2009. Том 50, № 3

Май – июнь

C. 443 – 450

УДК 538.913

¹Н ЯМР УТОЧНЕНИЕ СТРУКТУРЫ ПОДРЕШЕТКИ ГОСТЕЙ И МОЛЕКУЛЯРНОЙ ДИНАМИКИ В УЛЬТРАТОНКИХ КАНАЛАХ СОЕДИНЕНИЯ ВКЛЮЧЕНИЯ [Zn₂(C₈H₄O₄)₂(C₆H₁₂N₂)]·*n*(H₃C)₂NCHO

© 2009 А.В. Сабылинский^{1,2}, С.П. Габуда²*, С.Г. Козлова^{2,3}, Д.Н. Дыбцев^{2,3}, В. П. Федин^{2,3}

¹*Технологический университет им. В.Г. Шухова, Белгород*

²Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

³Новосибирский государственный университет

Статья поступила 23 июля 2008 г.

По данным ¹Н ЯМР изучена локализация и молекулярная подвижность лигандов решетки хозяина ($[C_8H_4O_4]^{2+}$, $[C_6H_{12}N_2]^0$) и гостевых молекул диметилформамида (CH_3)₂NCHO в составе соединения включения [$Zn_2(C_8H_4O_4)_2(C_6H_{12}N_2)$]· $n(H_3C)_2$ NCHO. Показано, что при комнатной температуре имеет место упорядоченная ориентация наибольших осей гостевых молекул диметилформамида параллельно осям симметрии C_4 и разупорядоченность ориентации плоскостей симметрии этих молекул с сохранением тетрагональной сингонии соединения включения. При понижении температуры имеет место фазовый переход, связанный с упорядочением в подрешетке гостевых молекул.

Ключевые слова: металлорганический сорбент, диметилформамид, молекулярная подвижность, ¹Н ЯМР.

введение

Интерес к определению способа вхождения молекул гостей в ультратонкие каналы пористых кристаллов и нанотруб обусловлен как фундаментальными проблемами супрамолекулярной химии, так и поисками более эффективных сорбентов водорода и разработками технологий топливных элементов [1, 2]. Обзор зарубежных исследований структуры и свойств наноструктурированных объектов приведен в монографии [3]. Методами спектроскопии ^{1,2}Н ЯМР исследованы свойства и молекулярная динамика гостевых частиц H₂, D₂, HD в каналах угольных нанотрубок [4], в твердотельной фазе фуллерена С₆₀ [5] и в высокопористом металлорганическом сорбенте [2]. С помощью метода малоуглового рассеяния рентгеновского излучения проводились исследования сорбции молекул воды угольными нанотрубками [6]. Следует отметить, что использование методов дифракции нейтронов и рентгеновского излучения для анализа спиновых состояний и пространственного распределения плотности вероятности протонов и дейтеронов в подсистеме гостей в соединениях включения сопряжено со значительными трудностями, обусловленными явлениями разупорядочения, а во многих случаях и несоразмерности гостевой и хозяйской подсистем. Данное обстоятельство обусловливает интерес к использованию недифракционных методов твердотельного ЯМР и ЯКР для исследования особенностей динамики строительных блоков решетки хозяина в новых высокопористых металлорганических сорбентах [7,8], в том числе в аморфном поли(этилентерефталате) [9] и поли(бутилентерефталате) [10]. Перспективность этих методов подтверждают также результаты анализа способов вхождения сложных молекул в структуру соединений включения, локализации и разупорядоченности гостевых молекул воды в каналах цеолитовых структур [11],

^{*} E-mail: gabuda@che.nsk.su

Рис. 1. Строение гостевых молекул ДМФА (*a*), лигандов $C_6H_{12}N_2(\delta)$ и $[C_8H_4O_4]^{2-}(\epsilon)$

молекул C₂Cl₆ в каналах тиомочевины [12], молекул ацетона в межслоевом пространстве фторграфита [13] и в каналах пиларирован-

ного терефталата цинка Zn₂(C₈H₄O₄)₂(C₆H₁₂N₂) (ПТФЦ) [14], относящегося к семейству новых широкопористых металлорганических сорбентов.

Структура ПТФЦ, свободного от гостевых молекул, характеризуется тетрагональной сингонией, пр. гр. P4/mmm (N_{0} 123), параметры решетки: a = 10,929(2), c = 9,608(1) Å, Z = 1 (при T = 223 K) [15]. Каркас сорбента образован двумерными квазитетрагональными слоями [Zn₂(C₈H₄O₄)₂]∞∞, "сшитыми" между собой через атомы Zn с помощью пилларных молекул 1,4диазабицикло[2.2.2]октана C₆H₁₂N₂ (рис. 1). В итоге образуется ажурная пористая структура, пронизанная вдоль четверных осей *c* каналами сечением $\sim 7.5 \times 7.5$ Å. Соседние каналы соединены между собой более узкими переходными "окнами" сечением ~4×4 Å в направлении осей а и b. Полученное в [15] соединение включения ПТФЦ с диметилформамидом [$Zn_2(C_8H_4O_4)_2 \times$ $(C_6H_{12}N_2)$ +4[(H₃C)₂NCHO] · 1/2H₂O характеризуется тетрагональной сингонией, пр. гр. 14/*тст* (№ 140), параметры решетки: a = 15,063(2), c = 19,247(5) Å, Z = 4 (при T = 243 K) [15]. Гостевые молекулы диметилформамида (ДМФА) (см. рис. 1) были локализованы вблизи переходных окон, а молекулы воды — в центре больших полостей на осях симметрии C_4 [15]. Низкотемпературное исследование ПТФЦ [1] подтвердило полученные в [15] результаты как в отношении структуры, так и его сорбционных свойств по отношению к водороду, азоту, воде, бензолу, циклогексану, диметилэфиру, н-гексану, метанолу, этанолу и др. гостям. Было обнаружено, что замена подсистемы гостя существенно влияет на симметрию кристаллической решетки хозяина, однако динамика гостевых молекул и характер взаимодействия гость-хозяин в исходном соединении включения ПТФЦ—ДМФА (или [$Zn_2(C_8H_4O_4)_2(C_6H_{12}N_2)$]·n[($H_3C)_2$ NCHO]) ранее не были исследованы.

В данной работе проводится анализ спиновых состояний и пространственного распределения плотности вероятности нахождения протонов (протонной структуры) и динамики гостевых молекул в структуре соединения включения ПТФЦ с ДМФА с помощью спектроскопии ¹Н ЯМР.

ЭКСПЕРИМЕНТ

Синтез образцов с разной степенью насыщения осуществляли по методике, аналогичной уже описанной в работе [15]. Стехиометрические количества нитрата цинка $Zn(NO_3)_2 \cdot 6H_2O$ (2 экв.), терефталевой кислоты $C_8H_6O_4$ (2 экв.) и диазабициклооктана $C_6H_{12}N_2$ (1 экв.) нагревали при 90 °C в растворе ДМФА в течение двух дней. Белый мелкокристаллический осадок фильтровали и разделяли на две половины. Первую часть высушивали на фильтре током воздуха в течение 30 мин. Вторую часть промывали диэтиловым эфиром и высушивали при 70 °C в течение часа. Порошковые рентгенограммы обоих образцов показали наличие фаз, идентичных [$Zn_2(C_8H_4O_4)_2(C_6H_{12}N_2)$] · 4(H_3C)₂NCHO · 1/2H₂O [15]. Точный состав гостевых ДМФА определяли по потере массы методом ТГА, который установил формулы [$Zn_2(C_8H_4O_4)_2(C_6H_{12}N_2)$] · 4,4(H_3C)₂NCHO для первого и [$Zn_2(C_8H_4O_4)_2(C_6H_{12}N_2)$] · 3,6(H_3C)₂NCHO для второго образца.

Исследование способа вхождения атомов водорода и молекулярной подвижности в подсистемах решетки хозяина (каркаса сорбента) и гостей проводили с помощью методики спектроскопии ¹Н ЯМР гетерофазных систем [16], позволяющей регистрировать спектральные особенности, амплитуды которых могут различаются на 2—3 порядка. Применялся спектрометр ЯМР с ларморовской частотой $v_L = 23,0$ МГц, стационарное магнитное поле $B_0 = 0,54$ Т. Были получены симметричные относительно v_L многокомпонентные спектры ¹Н ЯМР, представленные на рис. 2 и 3. Анализ их тонкой структуры позволяет выделить четыре дублета

Рис. 2. Спектр ¹Н ЯМР пустого каркаса поликристаллического сорбента ПТФЦ $Zn_2(C_8H_4O_4)_2(C_6H_{12}N_2)$, T = 295 К (*a*).

Сплошная кривая — спектр поглощения, \circ — его первая производная; δB_1 и δB_2 — расстояния между максимумами крутизны компонент спектра, δB — полуширина центральной линии.

Спектр ¹Н ЯМР соединения включения [Zn₂(C₈H₄O₄)₂(C₆H₁₂N₂)]·3,6(H₃C)₂NCHO, *T* = 295 К (б). Кружки (о) — эксперимент; тонкие линии — составляющие спектра, полученные в результате модельных расчетов для двух протонсодержащих группировок каркаса (C₆H₁₂N₂ и C₈H₄O₄²⁻). Для центральной части спектра (сплошная кривая) амплитуда записи уменьшена в 30 раз по отношению к амплитуде сателлитов

с параметрами: $\delta B_1 \sim 6$, $\delta B_2 \sim 3$, $\delta B_3 \sim 0.90$ и $\delta B_4 \sim 0.45$ Гс. Возникновение дублетной структуры в спектрах ¹Н ЯМР, как известно, обусловлено магнитными диполь-дипольными взаимодействиями в твердом (или квазитвердом) теле [17].

Внешний дублет с δB_1 может быть отнесен к диполь-дипольным взаимодействиям протонных спинов в составе тесных двухспиновых группировок CH₂ в реориентирующихся молекулах диазабициклооктана C₆H₁₂N₂ (см. рис. 1). Основанием для данного отнесения может быть близость полученных параметров дублета к ширине и форме спектров ¹Н ЯМР ротационной фазы поликристаллического диазабициклооктана C₆H₁₂N₂, изученного ранее в работах [18, 19] методами ЯМР и ЯКР на ядрах ¹Н и ¹⁴N. Существенное различие состоит в том, что потенциальный

барьер реориентации пилларных молекул $C_6H_{12}N_2$ в составе широкопористого сорбента ПТФЦ равен $U_0 = 9,55\pm0,15$ кДж/моль, тогда как для реориентации тех же молекул в молекулярном кристалле $C_6H_{12}N_2$ значение U_0 равно 29 кДж/моль [18, 19]. Причиной данного различия может быть практическое отсутствие ван-дер-ваальсовых контактов и стерических

Рис. 3. Экспериментальные точки ($^{\circ}$) — центральная часть спектра ¹Н ЯМР (первая производная) соединения Zn₂(C₈H₄O₄)₂(C₆H₁₂N₂)] \cdot 3,6(H₃C)₂NCHO при 295 К.

Тонкими линиями выделены составляющие (1 и 2) спектра шестиспиновой системы [(H₃C)₂N], полученные в результате модельных расчетов для одноосной реориентации молекул ДМФ, пунктир — расчетный спектр Лоренцевой формы для диффундирующих группировок СНО. Жирная кривая — суммарный расчетный спектр молекул ДМФ в каналах сорбента

затруднений для реориентации пилларных молекул-лигандов, далеко отстоящих друг от друга в структуре сорбента ПТФЦ на расстояниях $D = a/\sqrt{2} = 10,6$ Å. Более узкий дублет с δB_2 может быть отнесен к диполь-дипольному взаимодействию протонных спинов в парных протонных группировках СН—СН в составе лигандов $[C_8H_4O_4]^{2-}$ (см. рис. 1), изучавшихся ранее в работе [7]. Еще более узкие дублеты с δB_3 и δB_4 описанного многокомпонентного спектра относятся к спектру ¹Н ЯМР гостевых молекул. Соотношение интенсивностей (площадей под кривыми поглощения) боковых компонент (δB_1 и δB_2) и центральной полосы (δB_3 и δB_4) составляет примерно ~2:3, что согласуется с отношением числа атомов водорода матрицы и гостевых молекул (20:25,2 для первого образца, и 20:30,8 для второго).

Центральная полоса полученного спектра характеризуется хорошо выраженной тонкой структурой в форме двух перекрывающихся пейковских дублетов (см. рис. 3), также типичных для двухспиновых систем [17]. Особенности тонкой структуры более четко выражены для первого образца, для которого при нормальных условиях наблюдаются два интенсивных дублета с указанными выше расщеплениями δB_3 и δB_4 , и центральная линия полушириной $\delta B \approx 0,2$ Гс. Отношение интенсивности центрального пика к площади компонент δB_3 и δB_4 для первого образца составляет 1:3, что в 2 раза превышает расчетное значение (1:6) для соотношения числа атомов водорода в группировках NCHO и (CH₃)₂ в составе молекул ДМФА. Найденное различие и малая величина уширения центральной линии могут указывать на присутствие протонсодержащей примеси с ~14 % (или 1/7) от общего числа атомов водорода в образце.

Малая общая ширина спектральной полосы ЯМР гостевых молекул указывает на развитую трансляционную и ориентационную диффузию молекул ДФМА в каналах структуры. Данное заключение подтверждается тем фактом, что при понижении температуры до 250 К ширина спектральной полосы ЯМР гостевых молекул увеличивается, а разрешенность тонкой структуры исчезает. Аналогичное уменьшение степени разрешенности тонкой структуры спектра обнаружено для второго образца (с 4,4 молекулами ДМФА на формулу). Это указывает на торможение подвижности молекул ДМФА; величина потенциального барьера диффузии молекул ДМФА, по нашей оценке, составляет U = 35 кДж/моль. Вероятно, что этот барьер обусловлен влиянием ван-дер-ваальсового взаимодействия молекул ДМФА с матрицей хозяина и с другими молекулами в подсистеме гостей.

АНАЛИЗ РЕЗУЛЬТАТОВ

Структура каркаса и подвижность водородсодержащих группировок. Численный анализ функции формы f(B) (см. рис. 2) спектров ¹Н ЯМР проводили в рамках классической модели [20], в которой форма спектральных полос в твердотельных системах в общем случае разлагается на две неравные составляющие. Из них доминирующими являются вклады от магнитных диполь-дипольных взаимодействий в тесных спиновых группировках, определяющих общую структуру спектра. Меньшие по величине вклады от "межмолекулярного" взаимодействия тесных спиновых группировок приводят к уширению компонент тонкой структуры и учитываются с помощью вводимых параметров. Кроме того, численные значения параметров тонкой структуры и уширяющих параметров прямо связаны с характером молекулярного движения (ориентационной и трансляционной диффузии) протонов и протонсодержащих группировок. В соответствии со сказанным при моделировании экспериментальных спектров ¹Н ЯМР (см. рис. 2) исходили из того, что матрица сорбента ПТФЦ содержит два типа тесных двухспиновых группировок ¹H—¹H. Наиболее тесными являются 6 CH₂-групп в лигандах C₆H₁₂N₂ (точечная симметрия D_{3h}) с расстоянием D(H - H) = 1,77 Å. Кроме того, в 1,4-бензолдикарбоксиланионах $[C_8H_4O_4]^{2-}$ (см. рис. 1) можно также выделить по две парные группировки протонов СН-групп в составе бензольных колец с расстоянием D(H-H) = 2.49 Å.

Зависимость интенсивности поглощения радиочастотного излучения от напряженности внешнего магнитного поля f(B), или функцию формы спектра ЯМР, в рамках данной модели представляют сверткой [17, 20] двух функций $g(B_0 - B)$ и $S(B - B_0)$ с варьируемыми параметрами α и β :

$$f(B) = \int g(B_0 - B)S(B - B_0)dB.$$
 (1)

447

Функция $g(B_0 - B)$ описывает анизотропию диполь-дипольного взаимодействия:

$$g(B_0 - B) = [1 - (B_0 - B)/\alpha]^{-1/2} \quad (-2\alpha < B < -\alpha),$$
(2)

$$g(B_0 - B) = [1 - (B_0 - B)/\alpha]^{-1/2} + [1 + (B_0 - B)/\alpha]^{-1/2} \quad (-\alpha < B < \alpha),$$
(3)

$$g(B_0 - B) = [1 + (B_0 - B)/\alpha]^{-1/2} \quad (\alpha < B < 2\alpha),$$
(4)

где α — параметр внутримолекулярного взаимодействия, равный $\alpha = 3/2 \ \mu R^{-3}$. Здесь $\mu = 1,41 \cdot 10^{-23}$ эрг/Гс — магнитный момент протона и R — расстояние Н—Н в тесных двухспиновых группировках ¹Н—¹Н. Другая функция, $S(B - B_0)$, описывает межмолекулярное взаимодействие спинов. В большинстве случаев ее форму аппроксимируют Гауссовым распределением [17, 20]:

$$S(B - B_0) = \exp[-(B - B_0)^2 / 2\beta^2] / \beta \sqrt{2} \pi,$$
(5)

где β — параметр межмолекулярного взаимодействия. В рамках наилучшей "подгонки" расчетной функции (1) к экспериментальной функции формы спектра f(B) методом наименьших квадратов были получены параметры α и β , характеризующие внутримолекулярные (¹H—¹H) и межмолекулярные спин-спиновые взаимодействия [(¹H—¹H)...(¹H—¹H)]. При этом полагали, что наблюдаемая функция формы спектра f(B) соответствует суперпозиции двух спектров $f_1(B)$ и $f_2(B)$ с отношением площадей 3:2, равным отношению числа атомов водорода в группировках [C₆H₁₂N₂]⁰ и [C₈H₄O₄]²⁻. На рис. 2 представлены рассчитанные кривые, а рассчитанные параметры α , β приведены в таблице.

Для группировок CH₂ в составе лигандов C₆H₁₂N₂ найденное экспериментальное значение параметра $\alpha_{3\kappa cn}$ в 2 раза меньше по отношению к расчетному значению $\alpha_{pacч} = 3,75$ Гс для жест-кой структуры, включающей группировки CH₂ (с расстояниями D(H-H) = 1,77 Å [18]). Можно отметить, что полученное для низкотемпературной фазы молекулярного кристалла C₆H₁₂N₂ значение среднеквадратичной ширины согласуется с данным значением $\alpha_{pacч}$ [18]. Как отмечено выше, для молекулярного кристалла C₆H₁₂N₂ также наблюдали двукратное уменьшение ширины спектра ЯМР (и величины α), что было связано с влиянием ориентационной диффузии молекул C₆H₁₂N₂ вокруг их осей симметрии C₃ (при температурах выше 190 K [18]). В этом случае имеет место усреднение спин-спинового взаимодействия ¹H—¹H, причем усредненное значение параметра $\langle \alpha \rangle$ определяется величиной угла δ между осью вращения и направлением протон-протонного вектора ¹H—¹H:

$$\langle \alpha \rangle = 1/2\alpha (3\cos^2 \delta - 1). \tag{6}$$

Поскольку в структуре $C_6H_{12}N_2$ тесные пары ¹H—¹H расположены в плоскостях, перпендикулярных оси C_3 , значение $\delta = 90^\circ$ и усредненное значение параметра внутримолекулярного взаимодействия равно 1/2 α в согласии с данными таблицы.

Аналогичная (6) формула описывает усреднение параметров β , относящихся к вкладам в уширение за счет более далеких спинов ¹Н. Можно заметить, что в структуре $C_6H_{12}N_2$ основной вклад в величину β вносят межмолекулярные взаимодействия ¹Н—¹Н для протонов соседних CH₂-групп этиленовых радикалов —CH₂—CH₂—, располагающихся параллельно оси C_3 (см. рис. 1). В данном случае величина $\delta = 0$ и, согласно (6), реориентация $C_6H_{12}N_2$ вокруг осей C_3 не может приводить к усреднению основной составляющей межмолекулярного взаимодей-

Параметры внутримолекулярных (α) и межмолекулярных (β) магнитных диполь-дипольных взаимодействий для системы ПТЦФ Zn₂(C₈H₄O₄)₂(C₆H₁₂N₂)

Параметр	$\rm CH_2$ в лигандах $\rm C_6H_{12}N_2$		СН—СН	
	Расчет	Эксперимент	Расчет	Эксперимент
α, Γ c	3,75	2,1±0,3	1,36	1,4±0,3
β, Γc	2,34	1,1±0,1	1,1	0,3±0,05

ствия. В действительности величина β уменьшена по сравнению с ожидаемой (примерно на 30 %), что может свидетельствовать о нарушении параллельности между осями симметрии C_4 и векторами ¹H—¹H, соединяющими спины ¹H соседних CH₂-групп этиленовых радикалов —CH₂—CH₂—. Такое нарушение может быть связано с отклонениями осей C_3 молекул C₆H₁₂N₂ относительно кристаллографических осей C_4 на угол до 20°. Другой механизм усреднения β может быть связан с внутримолекулярными движениями, искажающими точечную симметрию C_3 молекул C₆H₁₂N₂ за счет вращательных движений двух половинок [N(CH₂)₃] относительно друг друга, при которых векторы ¹H—¹H также отклоняются от направления оси кристалла на угол ~ ±20° [18].

Для группировок HC—CH было найдено экспериментальное значение $D(H_C - H_C) = 2,49$ Å, что согласуется с данными для межпротонных расстояний в бензольном кольце. Необычным результатом исследования являются данные об экспериментальном значении параметра β для группировок HC—CH, которое оказалось в 3,6 раза меньше расчетного. Подобный эффект объясняется динамическим усреднением параметра β за счет реориентации дифенильных группировок [C₆H₄] вокруг их осей симметрии C_2 в лигандах [C₈H₄O₄]²⁻, описанной также в работе [7]. Подобные переориентации не влияют на направление связей CH—CH, поэтому параметр α , характеризующий внутримолекулярное взаимодействие, остается неизменным. Таким образом, оказывается, что оба органических компонента высокопористого каркаса — лиганды [C₈H₄O₄]²⁻ и C₆H₁₂N₂ — участвуют в быстрой ориентационной диффузии. В данных условиях можно полагать, что структурная устойчивость биядерных кластерных комплексов [Zn₂(O₂C)₄] является одним из основных факторов, стабилизирующих жесткую структуру каркаса изучаемого высокопористого металлорганического сорбента.

Молекулярная динамика и локализация гостевых молекул ДМФ в каналах. Численный анализ функции формы f(B) центральной части спектра ¹Н ЯМР (см. рис. 3) проводили в рамках модели 6-спиновой системы [13] протонных спинов в составе головных [(H₃C)₂N]группировок молекул ДМФ, а одиночный протонный спин атома водорода в составе CHOгруппировок рассматривали в качестве "изолированного" по отношению к магнитным дипольдипольным взаимодействиям. Существенным для моделирования тонкой структуры спектра ¹Н ЯМР гостевых молекул в данном соединении включения является тот факт, что наблюдаемый четырехкомпонентный спектр [(H₃C)₂N]-группировок является вырожденным, т.е. в нем представлены только линии, связанные с взаимодействием CH₃--CH₃, но отсутствуют линии, относящиеся к взаимодействиям протонных спинов в самих CH₃-группах.

Подобный факт может быть результатом комбинации двух вращений: (а) реориентации тесных трехспиновых группировок ${}^{1}\text{H}-{}^{1}\text{H}-{}^{1}\text{H}$ в составе CH₃-групп вокруг их собственных осей симметрии C_3 ; (б) вращения группировок $[(H_3C)_2N]$ как целого вокруг их собственных осей симметрии C_2 . Поскольку валентный угол $\angle(H_3C)-N-(CH_3)$ равен ~120°, величина угла между осями C_3 и C_2 оказывается близкой к значению магического угла 54°44′. Таким образом, комбинация двух подобных вращений может полностью усреднять диполь-дипольные взаимодействия спинов в CH₃-группах, что является условием вырождения спектра ${}^{1}\text{H}$ ЯМР группировок $[(H_3C)_2N]$ молекул ДМФА в рассматриваемом соединении включения.

Предполагаемый механизм вращения может быть реализован в рассматриваемом соединении включения при условии локализации молекул ДМФА вблизи осей симметрии C_4 структурных каналов. При данном условии локальная симметрия расположения молекул ДМФА допускает их реориентацию вокруг осей C_4 . Если ориентация осей симметрии C_2 группировок [(H₃C)₂N] близка к ориентации осей симметрии C_4 кристалла, то тем самым выполняются условия усреднения диполь-дипольных взаимодействий спинов в CH₃-группах и вырождения спектра ¹H ЯМР группировок [(H₃C)₂N].

Для дальнейшего уточнения способа вхождения молекул ДМФА в структуру ПТФЦ при нормальных условиях были рассчитаны формы центральных компонент спектра. В соответствии с приведенным выше рассмотрением предполагалось, что диполь-дипольные взаимодействия спинов в CH₃-группах усредняются до нулевого значения, спектр ¹Н ЯМР группировок [(H₃C)₂N] оказывается вырожденным, а его тонкая структура определяется только межмолеку-

лярными спиновыми взаимодействиями двух вращающихся метильных групп CH₃—CH₃. Для каждой из них возможны два типа спиновых состояний протонов CH₃-групп: состояние ($\uparrow\uparrow\downarrow$) с полным спином I = 1/2 и состояние ($\uparrow\uparrow\uparrow\uparrow$) с полным спином I = 3/2. С учетом вращательного движения (ориентационной диффузии) молекул ДМФА вокруг кристаллографических осей C_4 итоговый спектр должен быть представлен суперпозицией двух дублетов, форма которых описывается выражениями (1)—(5), но с двумя различными параметрами $\langle \alpha_1 \rangle$ и $\langle \alpha_2 \rangle$, относящимися к двум возможным спиновым состояниям протонов CH₃-групп. По аналогии с выражением (6), эти параметры равны

$$\langle \alpha_1 \rangle = 3/2 \mu R^{-3} (3\cos^2 \delta' - 1)$$
 для состояния с полным спином $I = 1/2$, (6a)

$$\langle \alpha_2 \rangle = 3\mu R^{-3} (3\cos^2 \delta - 1)$$
 для состояния с полным спином $I = 3/2$. (66)

Здесь под *R* подразумевается расстояние *R*(CH₃—CH₃) между центрами реориентирующихся трехспиновых группировок {¹H¹H¹H}; б' — угол между осью *C*₄ и направлением связи CH₃— CH₃. Если оси симметрии *C*₂ группировок [(H₃C)₂N] параллельны осям симметрии C₄ кристалла, значение угла $\delta' = 90^{\circ}$. С использованием значения *R*(CH₃—CH₃) = 3,13 Å, найденное для молекул ДМФА, были получены параметры α_1 (расч) = 0,34 и α_2 (расч) = 0,68 Гс. Экспериментальные значения этих параметров, полученные из наилучшего совпадения расчетного и экспериментальных спектров (см. рис. 3) оказались равными: α_1 (эксп) = 0,22 и α_2 (эксп) = 0,44 Гс. Различие расчетных и наблюдаемых значений можно объяснить в рамках модели, в которой величина угла между осью *C*₄ и направлением связи CH₃—CH₃ составляет $\delta' = \sim 70^{\circ}$. При этом биссектрисы треугольных группировок [(H₃C)₂N] отклоняются от направления осей симметрии *C*₄ кристалла на угол $\phi = 90^{\circ}$ — $\delta' = 20^{\circ}$, что может быть обусловлено некоторой несимметричностью строения молекул ДМФА (см. рис. 1).

обсуждение

Особенности тонкой структуры спектров ¹Н ЯМР соединения включения ПТФЦ с ДМФА (при 290 К) свидетельствуют об осесимметричном распределении плотности вероятности распределения протонов группировок [(H₃C)₂N], причем ориентация биссектрис этих группировок близка к направлению осей симметрии C_4 структурных каналов данной системы. Полученный результат на первый взгляд противоречит рентгеноструктурным данным [15], согласно которым при 243 К гостевые молекулы ДМФА локализованы вблизи переходных окон между соседними каналами, ориентационно упорядочены, и для них удалось определить координаты всех атомов. Такое различие может быть связано с тем, что данные ¹Н ЯМР относятся к комнатной температуре. Как было отмечено, уже при умеренном понижении температуры (до 270—260 К) наблюдается уширение сигналов ¹Н ЯМР от подсистемы гостей, сопровождаемое потерей разрешенности дублетной структуры. На этом основании можно предполагать, что наблюдаемое "замораживание" молекулярной динамики может приводить к структурному превращению, аналогичному фазовым переходам в соединениях включения ПТФЦ—ацетон и ПТФЦ—дейтероацетон [14].

Как было показано [14], подобный фазовый переход обусловлен заселением возбужденных состояний гостевых молекул, динамика которых определяется условиями квантового ограничения, характерными для потенциального ящика. Исходя из значения энергии возбуждения $\Delta E \sim h^2/ma^2$, где h — постоянная Планка, m — масса молекулы и a — амплитуда прыжков молекулы в возбужденном состоянии, можно заметить, что минимальное значение ΔE достигается для тех возбужденных состояний, для которых величина a достигает максимального значения. Очевидно, что для канальной структуры ПТФЦ подобное условие выполняется при аксиальной укладке молекул ДМФА, когда их продольные диаметры ориентированы вдоль осей симметрии C_4 , а трансляционные прыжки между адсорбционными центрами осуществляются параллельно наименьшим диаметрам. Данные выводы, вытекающие из анализа основных закономерностей молекулярной динамики в условиях квантового ограничения, находятся в полном согласии с результатами анализа спектров ¹Н ЯМР молекул ДМФА в соединении включения с ПТФЦ.

выводы

1. Показано, что органические лиганды в составе высокопористого металлорганического сорбента $[Zn_2(C_8H_4O_4)_2(C_6H_{12}N_2)] \cdot n(H_3C)_2$ NCHO реориентируются, а жесткая структура каркаса сорбента стабилизируется за счет структурной устойчивости биядерных кластерных комплексов $[Zn_2(O_2C)_4]$. Корреляционные частоты реориентации органических лигандов составляют $v_{\text{кор}} \ge 50 \text{ к}\Gamma$ ц при температурах выше 140 К.

2. Показано, что при нормальных условиях имеет место быстрая диффузионная и реориентационная подвижность гостевых молекул диметилформамида в соединении включения ПТФЦ— ДМФА. При понижении температуры и при повышении содержания гостевых частиц в соединении включения наблюдается процесс торможения подвижности гостевых частиц.

3. Изучена одноосная реориентация молекул диметилформамида в соединении включения ПТФЦ—ДМФА и показано, что продольные оси молекул ДМФА приблизительно параллельны осям *C*₄, ориентации плоскостей симметрии молекул ДМФА разупорядочены по позициям структуры тетрагональной сингонии.

Авторы благодарят А.Р. Семенова за проведение измерений потенциальных барьеров реориентации пилларных молекул в ПТФЦ.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты 08-03-00826 и 07-03-00436).

СПИСОК ЛИТЕРАТУРЫ

- 1. Lee J.Y., Olson D.H., Pan L. et al. // Adv. Funct. Mater. 2007. 17. P. 1255 1262.
- 2. Liu J., Lee J.Y., Pan L. et al. // J. Phys. Chem. C. 2008. 112. P. 2911 2917.
- Structural and electronic properties of molecular nanostructures / Ed. H. Kuzmany. Amer. Inst. Phys. Conf. Proc. Melville, NY. – 2002. – V. 633.
- 4. Dillon A.C. // Nature. 1997. 386. P. 377 379.
- 5. FitzGerald S.A., Yildirim T., Santodonato L.J. et al. // Phys. Rev. B. 1999. 60. P. 6439 6451.
- 6. Ohba T., Kanoh H., Kaneko K. // NanoLetters. 2005. 5, N 2. P. 227 230.
- 7. Horike S., Matsuda R., Tanaka D. et al. // Angew. Chem. Int. Ed. 2006. 45. P. 7226 7230.
- 8. Gould S.L., Tranchemontagne D., Yaghi O.M. et al. // J. Amer. Chem. Soc. 2008. 130. P. 3246 3247.
- 9. Kawaguchi T., Mamada A., Hosokawa Y. et al. // Polymer. 1998. 39. P. 2725 2732.
- 10. *Cholli A.L., Dumais J.J., Engel A.K. et al.* // Macromolecules. 1984. 17. P. 2399 2404.
- 11. Gabuda S.P., Kozlova S.G. // J. Incl. Phenom. 1995. 22(1). P. 1 13.
- 12. Кригер Ю.Г., Козлова С.Г., Габуда С.П. и др. // ФТТ. 1985. 27. С. 3121 3123.
- 13. Панич А.М., Сабылинский А.В., Габуда С.П. и др. // Журн. структур. химии. 1989. **30**, № 1. С. 66 72.
- 14. Gabuda S.P., Kozlova S.G., Dybtsev D.N. et al. // J. Phys. Chem. C. 2008. 112. P. 5074 5077.
- 15. Dybtsev D.N., Chun H., Kim K. // Angew. Chem. Int. Ed. 2004. 43. P. 5033 5036.
- Габуда С.П., Мороз Н.К., Козлова С.Г. и др. // Бюл. Изобретений. 1997. 23(II). С. 368. (Патент РФ № 2087904).
- 17. Абрагам А. Ядерный магнетизм. М.: Мир, 1965.
- 18. Smith G.W. // J. Chem. Phys. 1965. 43. P. 4325 4336.
- 19. Zussman A., Alexander S. // Ibid. 48. P. 3534 3539.
- 20. Хаберлен У., Меринг М. ЯМР высокого разрешения в твердых телах. М.: Мир, 1980.