2013. Том 54

Приложение

S121 - S127

УДК 544.228:543.429.23

МИКРОВОЛНОВОЕ ПОГЛОЩЕНИЕ И СТРУКТУРА ЦЕОЛИТНОЙ ВОДЫ В ГЕЙЛАНДИТЕ И КЛИНОПТИЛОЛИТЕ ПО ДАННЫМ ЯМР ¹Н

С.П. Габуда¹, С.Г. Козлова¹, А.С. Колесников¹, А.К. Петров²

Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск e-mail: gabuda@niic.nsc.ru Институт химической кинетики и горения им. В.В. Воеводского СО РАН, Новосибирск

Статья поступила 28 февраля 2013 г.

Методом ЯМР ¹Н на монокристаллах изучены особенности структуры цеолитной воды в природных цеолитах — клиноптилолите $Na_2K_2Ca[Al_6Si_{30}O_{72}]\cdot 22H_2O$ и гейландите $Ca_3Mg[Al_8Si_{28}O_{72}]\cdot 24H_2O$. Показано, что при температурах ниже 170 К наблюдается фиксированное, но различное для двух минералов распределение H_2O по структурным позициям. При температурах выше 290 К наблюдается трансляционная и ориентационная диффузия молекул цеолитной воды, структура которой оказывается практически идентичной для гейландита и клиноптилолита. Механизм диффузии может быть связан с взаимодействием либрационных колебательных мод H_2O с высокочастотными колебаниями однотипных алюмокремнекислородных каркасов. Показано, что при определенных условиях данный тип взаимодействия может обусловливать микроволновое поглощение.

Ключевые слова: ЯМР¹Н, цеолитная вода, гейландит, клиноптилолит, микроволновое поглощение.

введение

Одной из особенностей гидратированных цеолитов является их способность к поглощению электромагнитного излучения в гига- и терагерцовом диапазонах [1], до некоторой степени аналогичного поглощению подобного излучения в воде. Предполагается, что в обоих случаях основную роль играет большой дипольный момент молекулы H_2O , а также особенности структуры как воды, так и цеолитной воды [1]. Однако остаются невыясненными структурные особенности, с которыми может быть связан детальный механизм поглощения волн субмиллиметрового диапазона гидратированными цеолитами. В частности, неясно, каким образом в структуре с "замороженным" расположением электрических диполей адсорбированных молекул H_2O может реализоваться механизм поглощения, основанный на представлении о свободном вращении этих диполей. В данной работе проведено ЯМР исследование особенностей структуры ной подвижности и на выявление механизмов "размораживания" электрических диполей адсорбированных ализи молекулярной подвижности и на выявление механизмов "размораживания" электрических диполей адсорбированных структуры ной подвижности и на выявление механизмов "размораживания" электрических диполей адсорбированных структуры сорбированных молекул Н2O.

В качестве модели мы рассмотрели структуру природных цеолитов групп клиноптилолита Na₂K₂Ca[Al₆Si₃₀O₇₂]·22H₂O и гейландита Ca₃Mg[Al₈Si₂₈O₇₂]·24H₂O, характеризуемых одним и тем же типом топологии алюмокремнекислородных каркасов, но различным отношением Al/Si и различным составом внекаркасных обменных катионов. По данным методов рентгеноструктурного анализа [2—7] и дифракции нейтронов [8—10], их структура относится к пространственной группе *C*2/*m*, параметры решетки: a = 17.7, b = 17.9, c = 7.4 Å, $\beta = 116^{\circ}$, Z = 1 [2].

[©] Габуда С.П., Козлова С.Г., Колесников А.С., Петров А.К., 2013

Рис. 1. Структура каркаса цеолитов групп клиноптилолита и гейландита (тетраэдры), расположение обменных катионов Na⁺(M1) и Ca²⁺(M2), а также K⁺(M3) и Mg²⁺(M4) и молекул воды (W) [7] (*a*); температурная зависимость мольного содержания цеолитной воды в элементарной ячейке гейландита (●) и клиноптилолита (o) [11] (*б*)

Структура пронизана вдоль оси *с* сплюснутыми каналами, образованными десятичленными кольцами размером 7,5×3,1 Å, сформированными тетраэдрами (Al,Si)O₄, и восьмичленными кольцами размером 4,6×3,6 Å (рис. 1).

Дополнительно к этому, параллельно [100] имеются каналы, образованные восьмичленными кольцами размером 4,7×2,8 Å и соединяющиеся с *с*-каналами в плоскостях (010). Данное обстоятельство приводит к наличию плоскостей совершенной спайности {010} (на рис. 1 — *m*).

Молекулы воды локализованы в плоскостях симметрии (010) в четырехкратных позициях W1, W2, W2', W6 и в двукратной позиции W4. Кроме того, по обе стороны плоскостей (010) располагаются общие — восьмикратные позиции W3 и W5 (в клиноптилолите — четырехкратные), играющие роль мостиков между находящимися в плоскостях (010) обменными катионами и атомами кислорода (Si,Al)O₄-каркаса. При заселении всех позиций содержание воды в данных цеолитах теоретически могло бы составлять 30 H₂O для клиноптилолита и 34 H₂O — для гейландита, но фактически максимальное содержание цеолитной воды при нормальных условиях достигает лишь ~22—24 H₂O. Это значит, что в реальной структуре как гейландита, так и клиноптилолита позиции молекул цеолитной воды заселены лишь частично, причем характер распределения заселенностей остается невыясненным.

При нагревании образцы теряют воду, причем их дегидратация носит достаточно резкий, неаррениусовский характер (см. рис. 1, δ) [11, 12]. Для гейландита кривая дегидратации характеризуется некоторой особенностью, связанной с известным необратимым структурным превращением при ~230 °C. Однако начальный этап дегидратации (до ~100 °C) для клиноптилолита и гейландита показывает удивительную "нечувствительность" по отношению к составу обменных катионов. Это может указывать на существенную роль взаимодействия цеолитной воды со стенками каналов и на связь энергии дегидратации в двух системах с влиянием однотипной топологии алюмокремнекислородного каркаса, тогда как ион-дипольные взаимодействия (Na⁺—OH₂, K⁺—OH₂, Ca²⁺—OH₂ и Mg²⁺—OH₂) оказываются, по-видимому, второстепенными. В данной работе мы использовали метод ЯМР ¹Н для выяснения механизма влияния динамики алюмокремнекислородного каркаса на диффузионную подвижность и на "размораживание" электрических диполей адсорбированных молекул H₂O в гейландите и клиноптилолите.

ОБРАЗЦЫ И МЕТОДИКА ЭКСПЕРИМЕНТА

Химический состав. Для исследования были использованы монокристаллические образцы гейландита размерами около 4×3×2 см из месторождения р. Нидым, Сибирская платформа. Ус-

редненный химический состав образцов отвечает формуле Ca₃Mg[Al₈Si₂₈O₇₂]·24H₂O (в расчете на одну элементарную ячейку). Монокристаллические образцы клиноптилолита размером около 3×2×2 см были получены из месторождения Дзегви, Грузия. Усредненный химический состав образцов отвечает формуле Na₂K₂Ca[Al₆Si₃₀O₇₂]·22H₂O (в расчете на одну элементарную ячейку).

Подготовка образцов и регистрация спектров ЯМР. Полученные образцы помещали в датчик специализированного твердотельного ЯМР спектрометра [13] с цифровой системой регистрации спектров ЯМР ¹Н на частоте резонанса 13 МГц. Для улучшения отношения сигнал/шум обычно накапливали 10—20 записей спектров ЯМР.

РЕЗУЛЬТАТЫ

Область низких температур. Анализ тонкой структуры спектров ЯМР ¹Н проводили с помощью методик и подходов, описанных в [14—19]. Как известно [14], спектры ЯМР ¹Н молекул воды, связанных в структуре твердого тела, описываются моделью "изолированных двухспиновых систем". В отсутствие выраженной внутрикристаллической подвижности молекул подобные спектры представляют собой суперпозицию дублетов, расстояние между компонентами которых ΔB_i зависит от углов φ между направлениями внешнего магнитного поля B и вектором H—H молекул H₂O, расположенных в *i*-й структурной позиции:

$$\Delta B_i = 3\mu r_0^{-3} [3\cos^2(\varphi_i - \varphi_0)\cos^2\delta_0 - 1] = \sim 10.5 [3\cos^2(\varphi_i - \varphi_0)\cos^2\delta_0 - 1], \tag{1}$$

где µ — магнитный момент протона и $r_0 \approx 1,55$ Å — расстояние H–H в молекулах H₂O; φ_i — угол между направлением внешнего магнитного поля *B* и заданной осью кристалла; φ_0 и δ_0 — сферические координаты вектора *H*—*H*. На рис. 2 представлены типичные спектры ЯМР ¹H гейландита и клиноптилолита, полученные при ориентации магнитного поля вдоль осей [010] монокристаллических образцов (при 150 K).

Полученные спектры позволяют непосредственно рассчитать заселенности p_k для всех позиций H₂O в структурах гейландита и клиноптилолита, поскольку площади под выделенными компонентами спектра пропорциональны заселенностям p_k . В таблице приведены рассчитанные нами экспериментальные значения относительных заселенностей.

На рис. 3 представлены угловые зависимости дублетных расщеплений спектров ЯМР, которые являются идентичными для гейландита и клиноптилолита при 150 К. Ранее [15, 16] для гейландита на основании этих зависимостей были найдены ориентации протон-протонных Н—Н векторов всех семи структурно неэквивалентных молекул H₂O и осуществлена их "привязка" к структуре в предположении образования водородных связей O—H...O с атомами кислорода каркаса и мостиков между этими атомами и обменными катионами (Na, K, Ca, Mg). Отнесение

Рис. 2. Спектры ЯМР ¹Н монокристаллов гейландита (*a*) и клиноптилолита (при *T* = 150 K) (*б*). Точки — эксперимент, сплошные линии — результаты математического разложения спектров на компоненты (расчет), относящиеся к атомам водорода молекул воды W(1)...W(6)

Рис. 3. Угловая зависимость дублетных расщеплений спектров ЯМР ¹Н в гейландите (•) и клиноптилолите (•) (150 K), полученная при вращении образца вокруг оси [100], с шагом 10°. Сплошные, штриховые и пунктирные кривые — теоретические, рассчитанные по формуле (1) при подборе оптимальных значений φ₀ и δ₀

Рис. 4. Спектр ЯМР ¹Н гейландита при комнатной температуре и относительной влажности 80 %

Заселенности структурных позиций в гейландите и клиноптилолите по данным ЯМР ¹Н

Позиция H ₂ O	Кратность (в скобках)	Гейландит 150 К	Клиноптилолит 150 К	Гейландит и клиноптилолит, 290 К
В плоскостях (010)	W1(4); W2(4); W2'(4);W6(4);W4(2)	0,30	0,20	~0,50
В 8-членных	W3 (8)	0,50	0,50	~0,50
кольцах				Молекулы W3 и W5
В 10-членных	W5 (8) (гейландит)	0,20	0,30	делокализованы в
кольцах	W5 (4) (клиноптилолит)			объеме цеолитовых
				нанопор

компонент дублетов к конкретным позициям молекул воды в структуре представлено как на рис. 2, так и на угловой зависимости спектров ЯМР ¹Н (рис. 3).

Область высоких температур. При повышении температуры в области 220—270 К наблюдается сужение спектров ЯМР, обусловленное специфическим эффектом "размораживания" [17—19] подрешетки молекул воды и возникновением ориентационной и трансляционной диффузии молекул H₂O. Типичный спектр ЯМР ¹Н высокотемпературной фазы (на примере гейландита) представлен на рис. 4.

Угловые зависимости дублетных расщеплений ΔB спектров ЯМР ¹Н монокристаллов гейландита и клиноптилолита (290 К) представлены на рис. 5. Зависимости были получены при вращении образцов вокруг двух осей — [100] и [001], с шагом 5°. Можно заметить, что полученые экспериментальные зависимости почти не различаются для двух кристаллов, причем степень отклонения угловых зависимостей от одноосной или аксиальной симметрии относительно невелика. Ее значение для гейландита составляет ($\Delta B[001] - \Delta B[100]$)/ $\Delta B[010] \approx 5$ %, что согласуется с полученными ранее данными [16]. Для клиноптилолита степень неаксиальности ($\Delta B[001] - \Delta B[100]$)/ $\Delta B[010]$ составила ~ 15%.

АНАЛИЗ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Структура цеолитной воды в области высоких температур. Из-за различия заселенностей p_i для позиций W1, ..., W6 (см. таблицу) можно ожидать существенного различия в значе-

Рис. 5. Угловые зависимости дублетных расщеплений спектров ЯМР ¹Н гейландита (290 K) (*a*) и клиноптилолита (290 K) (*б*), полученные при вращении образцов вокруг осей [100] (штриховые) и [001] (сплошные кривые).

ниях $<\Delta B>$ для высокотемпературного, "размороженного" состояния подвижности в подрешетке молекул воды и обменных катионов в системах (Ca,Mg)—OH₂ в каналах гейландита и (Na,K)—OH₂ в клиноптилолите. Кроме того, из-за неаксиальной симметрии структуры следует ожидать также существенного различия значений $<\Delta B>$ для ориентаций магнитного поля *B* вдоль осей [100] и [001] кристаллов. Иными словами, симметрия угловой зависимости $<\Delta B>$ спектров ЯМР ¹Н должна оставаться трехосной и при низких, и при высоких температурах. Однако, экспериментальные данные для угловых зависимостей $<\Delta B>$ для двух систем (см. рис. 5) не согласуются с подобными ожиданиями и оказываются почти идентичными и почти аксиально симметричными.

В соответствии с представлениями теории диффузии в твердых телах [17—19], возникновение подвижности в подрешетке молекул воды в цеолитах связывается с прыжковым механизмом диффузии молекул по структурным вакансиям, т.е. по регулярным, но лишь частично заселенным позициям W1, ..., W6. В соответствии с данной моделью, молекулы H₂O последовательно занимают каждую из этих структурных позиций W1, ..., W6, а усредненное за счет прыжков локальное магнитное поле (ЛМП) является арифметическим средним по всем частным значениям b_i :

$$b_i = \pm 3 / 2\mu r_0^{-3} \sum_i p_i (3\cos^2 \theta_{ik} - 1) = \alpha^{\mu \mu \phi}, \quad \sum_i p_i = 1,$$
(2)

где p_i — заселенность *i*-й позиции; θ_{ik} — угол между вектором *H*—*H* молекулы воды в позиции *i* и направлением магнитного поля; знак (±) обусловлен наличием двух ориентаций протонного спина по отношению к направлению внешнего магнитного поля. В итоге, из-за влияния диффузии многокомпонентные спектры ЯМР, характерные для низкотемпературной "замороженной" фазы, вырождаются в одиночные дублеты, расщепление которых составляет $\langle \Delta B \rangle = 2b_i$. Усредненное ЛМП является тензором второго ранга, симметрия которого определяется симметрией кристалла, а численные значения компонент определяются значениями углов θ_{ik} и заселенностей p_i , т.е. конкретными координатами протонов в структуре [18, 19]. Для кристаллов низших сингоний, как в самом общем случае, этот тензор является трехосным, и в системе его главных осей ориентационная зависимость дублетных расщеплений имеет вид:

$$\Delta B > = A_1 (3\cos^2 \varphi - 1)] + A_2 \sin^2 \varphi \cos 2\beta.$$
(3)

Здесь константы A₁ и A₂ представляют собой решеточные суммы:

$$A_1 = 3/2\mu r_0^{-3} \Sigma_i p_i (3\cos^2 \varphi_i - 1),$$
(4)

$$A_2 = 9/2\mu r_0^{-3} \Sigma_i p_i \sin^2 \varphi_i \cos 2\beta_i, \qquad (5)$$

углы φ и β задают ориентацию внешнего магнитного поля относительно осей кристалла *X*, *Y*, *Z*, а углы φ_i и β_i задают найденные для "замороженной" фазы ориентации протон-протонных векторов молекул воды в системе сферических координат кристалла [17—19]. Ранее было показано [15, 16], что при расчете усредненных спектров ЯМР по формулам (3)—(5) с использованием низкотемпературных данных параметр $A_2 \neq 0$, что не согласуется с экспериментальными

данными (см. рис. 5). Это значит, что структура цеолитной воды в высокотемпературных фазах гейландита и клиноптилолита существенно отличается от таковой при 150 К.

Вместе с тем нетрудно заметить, что представленные на рис. 5 угловые зависимости $\langle \Delta B \rangle$ с точностью до постоянного множителя согласуются с угловой зависимостью ΔB , найденной для молекул, располагающихся в базальной плоскости структуры (010) (в позициях W1, W2, W2', W4 и W6 (жирная кривая на рис. 3)). Это значит, что для молекул вне базальной плоскости (в позициях W3 и W5) в высокотемпературном состоянии необходимо допустить их почти изотропную реориентацию при комнатной и более высоких температурах. В этом случае участие позиций W3 и W5 в процессе диффузии не будет вносить вклад в A_2 и в анизотропию ЛМП, а угловая зависимость дублетных расщеплений $\langle \Delta B \rangle$ будет определяться только средним временем пребывания молекул в позициях W1, W2, W2', W4 и W6. При равновероятном заселении всех позиций это время пропорционально отношению числа "базальных" к числу внебазальных позиций:

для гейландита
$$<\Delta B > = 18/34(3\mu r_0^{-3})(3\cos^2 \varphi - 1)] \approx 5,55 (3\cos^2 \varphi - 1),$$

для клиноптилолита $<\Delta B > = 18/30(3\mu r_0^{-3})(3\cos^2 \varphi - 1)] \approx 6,30 (3\cos^2 \varphi - 1),$

где φ — угол между осью [010] и направлением магнитного поля *B*. На опыте значение коэффициента A_1 заметно ниже и составляет $A_1 \approx 3,55$ Гс, что может указывать на неравновероятность распределения заселенностей базальных и внебазальных позиций, либо на вклад либрационного движения молекул [20, 21] в базальных позициях.

Таким образом, из факта почти аксиальной симметрии угловой зависимости спектров ЯМР высокотемпературной фазы рассматриваемых систем следует вывод о почти изотропной реориентации молекул воды в позициях W3 и W5. Полученный результат указывает на некоторую "размороженность" дипольного момента молекул цеолитной воды в области высоких (выше 270 К) температур, что является одним из условий для возникновения эффекта микроволнового поглощения как в гейландите, так и в клиноптилолите.

Влияние колебаний [(Si,Al)O₄] каркаса на динамику H₂O. Вывод об изотропной реориентации H₂O и отмеченная выше "нечувствительность" кривых дегидратации по отношению к составу обменных катионов в гейландите и клиноптилолите вынуждает рассмотреть более детально влияние колебаний [(Si,Al)O₄] каркаса на динамику H₂O. Наиболее важным фактором является соотношение частот колебательных мод — высокочастотных колебаний (порядка 1000 см⁻¹) связей тетраэдрических катионов и связей Si—O и Al—O, и низкочастотных (порядка 200 см⁻¹) либраций молекул воды. В этом случае в соответствии с теорией движения в быстропеременных полях [22—24] на диполь молекулы H₂O действует эффективный потенциал [22]:

 $U_{\rm php} = U_0[-\cos\theta + (a^2 v^2/8D^2 v_{\rm JH0}^2)\sin^2\theta], \qquad (6)$

где U_0 — максимальное значение исходного (невозмущенного) потенциала; v — частота возмущающей высокочастотной колебательной моды; a — амплитуда возмущающего колебания; $v_{\text{либ}}$ — частота либраций H₂O; D — расстояние между O^{2–} и центром положительного заряда протонов в молекуле.

Первое слагаемое в квадратных скобках соответствует зависимости невозмущенного потенциала от ориентации диполя по отношению к направлению молекулярного поля. Второе слагаемое учитывает возмущающее влияние высокочастотных трансляционных колебаний атомов кислорода в составе [(Si,Al)O₄] каркаса на эффективный потенциал. При выполнении условия, что частота возмущающего колебания удовлетворяет неравенству $a^2v^2 > 4D^2v^2_{nu6}$, потенциалу (6) соответствуют два состояния устойчивости: с $\theta = 0$ (нормальное, или исходное), и $\theta = \pi$, что означает переворот молекулы H₂O на 180° (в "инвертированное" состояние). Это значит, что для возбуждения переходов в инвертированное состояние необходимо повышение температуры, при котором отношение частот v/v_{либ} было бы больше отношения 2*D/a*. При данном условии поведение кластеров из нескольких молекул воды в цеолитовых порах соответствует, по-видимому, модели горячего пара, температурная зависимость плотности которого $\rho(T)$ качественно должна следовать скорее ван-дер-ваальсову, но не аррениусовскому поведению.

выводы

Показано, что при температурах ниже 170 К в природных цеолитах клиноптилолите $Na_2K_2Ca[Al_6Si_{30}O_{72}]\cdot 22H_2O$ и гейландите $Ca_3Mg[Al_8Si_{28}O_{72}]\cdot 24H_2O$ наблюдается фиксированное, но различное для двух цеолитов распределение молекул воды по структурным позициям, найденным в рентгеноструктурных исследованиях.

При температурах выше 290 К найдено одинаковое для обоих цеолитов распределение молекул цеолитной воды по структурным позициям.

Показано, что при высоких температурах молекулы цеолитной воды в гейландите и клиноптилолите могут участвовать в изотропном вращении. С вращением дипольных моментов молекул H₂O может быть связано поглощение микроволнового излучения цеолитами.

Авторы благодарят проф. Т. Армбрустера за проявленный интерес к исследованию. Работа выполнена при поддержке Программы "Основы фундаментальных исследований нанотехнологий и наноматериалов" Президиума РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Whittington B.I., Milestone N.B. // Zeolites. 1992. 12, N 7. P. 815 818.
- 2. Alberti A. // Tschermaks Mineral. Petrogr. Mitt. 1975. 22. P. 22 25.
- 3. Koyama K, Takeuchi Y. // Z. Krist. 1977. 145. P.216 239.
- 4. Galli E., Gottardi G., Mayer H., Preisinger A., Passaglia E.// Acta Cryst. 1983. 39. P.189 197.
- 5. Petrov O.E., Filizova L.D., Kirov G.N. // Compt. Rend. l'Academie bulgare des Sciences. 1991. 44, N 12. P. 77 80.
- 6. Smyth J.R., Spaid A.T., Bish D.L. //Amer. Mineral. 1990. 75. P.522 528.
- 7. Armbruster T., Gunter M.E. // Amer. Mineral. 1991. 76. P.1872 1883.
- 8. *Alberti A*. // Tschermaks Mineral. Petrogr. Mitt. 1973. **19**. P.173 184.
- 9. Bartl H. // Z. Kristallogr. 1973. 137. P. 440 441.
- 10. *Hambley T.W., Taylor J.C.* // J. Solid State Chem. 1984. 54. P.1 9.
- а) Габуда С.П., Гайдаш А.А., Дребущак В.А., Ковалевская Ю.А., Козлова С.Г., Пауков И.Е. // Сб. науч. докл. на конф. им. А.В.Николаева. – ИНХ СО РАН; б) Дребущак В.А., Сереткин Ю.В. // Сб. научн. тр. СНИИГГиМС. – Новосибирск, 1990. – С. 142.
- 12. *Киров Д., Филизова Л., Габуда С.П., Козлова С.Г., Мороз Н.К.* // Журн. структур. химии. 1993. **34**, № 3. С. 61 65.
- 13. Белицкий И.А., Габуда С.П., Горбунов А.В., Козлова С.Г., Мороз Н.К., Сабылинский А.В., Сереткин Ю.В. Количественное определение цеолитов в горных породах методом ЯМР. Препринт N 10, Новосибирск, 1988.
- 14. Абрагам А. Ядерный магнетизм. М.: Мир, 1965.
- 15. Габуда С.П., Ивлева Л.В., Лундин А.Г. // Журн. структур. химии. 1970. 11, № 4. С.646 649.
- Gabuda S.P., Kozlova S.G., Moroz N.K., Filizova L., Kirov D. Localization and disordering of water molecules in heulandite: Comparison of NMR and neutron diffraction data. In: Natural Zeolites '93. Occurence, Properties, Use. / D.W. Ming, F.A. Mumpton. – New York, Brockport, 1995.
- 17. Габуда С.П., Лундин А.Г. Внутренняя подвижность в твердом теле. Новосибирск: Наука, 1986.
- 18. Габуда С.П., Лундин А.Г. // ЖЭТФ. 1968 55. С.1066 1076.
- 19. Сергеев Н.А., Фалалеев О.В., Габуда С.П.// Физ. тверд. тела. 1969. 11, № 8. С.2248 2251.
- 20. Slotfeldt-Ellingsen D., Pedersen B. // J. Phys. Chem. Sol. -1977. 38, N 1. P.65 72.
- 21. Pedersen B. // J. Chem. Phys. 1964. 41. P.122 131.
- 22. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика, т.1 (Механика), Гл. 5 (#30). М.: Физматгиз, 1981.
- 23. Капица П.Л. // ЖЭТФ. 1951. 21, № 5. С. 588 598.
- 24. Капица П.Л. // Успехи физ. наук. 1951. 44. С. 7 20.