2013. Том 54

Приложение

S178 - S183

УДК 539.193:537.635

НЕЭМПИРИЧЕСКИЕ И DFT-PACЧЕТЫ ХИМИЧЕСКИХ СДВИГОВ В СПЕКТРАХ ЯМР ¹⁹F И ¹³С ЗАМЕЩЕННЫХ ПЕНТАФТОРБЕНЗОЛОВ

Д.С. Фадеев, И.П. Чуйков, В.И. Маматюк

Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН E-mail: dsf@nioch.nsc.ru

Статья поступила 1 февраля 2013 г.

Проведены расчеты химических сдвигов в спектрах ЯМР ¹⁹F и ¹³C замещенных пентафторбензолов методами Хартри–Фока и функционала электронной плотности. Расчетные значения сопоставлены с экспериментальными данными, известными из литературы. Показано, что химические сдвиги в неполярных растворителях с достаточно высокой точностью могут быть предсказаны, используя метод GIAO-DFT. Этот метод был использован для предсказания химических сдвигов ¹⁹F и ¹³C гептафторбензильного катиона в среде SbF_{5.} Лучшее соответствие расчетных и экспериментальных величин достигается при учете влияния противоиона.

Ключевые слова: пентафторбензол, ЯМР, квантово-химический расчет, гептафторбензильный катион.

введение

Спектроскопия ЯМР широко используется для исследования строения фторсодержащих органических соединений. К настоящему времени накоплен огромный экспериментальный материал по значениям параметров их ЯМР спектров, но сведения о теоретических расчетах химических сдвигов (ХС) ¹⁹ Г и ¹³ С остаются недостаточно полными. Одной из хорошо изученных систем являются производные пентафторбензола общей формулы C₆F₅X, интерпретация спектров которых осуществляется с помощью эмпирических схем на основе свойств аддитивности или электронных эффектов заместителей в виде о-констант Гамета—Тафта [1, 2]. К настоящему моменту получили развитие неэмпирические методы квантово-химического расчета, которые хорошо зарекомендовали себя для предсказания ЯМР параметров углеводородов [3]. Менее широко эти методы используются для расчета характеристик ЯМР спектров фторзамещенных соединений. Такая работа была проведена для бензолов, содержащих от одного до шести атомов фтора, с использованием различных методов расчета как с учетом, так и без учета эффектов взаимодействия электронов [4]. В ней было показано, что учет динамической электронной корреляции важен для точной геометрической оптимизации соединений, в то время как при непосредственном расчете экранирования ядер учет корреляции электронов влияет на результат значительно меньше. Как оказалось, достаточно точные результаты могут быть получены, используя метод Мёллера-Плессе второго порядка (МР2) и базисный валентнорасщепленный набор функций 6-31G**, а также метод функционала электронной плотности (DFT) с таким же базисом. Отмечается, что методы Хартри-Фока (HF) и метод самосогласованного поля полного активного пространства орбиталей (CASSCF) склонны занижать значения длин связей С—F в ароматическом кольце.

[©] Фадеев Д.С., Чуйков И.П., Маматюк В.И., 2013

Сандерс с соавторами [5] указывают на некоторое преимущество методов DFT при расчете изотропных констант во фторзамещенных бензолах, в то время как наибольшей предсказательной способностью для значений элементов тензора экранирования и их ориентаций обладают методы Хартри—Фока по сравнению с GIAO-MP2 и DFT.

В данной работе обсуждаются результаты расчета изотропных констант экранирования ¹³С и ¹⁹F в соединениях C_6F_5X (X = H, F, CH₃, CF₃, Cl, OCH₃, NO₂, OH, CN) с заместителями, проявляющими различные электронные донорно-акцепторные свойства, а также в гептафторбензильном катионе $C_6F_5CF_2^+$, который можно рассматривать как пентафторбензол с функциональной группой CF_2^+ . Эти результаты интересны в контексте дальнейших теоретических исследований химических сдвигов ¹³С и ¹⁹F в спектрах различных полифторированных сопряженных катионов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Вычисления проведены с помощью квантово-химических программ Природа [6,7] и Dalton-2.0 [8].

Оптимизация геометрических параметров. Оптимизацию геометрических параметров соединений C_6F_5X проводили для изолированных молекул в газовой фазе при помощи метода функционала электронной плотности DFT с функционалом PBE [9] в базисе L22 [10] (8s4p2d)/[3s2p1d] для H, (12s8p5d2f)/[6s5p3d1f] для C, N, O, F квантово-химической программы Природа.

Для расчета химических сдвигов гептафторбензильного катиона с учетом аниона Sb_2F_{11} было генерировано пять приближений с помощью программы Coalescence Kick program [12], геометрические параметры которых затем оптимизировались по вышеназванному методу. ХС этих приближений в конечном итоге усреднялись.

Расчет химических сдвигов ¹³С u ¹⁹F. Для расчета XC использовали метод Хартри—Фока (HF) и метод функционала электронной плотности (DFT) с гибридным трехпараметровым функционалами B3LYP, а также обменно-корреляционными функционалами PBE и KT2 с применением различных базисных функций. Расчет проводили для молекул в газовой фазе. Полученные из расчета значения XC сравнивали с экспериментальными данными из литературных источников [1, 11], а для гептафторбензильного катиона — с данными, полученными в собственных исследованиях. Все расчеты проводились в варианте калибровочно-инвариантных атомных орбиталей (GIAO).

Экспериментальные значения XC 19 F соединений C₆F₅X соответствуют 5 %-му раствору в CCl₄, что позволяет минимизировать сольватационные эффекты растворителя и межмолекулярные взаимодействия исследуемых соединений.

Гептафторбензильный катион получали смешиванием октафтортолуола с SbF_5 в мольном соотношении 1:6, аналогично описанному в работе [13]. ХС измеряли относительно внешнего стандарта (капилляр с 1 %-м раствором C_6F_6 в дейтероацетоне).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Соответствие экспериментальных и рассчитанных XC соединений C₆F₅X охарактеризовано линейными корреляциями вида

$$\delta_{3\text{KCII}} = A \, \delta_{\text{Teop.}} + B. \tag{1}$$

Параметры корреляционных прямых, построенных для расчетов XC в различных приближениях, представлены в табл. 1. По результатам, представленным в табл. 1, можно проследить, что увеличение точности расчета происходит по мере увеличения базисного набора функций. При этом оказалось, что при одном и том же базисе метод HF уступает DFT как по времени расчета, так и по предсказательной способности. Можно отметить, что результаты расчета в рамках метода DFT больше зависят от величины базиса, чем от выбранного функционала, хотя в некоторых случаях может наблюдаться и ухудшение показателей при увеличении базисного набора, что имеет подтверждение у других авторов [4], например, для базиса 6-311+G*. Наиболее под-

Таблица 1

Метод расчета		Базис	Для XC ¹⁹ F			Для XC ¹³ C		
			R^2	A	В	R^2	Α	В
HF		6-31G	0,90	0,81	-1,03	0,97	1,12	-3,48
		6-311G	0,90	0,77	-0,97	0,95	1,17	-4,21
		cc-pVDZ	0,91	0,77	-1,45	0,96	1,05	-3,77
		cc-pCsVDZ	0,91	0,77	-1,44	0,96	1,06	-3,86
DFT	B3LYP	6-31G	0,95	0,79	-2,85	0,98	1,04	-2,40
		6-311G	0,95	0,74	-2,63	0,98	1,03	-2,83
		6-311G для C	0,93	0,84	-2,63	0,98	1,07	-3,22
		6-311+G* для F ¹						
		6-311+G*	0,91	0,73	-1,12	0,97	0,91	-2,96
		cc-pVDZ	0,95	0,79	-3,31	0,98	1,01	-2,71
		cc-pCsVDZ ²	0,96	0,79	-3,32	0,98	1,01	-2,73
		cc-pVDZ/	0,94	0,77	-2,98	0,99	1,02	-2,61
		cc-pVTZ						
		cc-pVTZ	0,94	0,78	-3,00	0,99	0,90	-2,26
	PBE	L22	0,97	0,79	-0,06	0,99	0,86	0,25
		cc-pVTZ	0,95	0,74	-3,54	0,99	0,88	-1,92
	KT1	IGLO-II	0,95	0,74	-3,86	0,99	0,92	-1,60
	KT2	IGLO-III ³	0,94	0,77	-3,92	0,99	0,93	-1,75

Параметры корреляции теоретических и экспериментальных XC соединений $C_6F_5X^*$

При расчете корреляционных соотношений значения для гептафторбензильного катиона не учитывали. ^{1,2,3} Для атомов Cl использовали базисы: ¹ 6-311G, ² aug-cc-pVDZ, ³ IGLO-II.

ходящим методом расчета XC¹⁹F из представленных оказался GIAO-DFT с функционалом PBE в совокупности с базисом L22, реализованный в программе Природа (табл. 2, 3). Наклон аппроксимирующих прямых меньше 1 указывает на общую тенденцию к завышению рассчитываемых величин.

Графическое представление алгебраических выражений для XC ¹⁹F и ¹³C представлены на рис. 1.

Данные табл. 3 можно сопоставить с эмпирическими схемами, полученными в работе [1].

$$\delta_{opmo}(\mathbf{F}) = -0.60\sigma_{\mathrm{I}} + 24,50\sigma_{\mathrm{R}} - 143,27, \qquad R^2 = 0.573, \qquad \sigma = 9,00, \tag{2}$$

$$\delta_{\text{mema}}(\mathbf{F}) = 4,59\sigma_{\mathrm{I}} + 6,09\sigma_{\mathrm{R}} - 163,15, \quad R^2 = 0,928, \quad \sigma = 0,91,$$
 (3)

$$\delta_{napa}(\mathbf{F}) = 7,65\sigma_{\rm I} + 29,05\sigma_{\rm R} - 156,21, \quad R^2 = 0,928, \quad \sigma = 3,08,$$
 (4)

где о_г и о_в — константы Гамета—Тафта.

Из этого сопоставления видно, что квантово-химический расчет для случая химических сдвигов в соединениях C₆F₅X имеет значительные преимущества по сравнению с представленными эмпирическими выражениями. При этом в рамках одной линейной зависимости удается оценить ХС для всех положений атомов по отношению к заместителю, причем, судя по коэффициентам корреляции, качество таких оценок значительно выше, особенно для углеродных спектров. Стоит отметить, что как в эмпирическом приближении (выражение 2), так и квантово-химическом расчете на уровне РВЕ/L22 наибольшее отклонение ХС наблюдается для атомов фтора и углерода в орто-положении и известно оно как "орто-эффект" [14], что может говорить о необходимости более точного учета эффектов заместителя.

Этот же метод был использован для расчета ¹³С и ¹⁹F химических сдвигов в гептафторбензильном катионе (см. табл. 2). Для атомов фтора, особенно в орто- и пара-положениях, сдвиги имеют значительные отклонения от экспериментальных. Не исключено, что в этом случае про-

Таблица 2

Замести- тель Х	Fopmo	F _{мета}	F _{napa}	C _{unco}	Copmo	Смета	C _{napa}	
—Н	29,68	2,39	13,05	-46,46	8,01	-0,47	4,69	
	(24,9)	(0,7)	(9,4)	(-38,3)	(8,2)	(-0,6)	(3,6)	
—CH ₃	21,84	-0,68	6,46	-33,63	6,98	-0,68	2,15	
	(18,8)	(-1,0)	(3,7)	(-27,4)	(7,3)	(-0,4)	(1,9)	
—CF ₃	28,06	3,88	18,44	-36,74	6,69	-0,21	5,76	
	(23,1)	(2,7)	(15,4)	(-32,3)	(7,1)	(-0,4)	(5,9)	
—Cl	25,77	1,73	8,27	-31,42	6,45	0,06	2,13	
	(23,5)	(1,3)	(6,8)	(-30,3)	(6,9)	(0,0)	(2,4)	
—OCH ₃	5,61	-1,28	2,10	-6,61	5,84	0,04	0,99	
	(4,5)	(-1,9)	(-1,6)	(-3,3)	(4,0)	(0,0)	(-1,0)	
—NO ₂	23,49	3,60	23,98	-16,43	6,77	0,32	7,14	
	(16,2)	(3,8)	(14,5)	(-11,9)	(3,2)	(-0,7)	(5,2)	
—ОН	-8,34	-2,13	-8,14	-9,64	-1,82	-0,08	-3,28	
	(-1,4)	(-1,7)	(-6,8)	(-7,3)	(0,6)	(0,0)	(-2,2)	
—CN	37,96	5,04	24,27	-55,16	11,02	-0,37	7,28	
	(30,4)	(3,7)	(19,4)	(-48,1)	(10,1)	(0,4)	(7,6)	
$-CF_2^+$	81,85	32,85	122,28	-50,19	15,25	2,67	28,13	
	(64,21)	(16,22)	(83,39)	(-45,19)	(16,19)	(1,17)	(26,25)	

Рассчитанные (экспериментальные) * химические сдвиги $^{19}\mathrm{F}$ и $^{13}\mathrm{C}$ относительно $\mathrm{C_6F_6}$

* Перерасчет величин XC ^{19}F [1] производили, используя значение $\delta_F(C_6F_6) = 163,1$ м.д. в сильное поле от CCl₃F, а ^{13}C [11] – $\delta_C(C_6F_6) = 138,3$ м.д. в слабое поле от TMS.

Таблица З

Среднеквадратичное отклонение для рассчитанных XC ¹⁹F *u* ¹³C в пентафторбензолах, м.д. (расчет проведен на уровне теории PBE/L22)

¹⁹ F				¹³ C					
Общий	Fopmo	F _{mema}	F _{napa}	Общий	Cunco	Copmo	Смета	C _{napa}	
1,78	2,33	0,61	1,93	1,25	0,86	1,43	0,52	0,96	

Таблица 4

Расчет значений XC ¹³C и ¹⁹F на уровне PBE/L22 в гептафторбензильном катионе с учетом и без учета сольватации

Атом	С ₆ F ₅ CF ⁺ ₂ несольва- тированный	$C_6F_5CF_2^+$ сольвати- рованный $Sb_2F_{11}^-$	Эксперимент, м.д. (отн. С ₆ F ₆)	Атом	C ₆ F ₅ CF ⁺ ₂ несольва- тированный	$C_6F_5CF_2^+$ сольвати- рованный $Sb_2F_{11}^-$	Эксперимент, м.д. (отн. C ₆ F ₆)
Cunco	-50,19	-48,51	-45,19	Fopmo	81,85	73,74	64,21
C_{opmo}	15,25	15,35	16,19	F _{мета}	32,85	19,30	16,22
Смета	2,67	1,62	1,17	F _{napa}	122,28	95,97	83,39
C _{napa}	28,13	25,04	26,25	$C\underline{F}_2^+$	198,45	192,37	195,74
$\underline{C}F_2^+$	32,84	32,23	36,67				

Рис. 1. Соотнесение экспериментальных XC с рассчитанными значениями на уровне теории PBE/L22: $R^2 = 0.97$, A = 0.79, B = -0.06 (*a*), $R^2 = 0.99$, A = 0.86, B = 0.25 (*b*). Значения для гептафторбензильного катиона при расчете параметров аппроксимирующих прямых не учитывали

Рис. 2. Графическое представление данных табл. 4: прямая 1 соответствует несольватированному катиону ($R^2 = 0.948$, A = 1.07, B = -26.19); прямая 2 — сольватированному катиону ($R^2 = 0.990$, A = 1.05, B = -10.08 (a), прямая 1 ($R^2 = 0.991$, A = 0.956, B = 1.54), прямая 2 ($R^2 = 0.995$, A = 0.990, B = 1.90 (δ)

является особенность образца: катион может быть сильно ассоциирован с противоионом, а также со специфическим растворителем — сильной кислотой Льюиса SbF_{5.} Так, при учете влияния противоиона, а именно, при расчете XC в системе ($C_6F_5CF_2^+ - Sb_2F_{11}^-$) было обнаружено заметное увеличение точности по сравнению с таким же расчетом для несольватированного гептафторбензильного катиона $C_6F_5CF_2^+$ (табл. 4).

На рис. 2 в графическом виде представлены данные табл. 4. При прямом учете растворителя наблюдается как увеличение коэффициента корреляции расчетных и экспериментальных данных, так и общее улучшение аппроксимирующих прямых.

ЗАКЛЮЧЕНИЕ

Проведены расчеты XC в спектрах ЯМР ¹⁹F и ¹³C замещенных пентафторбензолов методами HF и DFT. Расчетные значения сопоставлены с экспериментальными данными, известными из литературы. Показано, что XC в неполярных растворителях с достаточно высокой точностью могут быть предсказаны, используя метод GIAO-DFT(PBE/L22), реализованный в квантово-химической программе Природа. Этот метод был использован для предсказания химических сдвигов ¹⁹F и ¹³C гептафторбензильного катиона в среде SbF₅. Лучшее соответствие расчетных и экспериментальных величин достигается при учете влияния противоиона. Метод может быть распространен на теоретические исследования XC ¹³C и ¹⁹F в спектрах различных полифторированных сопряженных катионов и их предшественников.

Авторы выражают благодарность Г.Е. Сальникову и А.М. Генаеву за консультации по квантово-химическим программам Dalton и Природа.

СПИСОК ЛИТЕРАТУРЫ

- 1. Pushkina L.N., Stepanov A.P., Zhukov V.S., Naumov A.D. // Organ. Magn. Res. 1972. 4. P. 607.
- 2. Hogben M.G., Graham W.A.G. // J. Amer. Chem. Soc. 1969. 91, N 2. P. 283.
- 3. Webb G.A., Karadakov P.B., England J.A. // Bull. Pol. Acad. Sci., Chem. 2000. 48, N 1. P. 101.
- 4. *Alkorta I., Elguero J.* In: Computational Spectroscopy / Ed. J. Grunenberg. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2010. P. 37 62.
- 5. Sanders L.K., Oldfield E. // J. Phys. Chem. A 2001. 105, N 34. P. 8098.
- 6. Laikov D.N. // Chem. Phys. Lett. 1997. **281**, N 1-3. P. 151.
- 7. Лайков Д.Н. Устынюк Ю.А. // Изв. АН, Сер. хим. 2005. С. 804.
- 8. Dalton, a molecular electronic structure program, Release 2.0, 2005; see http://www.kjemi.uio.no/software/dalton/dalton.html
- 9. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. 77, N 18. P. 3865.
- 10. Laikov D.N. // Chem. Phys. Lett. 2005. 416, N 1-3. P. 116.
- 11. *Резвухин А.И., Фурин Г.Г., Калабин Г.А. и др. //* Изв. СО АН, Сер. хим. н. –1982. Вып. 5, № 12. С. 94.
- 12. Sergeeva A.P., Averkiev B.B., et al // J. Chem. Phys. 2011. 134. P. 224304.
- 13. Pozdnyakovich Yu.V., Shteingarts V.D. // J. Fluor. Chem. 1974 4 P. 283.
- 14. Kurur A., Kurur N.D. // Magn. Res. Chem. 2005. 43. P. 132.