).

Задача 3 решалась на сетке размером 12×400 . На рис. 3,6 штриховой линией показано начальное состояние пластины из СПФ при температуре Θ_A , а сплошной — ее состояние после изгиба при температуре Θ_A касательным напряжением 20 МПа, приложенным к свободному торцу, с последующим охлаждением до температуры Θ_M и снятием нагрузки (перемещение и длина пластины представлены в одном масштабе). В этом случае в пластине накапливаются и "замораживаются" фазовые деформации растяжения-сжатия, которые при последующем нагревании до температуры Θ_A исчезают. В результате пластина выпрямляется и возвращается в начальное состояние (штриховая линия на рис. 2, ϵ). При этом свободный конец пластины (его средняя точка) смещается на расстояние, равное $1,15 \cdot 10^{-2}$ м (23,06 % длины).

Заключение. В работе построена модель поведения сплава с памятью формы при конечных деформациях. Использован достаточно полно изложенный в [6] подход, позволяющий строить согласованные с принципами термодинамики и объективности уравнения (в том числе эволюционные с соответствующей объективной производной), определяющие поведение сред в термоупруго-неупругих процессах. Представленная модель протестирована на ряде задач.

ЛИТЕРАТУРА

- 1. Новокшанов Р. С., Роговой А. А. О построении эволюционных определяющих соотношений для конечных деформаций // Изв. РАН. Механика твердого тела. 2002. № 4. С. 77–95.
- 2. Новокшанов Р. С., Роговой А. А. Эволюционные определяющие соотношения для конечных вязкоупругих деформаций // Изв. РАН. Механика твердого тела. 2005. № 4. С. 122–140.
- 3. Роговой А. А. Определяющие соотношения для конечных упруго-неупругих деформаций // ПМТФ. 2005. Т. 46, № 5. С. 138–149.
- 4. Роговой А. А. Термодинамика упруго-неупругого процесса при конечных деформациях // ПМТФ. 2007. Т. 48, № 4. С. 144–153.
- Роговой А. А. Кинематика упруго-неупругого процесса при конечных деформациях // ПМТФ. 2008. Т. 49, № 1. С. 165–172.
- Rogovoy A. A. Formalized approach to construction of the state equations for complex media under finite deformations // Contin. Mech. Thermodyn. 2012. V. 24. P. 81–114.
- 7. Трусделл К. Первоначальный курс рациональной механики сплошных сред. М.: Мир, 1975.
- Мовчан А. А., Сильченко Л. Г., Казарина С. А., Тант Зин Аунг. Определяющие соотношения для сплавов с памятью формы — микромеханика, феноменология, термодинамика // Учен. зап. Казан. ун-та. Сер. Физ.-мат. науки. 2010. Т. 152, кн. 4. С. 180–194.

- Boyd J. G., Lagoudas D. C. A thermodynamical constitutive model for shape memory materials. Pt 1. The monolithic shape memory alloy // Intern. J. Plasticity. 1996. V. 12, N 6. P. 805–842.
- Qidwai M. A., Lagoudas D. C. Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms // Intern. J. Numer. Methods Engng. 2000. V. 47. P. 1123–1168.
- Lim T. J., McDowell D. L. Cyclic thermomechanical behavior of a polycrystalline pseudoelastic shape memory alloy // J. Mech. Phys. Solids. 2002. V. 50. P. 651–676.
- Auricchio F., Petrini L. A three-dimensional model describing stress-temperature induced solid phase transformations: thermomechanical coupling and hybrid composites applications // Intern. J. Numer. Methods Engng. 2004. V. 61. P. 716–737.
- Auricchio F., Petrini L. A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems // Intern. J. Numer. Methods Engng. 2004. V. 61. P. 807–836.
- 14. Мовчан А. А. Выбор аппроксимации диаграммы перехода и модели исчезновения кристаллов мартенсита для сплавов с памятью формы // ПМТФ. 1995. Т. 36, № 2. С. 173–181.
- 15. Мовчан А. А., Шелымагин П. В., Казарина С. А. Определяющие уравнения для двухэтапных термоупругих фазовых превращений // ПМТФ. 2001. Т. 42, № 5. С. 152–160.
- 16. Мовчан А. А., Сильченко Л. Г. Аналитическое решение связной задачи об устойчивости пластины из сплава с памятью формы при обратном мартенситном превращении // Изв. РАН. Механика твердого тела. 2004. № 5. С. 164–178.
- 17. Мовчан А. А., Чжо Ту Я. Решение начально-краевых задач о прямом и обратном превращении в рамках нелинейной теории деформирования сплавов с памятью формы // Механика композиц. материалов и конструкций. 2007. Т. 13, № 4. С. 452–468.
- 18. Мовчан А. А., Чжо Ту Я. Решение связанной термоэлектромеханической задачи для стержня из сплава с памятью формы в рамках теории нелинейного деформирования этих материалов // Механика композиц. материалов и конструкций. 2008. Т. 14, № 3. С. 443–460.
- 19. Лурье А. И. Теория упругости. М.: Наука, 1970.
- 20. Лурье А. И. Нелинейная теория упругости. М.: Наука, 1980.
- 21. Мовчан А. А. Учет переменности упругих модулей и влияния напряжений на фазовый состав в сплавах с памятью формы // Изв. РАН. Механика твердого тела. 1998. № 1. С. 79–90.
- 22. Иржак А. И., Истомин В. В., Коледов В. В. и др. Упорядочение, мартенситное превращение и эффект памяти формы в субмикронных образцах быстрозакаленного сплава Ni₅₀Ti₂₅Cu₂₅ // Изв. РАН. Сер. физ. 2009. Т. 73, № 8. С. 1141–1143.
- 23. Асс Б. А. Детали и узлы авиационных приборов и их расчет / Б. А. Асс, Н. М. Жукова. М.: Оборонгиз, 1960.
- 24. Андреева Л. Е. Упругие элементы приборов. М.: Машгиз, 1962.
- 25. **Физические** величины: Справ. / А. П. Бабичев, Н. А. Бабушкина, А. М. Братковский и др.; Под ред. И. С. Григорьева, Е. З. Мейлихова. М.: Энергоатомиздат, 1991.

Поступила в редакцию 28/VI 2012 г.