УДК 532.542.86. (088.8)

Автоколебания в трубе Рийке при расположении ресивера на ее входе

Б.И. Басок, В.В. Гоцуленко

Институт технической теплофизики НАН Украины, Киев

E-mail:gosul@ukr.net

Получена математическая модель с сосредоточенными параметрами автоколебаний, самовозбуждающихся в трубе Рийке при расположении ресивера на ее входе. Исследовано влияние мощности электронагревателя и объема входной емкости (ресивера) на условия самовозбуждения и форму рассматриваемых автоколебаний.

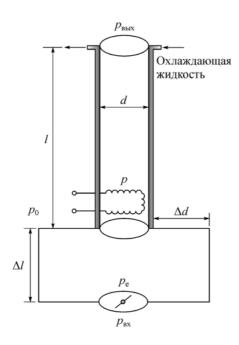
Ключевые слова: автоколебания, предельный цикл, акустические параметры, труба Рийке, неустойчивость.

Введение

В 1777 году Хиггинс в ходе экспериментов наблюдал автоколебания поющего пламени [1] в устройстве, получившем в дальнейшем название "генератор колебаний Рийке" или "труба Рийке". При этом горючим газом, который сгорал диффузионным пламенем, был водород. В 1859 году Пауль Рийке обнаружил [2], что автоколебания также возбуждаются в вертикальной, открытой с двух сторон трубе, если в ее нижней части на расстоянии 1/4 ее длины от входа расположить нагретую металлическую сетку. Позже нагретую сетку заменили электроспиралью, и феномен Рийке стало возможным наблюдать неограничено долго. При этом ограничение на положение нагревателя в нижней части трубы можно считать необязательным, что доказано теоретически и экспериментально [3]; вертикальное положение трубы можно заменить горизонтальным при соответствующей организации потока газа [4]. Долгое время эти исследования представляли чисто академический интерес. Но по мере развития техники и энергетики, особенно при создании высокофорсированных камер сгорания [5], возбуждение акустических колебаний в газовом столбе приобрело значительную актуальность. Это явление представляет проблему в промышленных топках [6-7], в криогенном [6] и металлургическом оборудовании [8]. С другой стороны, возможно самое различное применение термоакустических колебаний: генерирование мощных акустических полей для наружных испытаний, создание акустических маяков [6], преобразование и перенос тепловой энергии [7], повышение эффективности газонагревных аппаратов [5-8] и теплообменников, двигателей внутреннего сгорания и нефтехимических установок и т.д.

Анализ имеющихся исследований, число которых достаточно обширно [5–7], позволяет выделить несколько основных типов термоакустических колебаний — это явления Рийке, Рисса, Зондхаусса и "поющее" пламя Хиггинса. Они отличаются друг от друга либо граничными условиями, либо видом источника энергии, но всем им присущи атрибуты автоколебаний: имеется рабочее тело, совершающее колебания, источник

энергии, покрывающий энергетические потери системы, обратная связь между рабочим телом и источником энергии, которая обеспечивает не только величину подводимой порции тепла, но и момент подвода за один период колебания.


Леманн создал генератор термоакустических колебаний [5–6], в котором к трубе Рийке на ее входе присоединялся ресивер, а движение воздуха создавалось нагнетателем. Также он установил зависимость интенсивности звука от скорости потока в трубе [9]. Существует нижний и верхний ее пределы, при которых начинается и прекращается звучание трубы [6, 10]. Свойства автоколебаний, возбуждаемых в трубе Рийке и генераторе Леманна, многочисленно изучались как экспериментально, так и теоретически [6].

В работе [11] была аналитически подтверждена экспериментально установленная своеобразная закономерность изменения амплитуды гармонических автоколебаний в трубе Рийке от объемного расхода нагретого воздуха при его свободно конвективном движении при расположении аккумулятора массы изменяемого объема после спирали электронагревателя. Амплитуда релаксационных автоколебаний с увеличением тепловой нагрузки возрастает [11], что наблюдается в вертикальных камерах горения регенеративных воздухонагревателей доменных печей [12] и составляет проблему их подавления. В работе [5] приведена осциллограмма колебаний в трубе Рийке по опытам Леманна с периодическим изменением их амплитуды, причина которого заключалась в проявлении действия гистерезисного аттрактора [13].

В настоящей работе рассматривается математическая модель с сосредоточенными параметрами автоколебаний в трубе Рийке, в которой на входе расположен ресивер с дросселем (рис. 1). Показано, что при достаточных акустической гибкости ресивера и мощности электронагревателя в рассматриваемой системе самовозбуждаются автоколебания, форма которых меняется от высокочастотной гармонической до низкочастотной релаксационной.

Уравнения, описывающие автоколебания в трубе Рийке при расположении ресивера на ее входе

Применим принцип Даламбера к нагретому столбу газа после электроспирали (рис. 1), рассматривая его как материальную частицу, колеблющуюся при автоколебаниях как одно целое. Имеем

$$m(dw/dt) = (p - p_{\text{BMX}})S - mg - F_{\text{TD}}, \qquad (1)$$

где w — скорость движения столба газа, $m=\rho lS$ — масса столба газа, $S=\pi\,d^2/4$ — площадь нормального сечения трубы диаметра d (рис. 1), $F_{\rm Tp}$ — сила вязкостного трения о боковую поверхность трубы. Учитывая, что $p_{\rm Bыx}=p_0-\rho_0 g l$, $h_{\rm Tp}=\lambda \frac{l}{d}\rho\frac{w^2}{2}$, где $h_{\rm Tp}=\frac{F_{\rm Tp}}{S}$, p_0 — давление в окружающей среде, λ — коэффициент гидравлических потерь, уравнение движения (1) окончательно запишется в следующей форме:

$$L_{\rm a} \frac{dQ}{dt} = F(Q) - P, \tag{2}$$

Рис. 1. Схема трубы Рийке при расположении ресивера с дросселем на ее входе.

где $L_{\rm a}=\frac{\rho l}{S}$ — акустическая масса нагретого столба газа, $F(Q)=A(Q)-h_{\rm Tp}(Q)$ — напорная характеристика теплоподвода [13–14], $A(Q)=gl(\rho_0-\rho)$ — давление подъемной силы, $P=p_0-p$, p — давление в трубе после спирали электронагревателя, $h_{\rm Tp}(Q)$ — зависимость напряжения силы вязкостного трения по длине нагретого участка трубы (рис. 1) от объемного расхода нагретого газа Q=Sw.

Запишем уравнение сохранения массы для газа в емкости, расположенной перед электроспиралью (рис. 1):

$$dM(t) = (G_{\text{BX}} - G)dt, \tag{3}$$

где M(t) — масса холодного газа, находящаяся в емкости в момент времени t, $G_{\rm BX} = \rho_0 w_0 S$ — входящий в емкость массовый расход газа, $G = \rho w S$ — массовый расход нагретого газа. Отметим, что

$$dM = V_{\rm e} d\rho_{\rm e}, \quad \frac{dp_{\rm e}}{d\rho_{\rm e}} = c_0^2, \quad c_0 = \sqrt{kRT_0},$$

где $V_{\rm e}$ — объем емкости перед электроспиралью, $\rho_{\rm e}$ и T_0 — плотность и температура газа в ней соответственно, c_0 — скорость распространения звука в данной емкости, k — показатель адиабаты, R — газовая постоянная.

Таким образом, уравнение (3) можно записать в следующей форме:

$$C_{\rm a} \frac{dp_{\rm e}}{dt} = \frac{\rho_0}{\rho} Q_0 - Q,$$

где $C_{\rm a} = \frac{V_{\rm e}}{\rho c_0^2}$ — акустическая гибкость емкости перед электроспиралью, а $Q = Sw_0$ —

входящий в нее объемный расход холодного газа.

Для возможности регулирования расхода газа через вертикальную трубу, на входе в ресивер установлен дроссель (рис. 1). Из уравнения гидравлических потерь на этом дросселе следует, что

$$p_{\rm BX} - p_{\rm e} = k_{\rm AD} Q_0^2,$$
 (4)

где $k_{\mathrm{дp}}$ — коэффициент гидравлических потерь. Полагая $\Delta l << l,$ получим, что

$$p_{\rm BX} pprox p_0$$
 и, согласно (4), $\frac{\rho_0}{\rho} Q_0 pprox \eta \sqrt{p_0 - p_{\rm e}}$, где $\eta = \frac{\rho_0}{\rho} \frac{1}{\sqrt{k_{\rm дp}}}$. Пренебрегая тепловым

сопротивлением [14] и гидравлическим сопротивлением спирали электронагревателя, получим $p_{\rm e} \approx p$.

Таким образом, уравнение (3) окончательно запишется в следующем виде:

$$C_{\rm a} \frac{dP}{dt} = Q - \varphi(P), \tag{5}$$

где положено $\varphi(P) = \eta \sqrt{P}$.

Полученная динамическая система (2), (5) формально совпадает с уравнениями теории продольных автоколебаний (помпажа) в компрессоре как динамической системе с сосредоточенными параметрами [15]. В рассматриваемой аналогии роль введенной

функции F(Q) играет напорная характеристика нагнетателя, определяемая экспериментально. При этом напорная характеристика компрессора характеризует часть механической энергии вращения привода, которая преобразуется в напор, создаваемый нагнетателем, а введенная напорная характеристика теплоподвода F(Q) определяет часть подведенной к потоку теплоты, которая преобразуется в его напор.

Построение напорной характеристики теплоподвода

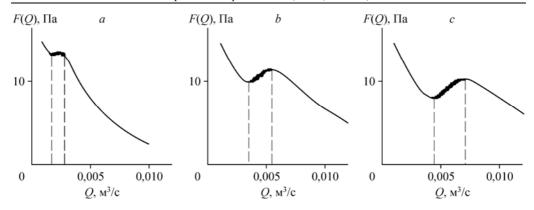
В динамической системе (2), (5) необходимо определить зависимость F(Q). Для упрощения будем предполагать боковую поверхность трубы теплоизолированной. Также будем рассматривать подвод теплоты к газу как политропный процесс с показателем политропы n. Тогда, из уравнения теплового баланса следует, что

$$W = G \int_{T_0}^{T} c_{\Pi}(T) dT, \tag{6}$$

где W — мощность электронагревателя, $c_{\Pi}=c_{\nu}\frac{n-k}{n-1}$ — удельная массовая теплоемкость политропного процесса, c_{ν} — изохорная теплоемкость, k — показатель адиабаты. Воспользовавшись уравнением политропы и состояния для идеального газа, получим следующую зависимость:

$$\rho = \rho_0 \left(\frac{T}{T_0}\right)^{\frac{1}{n-1}}.\tag{7}$$

Зависимость F(Q) может быть определена параметрически, температуру T нагретого газа рассматриваем как варьируемый параметр. Действительно, из выражения (6), с учетом (7) следует, что


$$Q = \frac{W}{\rho_0} \left(\frac{T_0}{T}\right)^{\frac{1}{n-1}} \left(\int_{T_0}^T c_{\Pi}(T) dT\right)^{-1}.$$
 (8)

Используя соотношения (7)–(8), получаем, что

$$F(Q) = gl\rho_0 \left[1 - \left(\frac{T}{T_0} \right)^{\frac{1}{n-1}} \right] - \frac{\lambda l\rho_0}{S^2 d} \left(\frac{T}{T_0} \right)^{\frac{1}{n-1}} \frac{Q^2}{2}.$$
 (9)

Когда вертикальная труба на выходе открыта, то теплоподвод от электроспирали к газу осуществляется под постоянным давлением. В этом случае показатель политропы n=0. Далее в качестве теплоносителя рассматривается воздух.

На рис. 2 приведены графики напорной характеристики теплоподвода при различных мощностях электронагревателя. Отметим, что с увеличением мощности электронагревателя расширяется зона значений расхода газа Q (на рисунке она выделена штриховыми линиями), где выполняется неравенство dF(Q)/dQ > 0. Ниже будет показано, что именно в этом интервале значений расхода газа стационарное конвективное течение является неустойчивым и возможно самовозбуждение автоколебаний.

Рис. 2. Иллюстрация зависимости напорной характеристики теплоподвода от мощности электронагревателя.

W = 1000 (a), 2000 (b), 2500 (c) Bt.

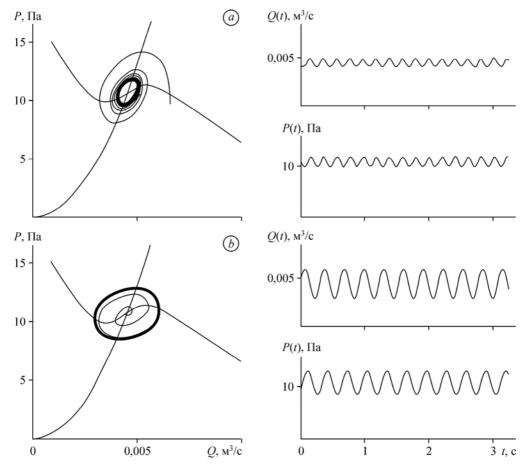
Условия самовозбуждения автоколебаний и характер их зависимости от объема ресивера

Самовозбуждение автоколебаний в трубе Рийке происходит в результате потери устойчивости стационарного конвективного течения нагретого газа, которому отвечает положение равновесия динамической системы (2), (5). Характер устойчивости положения равновесия определяется знаками вещественных частей соответствующих характеристических показателей Ляпунова [16]. В рассматриваемой задаче они имеют вид

$$\lambda_{1,2} = \frac{\alpha}{L_a} - \frac{\beta}{C_a} \pm \sqrt{\left(\frac{\alpha}{L_a} + \frac{\beta}{C_a}\right)^2 - \frac{4}{L_a C_a}},\tag{10}$$

где $\alpha = \frac{dF}{dQ}\bigg|_{Q=\xi}$, $\beta = \frac{d\varphi}{dP}\bigg|_{P=H(\xi)}$, ξ — стационарный объемный расход нагретого газа,

определяемый из уравнения $F\left(\xi\right) = \left(\frac{\xi}{\eta}\right)^2$. Несложно проверить, что


$$\operatorname{Re}\left\{\lambda_{1,2}\right\} > 0 \iff \alpha > 0 \iff \frac{dF}{dQ}\Big|_{Q=\xi} > 0.$$
 (11)

Из соотношения (10) следует, что при выполнении неравенства $\left. \frac{dF}{dQ} \right|_{Q=\xi} < 0 \,$ стационар-

ный режим течения, определяемый расходом $Q=\xi$, является устойчивым, и в этом случае самовозбуждение автоколебаний невозможно. Таким образом, для самовозбуждения автоколебаний необходимо наличие зоны "отрицательного" сопротивления, где с увеличением расхода Q напор F нагретого столба газа не уменьшается, а наоборот возрастает, т.е. выполняется неравенство dF/dQ>0.

Условие (11) является необходимым для самовозбуждения автоколебаний. Достаточным условием их появления является существование предельного цикла в уравнении интегральных кривых [15]

$$\frac{dP}{dQ} = \frac{L_{\rm a}}{C_{\rm a}} \frac{Q - \varphi(P)}{F(Q) - P}.$$
 (12)

Рис. 3. Характер деформации предельных циклов и форм автоколебаний и изменений размеров входного ресивера в установке, приведенной на рис. 1.

 $\Delta d = 12d(a)$, 20d(b), 45d(c), 85d(d). Начало.

Размеры и форма предельного цикла уравнения (12) определяются значениями акустических параметров $L_{\rm a}$ и $C_{\rm a}$. Варьирование диаметра входной емкости (ресивера) приводит к следующей зависимости ее акустической гибкости:

$$C_{\rm a}\left(\Delta d\right) = \frac{\pi \Delta l}{4\rho c_0^2} \left(d + \Delta d\right)^2.$$

На рис. 3 приведены формы предельных циклов и соответствующих им автоколебаний при различных значениях Δd и следующих размерах рассматриваемой установки (рис. 1): l=1.5 м, d=0.05 м, $\Delta l=0.25l$.

Сравнение теоретических результатов с экспериментальными данными

В монографии [6, стр. 126] утверждается, что имеющиеся теоретические описания термоакустических автоколебаний в трубе Рийке и генераторе Леманна редко совпадают с экспериментальными данными даже в качественном отношении. Это объясняется тем, что теоретические результаты сравниваются с экспериментальными данными, полученными при весьма неопределенных условиях. При этом экспериментальные исследования, выполненные разными авторами, существенно отличаются. На количественные,

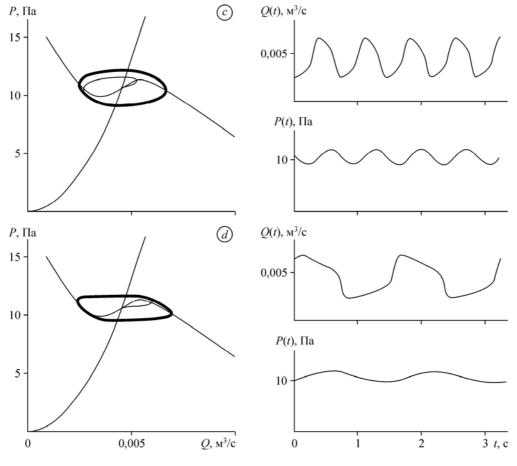


Рис. 3. Окончание.

а иногда и на качественные характеристики явления влияют акустические свойства помещения, фон стоячих волн и особенно его спектральный состав, различные шумы, расположение и перемещение предметов и приборов. Так, например, минимальная энергия возбуждения автоколебаний при открытой и закрытой двери лаборатории может измениться в несколько раз [6]. Таким образом, не имея правильных критериев для обоснования постановки эксперимента, невозможно обеспечить даже воспроизводимость экспериментально получаемых результатов.

Отметим, что при нагнетании воздуха насосом в ресивер установки (рис. 1) автоколебания экспериментально изучались, например в работе [6]. В [17] экспериментально рассматривались автоколебания в трубе Рийке при расположении резонатора Гельмгольца после спирали электронагревателя. Авторам не известны экспериментальные данные по трубе Рийке при расположении на ее входе ресивера. Однако в случае, когда $\Delta d=0$, рассматриваемая установка (рис. 1) преобразуется в обычную трубу Рийке с расположением спирали электронагревателя на расстоянии Δl от ее нижнего основания.

На рис. 4 в плоскости параметров $(\overline{\Delta l},W)$, где $\overline{\Delta l}=\Delta l \left(l+\Delta l\right)^{-1}$, сопоставлены экспериментальные и теоретические расчеты зоны возбуждения автоколебаний Рийке. На нагреватель, расположенный на расстоянии Δl от нижнего конца трубы (рис. 1), подается ток, мощность которого увеличивается до появления колебаний. Наименьшее значение такой мощности для данного нагревателя определяет начальную мощность

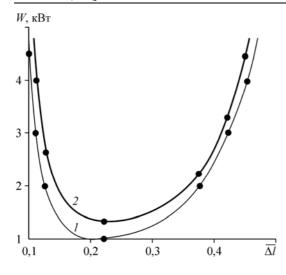


Рис. 4. Зона возбуждения колебаний Рийке.
1 — экспериментальные данные [6, стр. 152],
2 — расчетные данные настоящей работы.

возбуждения колебаний и принимается за нижнюю точку границы возбуждения. Увеличивая мощность W и перемещая электронагреватель вниз и вверх до прекращения колебаний, отмечаются остальные точки границы зоны возбуждения (рис. 4).

Теоретические расчеты получены путем интегрирования системы уравнений (2), (5). При фиксированном значении $\overline{\Delta l}$ находилась минимальная вели-

чина мощности W электронагревателя, при которой уравнение интегральных кривых (12) еще имеет предельный цикл, которому отвечает автоколебательное периодическое решение системы уравнений (2), (5). При снижении высоты расположения спирали электронагревателя Δl уменьшается объем $V = S\Delta l$ холодной части трубы Рийке, что при-

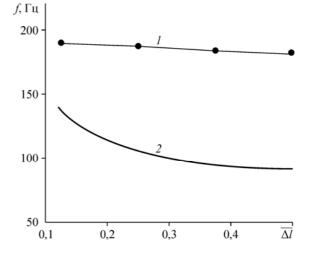
водит к уменьшению акустической гибкости $C_{\rm a} = \frac{V}{\rho c_0^2}$. Это в итоге увеличивает вели-

чину волнового сопротивления $Z = \sqrt{L_{\rm a}/C_{\rm a}}$, из-за чего уменьшаются предельный цикл уравнения интегральных кривых (13) и амплитуда соответствующих ему автоколебаний. Чтобы амплитуда автоколебаний вновь возросла, необходимо увеличить мощность W.

При увеличении ΔI уменьшается длина нагретой части трубы Рийке. Это приводит к уменьшению подъемной силы A(Q), снижению интенсивности восходящей ветви на напорной характеристике теплоподвода F(Q) и, таким образом, тоже приводит к уменьшению амплитуды автоколебаний.

Отметим, что в работе [4] при экспериментальном исследовании автоколебаний в горизонтально расположенной трубе Рийке были получены зависимости, аналогичные приведенным на рис. 4. Экспериментальные данные [6] дают основание считать, что колебания в трубе Рийке возбуждаются на частотах, близких к собственным. При этом в спектре колебаний могут наблюдаться также и частоты, близкие ко второй и последующим гармоникам собственных колебаний.

Для определения частоты f колебаний нагретого столба воздуха в рассматриваемой установке (рис. 1) необходимо найти период $\tau = 1/f$ периодического автоколебательного решения системы уравнений (2), (5). В работе [11] был построен численный алгоритм для определения периода рассматриваемых колебаний. Однако известно, что для определения частоты автоколебаний, близких по форме к гармоническим колебаниям, можно воспользоваться приближенной формулой [18]


$$f = \frac{1}{2\pi\sqrt{L_{\rm a}C_{\rm a}}}.$$

Puc. 5. Зависимости частоты колебаний Рийке.

- 1 экспериментальные данные [6, стр. 133],
- 2 данные, рассчитанные по формуле (13).

Воспользовавшись представлениями для акустических параметров $L_{\rm a}$ и $C_{\rm a}$ для трубы Рийке, т.е. когда $\Delta d=0$, окончательно получаем

$$f = \frac{c_0}{2L} \frac{1}{\pi \sqrt{\overline{\Delta l} \left(1 - \overline{\Delta l}\right)}}, \quad (13)$$

где положено $L = l + \Delta l$ — длина трубы.

На рис. 5 сопоставлены расчетная зависимость для частоты колебаний по формуле (13) и экспериментальная зависимость первой гармоники колебаний в трубе Рийке при перемещении нагревателя по трубе.

Заключение

Получена математическая модель с сосредоточенными параметрами автоколебаний в трубе Рийке при расположении ресивера с дросселем на ее входе. Данная модель формально совпадает с уравнениями теории помпажа в одноступенчатом компрессоре [15]. Установлено, что с увеличением мощности электронагревателя увеличивается область неустойчивости стационарного конвективного течения. Также установлено, что с увеличением объема ресивера форма автоколебаний переходит от гармонической к релаксационной. Частота колебаний при этом уменьшается.

Список литературы

- Higgins B. On the sound produced by a current of hydrogen gas passing through a tube // J. Natural Philosophy, Chemistry and the Arts. 1802. Vol. 1. P. 129.
- Rijke P.L. Notiz uber eine neue Art, die in einer am beiden Enden offenen Röhre enthaltene Luft in Schwinggungen zu versetzen // Pogg. Ann. Phys. und Chem. 1859. Vol. 107. P. 339–345.
- **3. Марченко В.Н., Тимошенко В.И.** Исследование термической генерации звука в трубе Рийке // Акустический журн. 1970. Т. 16, № 2. С. 323–324.
- **4. Матвеев К.И., Кулик Ф.Е.** Характеристики предельных циклов трубы Рийке // Электронный журнал «Техническая акустика». 2003, 12. Режим доступа: http://ejta.org.
- 5. Раушенбах Б.В. Вибрационное горение. М.: Физматтиз, 1961. 500 с.
- **6. Беляев Н.М., Белик Н.П., Польшин А.В.** Термоакустические колебания газожидкостных потоков в сложных трубопроводах энергетических установок. Киев: Высшая школа, 1985. 160 с.
- 7. **Ларинов В.М., Зарипов Р.Г.** Автоколебания газа в установках с горением. Казань: Изд-во Казан. гос. техн. ун-та, 2003. 327 с.
- Калугин Я.П., Арсеев А.В. Исследование пульсирующего горения в крупных установках // Инж.-физ. журн. 1975. Т. XXVIII, № 4. С. 661–669.
- 9. Lemann K.O. Uber die theory der netztone // Ann. Phys. 1937. Vol. 421, № 5. P. 527–555.
- 10. Мароне И.Я., Таракановский А.А. Исследование возбуждений звука в трубе Рийке // Акустический журнал. 1970. Т. 13. № 2. С. 302–304.
- **11.** Гоцуленко В.В. Математическое моделирование особенностей феномена Рийке при изменении мощности теплового потока // Математическое моделирование. 2004. Т. 16, № 9. С. 23–28.

- **12.** Шкляр Ф.Р., Малкин В.М., Каштанова С.П., Калугин А.П., Советкин В.Л. Доменные воздухонагреватели. М.: Металлургия, 1982. 176 с.
- **13. Гоцуленко В.В.** Особые формы колебаний феномена Рийке // Инж.-физ. журн. 2005. Т. 78, № 2. С. 160–164.
- **14.** Басок Б.И., Гопуленко В.В. Теория феномена Рийке в системе с сосредоточенными параметрами // Акустический вестник. 2010. Т. 13, № 3. С. 3–8.
- 15. Казакевич В.В. Автоколебания (помпаж) в компрессорах. М.: Машиностроение, 1974. 264 с.
- 16. Демидович Б.П. Лекции по математической теории устойчивости. М.: Наука, 1967. 472 с.
- **17. Москвичев** Д.Ю. Исследование влияния акустических резонаторов на термоакустические процессы в установках с теплоподводом: дис. ... канд. техн. наук: 01.02.05, защищена 27.04.2007. Новосибирск, 2007. Библиогр. 18 с.
- 18. Стрелков С.П. Введение в теорию колебаний. М.: Наука, 1964. 437 с.

Статья поступила в редакцию 12 февраля 2013 г., переработана — 17 декабря 2013 г.