ФИЗИКО-ТЕХНИЧЕСКИЕ ОСНОВЫ МИКРО- И ОПТОЭЛЕКТРОНИКИ

УДК 535.345.6

К РАСЧЁТУ МЕТАЛЛ-ДИЭЛЕКТРИЧЕСКИХ ФИЛЬТРОВ ДЛЯ ПРОХОДЯЩЕГО УЛЬТРАФИОЛЕТОВОГО СВЕТА

© Н. Д. Голдина

Институт лазерной физики СО РАН, 630090, г. Новосибирск, просп. Академика Лаврентьева, 15б E-mail: ngold@laser.nsc.ru

В рамках модели проводящей поверхности для характеристики свойств тонких металлических плёнок проведён расчёт металл-диэлектрического узкополосного фильтра для длины волны 270 нм. Показано, что при включении четырёх тонких плёнок молибдена в многослойную диэлектрическую структуру возможна эффективная отсечка пропускания <1,5 % в видимой области спектра при пике пропускания более 50 % для выделяемой длины волны и спектральной ширине фильтра <5 нм.

Ключевые слова: интерференционный фильтр, тонкие металлические плёнки, УФ-диапазон.

DOI: 10.15372/AUT20190603

Введение. Первые интерференционные фильтры состояли из двух высокоотражаюцих металлических (Ag, Al, Au) слоёв, разделённых диэлектрической прослойкой. Характеристики полностью диэлектрических фильтров зависят от числа слоёв в зеркалах, числа и порядка резонансных полостей. В настоящее время создание сложных диэлектрических фильтров происходит в контакте с программно-вычислительным комплексом многослойной структуры и совершенной системой контроля толщины и показателей преломления слоёв [1]. Наряду с традиционными диэлектрическими фильтрами интересны современные применения металл-диэлектрических фильтров в оптическом приборостроении, спектроскопии и астрономии [2]. Такие фильтры имеют преимущество по сравнению с диэлектрическими фильтрами в том, что обеспечивают эффективную отсечку боковых полос в спектре пропускания [3]. Ранее исследовались металл-диэлектрические фильтры в видимой области спектра [3, 4]. В данной работе конструирование фильтров проводится в проходящем ультрафиолетовом свете. Для характеристики металлических слоёв используется модель комплексной поверхностной проводимости.

Конструирование фильтра. До сих пор знаний о свойствах тонких металлических плёнок недостаточно для проектирования заданной спектральной характеристики фильтра в УФ-диапазоне. Известно, что тонкие плёнки металла имеют островковую структуру, зависящую от толщины слоя и метода изготовления. Расчёт может быть упрощён на основе приближённых формул для коэффициентов пропускания T и отражения с двух сторон (R и R') тонкого слоя металла на диэлектрической подложке [5]. Для математического описания таких плёнок можно применить модель однородного слоя и модель проводящей поверхности (МПП). Эксперимент с селективным отражателем в лазере показал перспективность использования МПП для описания свойств металлических плёнок [6]. При толщине плёнки $d \ll \lambda$ металлический слой можно рассматривать как проводящую поверхность. В расчёт по МПП для описания свойств металлической плёнки вводится комплексная проводимость плёнки $\xi = \xi' + i\xi'' = 2nk\gamma + i(n^2 - k^2)\gamma$, где $\gamma = 2\pi d/\lambda$, n - ik

металл-диэлектрического фильтра и диэлектрического фильтра

Puc. 2. Металл-диэлектрический фильтр (см. рис. 1) в увеличенном масштабе

показатель преломления, d — толщина плёнки. Два параметра ξ' и ξ'' , необходимые для конструирования фильтра, могут быть получены из экспериментальных измерений [3].

Для расчётов выбраны два металла: молибден и алюминий. Оптические константы металлов для длины волны $\lambda = 0,3$ мкм взяты из [7]: n - ik = 2,0 - i3,0 для Мо, n - ik = 0,25 - i3,3 для Al. Дисперсия оптических констант не учитывается (в видимой области для Мо она незначительна). Комплексная проводимость плёнок для d = 10 нм равна $\xi = \xi' + i\xi'' = 2,4 - i1,05$ для Мо и $\xi = 0,35 - i2,3$ для Al.

Многослойная структура состоит из 27 диэлектрических слоёв ZnS и криолита (с высоким (2,3) и низким (1,35) показателями преломления). Симметричная структура с ограничивающими кварцевыми средами выглядит следующим образом:

1,46 / HL HL HLH M₄ 2L M₃ HL HL HL HL HL H M₂ 2L M₁ HLH LH LH / 1,46.

Здесь H и L — четвертьволновые слои. В фильтр введены две резонансные прослойки 2L. Седлообразный контур полосы пропускания фильтра имеет два максимума, которые можно сближать, изменяя оптическую толщину резонансных прослоек и толщину прилегающих слоёв. На четырёх межслойных границах полуволновых слоёв размещены тонкие плёнки металла: M₁, M₂, M₃, M₄.

Коэффициент пропускания интерференционного фильтра определяется по формуле Эйри $T = \psi(1 + F \sin^2 \varphi)^{-1}$. Устранение боковых полос пропускания обеспечивается потенциальным пропусканием ψ , которое рассчитывается по формуле $\psi = (1 + A/T)^{-1} =$ $= (1 + \xi'/Y)^{-1}$, где A = 1 - R - T — коэффициент поглощения. Величина ψ зависит от значения выходного адмиттанса Y справа от металлической плёнки [3]. Потенциальное пропускание фильтра ψ равно произведению коэффициентов для каждой из четырёх металлических плёнок: $\psi = \psi_1 \psi_2 \psi_3 \psi_4$.

На рис. 1—4 представлены спектральные зависимости УФ-фильтров для волны длиной 0,27 мкм. Расчётные спектральные характеристики коэффициента пропускания фильтра с четырьмя плёнками Мо толщиной 10 нм (сплошная кривая с метками $\Delta \lambda = 0,01$ мкм) показаны на рис. 1. Штриховой кривой обозначена спектральная зависимость потенциального пропускания. Для сравнения штрихпунктирной линией показан спектр диэлектрического фильтра той же структуры. Видно, что внесение металлических слоёв существенно

Рис. 3. Толщина плёнок по сравнению с рис. 1 увеличена до 20 нм

Puc. 4. Коэффициент пропускания фильтра с Al-плёнками толщиной 20 нм

ослабляет пропускание вне выделяемой УФ-области вблизи $\lambda = 0,27$ мкм. На рис. 2 спектр металл-диэлектрического фильтра дан в увеличенном масштабе. Видны два пика пропускания $T_1 = 68 \%$ ($\lambda_1 = 270$ нм) и $T_2 = 65 \%$ ($\lambda_2 = 272$ нм). На рис. 3 приведён спектр фильтра, в котором толщина металлических плёнок Мо увеличена вдвое и равна 20 нм. По сравнению с рис. 1 возросла эффективность подавления пропускания в видимой области. На рис. 4 показан спектр фильтра с алюминиевыми плёнками той же толщины. Фильтр имеет больший коэффициент пропускания в максимуме, но уровень отсекания пропускания в полосе заграждения недостаточен.

О контроле параметров металлических плёнок. При современных методах контроля оптических характеристик возросли возможности нанесения диэлектрических слоёв с заданными параметрами. Специфика контроля тонких металлических плёнок при создании фильтров заключается в получении заданных параметров ξ' и ξ'' . Измерение толщины не является необходимым, поскольку для тонких гранулярных плёнок можно говорить только об «усреднённой» толщине. Основой МПП являются приближённые формулы для расчёта коэффициентов пропускания и отражения металлической плёнки на диэлектрической подложке при нормальном падении света из воздуха:

$$T = \frac{4n_g}{(n_g + n_0 + \xi')^2 + \xi''^2}, \qquad R = \frac{(n_g - n_0 - \xi')^2 + \xi''^2}{(n_g + n_0 + \xi')^2 + \xi''^2}.$$

Из этих формул следует, что $A/T = \xi'$. В процессе нанесения металлической плёнки необходим одновременный контроль коэффициентов пропускания и отражения для измерения параметра ξ' . В экспериментальных исследованиях было установлено, что лучше контролировать отражение со стороны подложки, так как существует возможность компенсации реактивной части проводимости при дальнейшем нанесении последующего диэлектрического слоя [3].

Оригинальный метод для определения ξ' и ξ'' металлической плёнки на границе двух диэлектрических сред с n_0 и n_g был предложен в [8]. Он состоит в измерении минимума коэффициента отражения для *p*-поляризованного света $R_{p\min}$ и угла падения θ_0 , при

котором достигается этот минимум:

$$R_p = \frac{(n_0/\cos\theta_0 - n_g/\cos\theta_g - \xi')^2 + \xi''^2}{(n_g/\cos\theta_g + n_0/\cos\theta_0 + \xi')^2 + \xi''^2}.$$

Отсюда следует, что $R_p = R_{p\min}$ при выполнении условия $\xi' = n_0/\cos\theta_0 - n_g/\cos\theta_g$. Применив закон Снеллиуса, можно найти значение активной части проводимости ξ' . С точностью до знака можно определить реактивную часть ξ'' :

$$\xi'' = \pm \frac{2n_0}{\cos \theta_0} \sqrt{\frac{R_{p\min}}{1 - R_{p\min}}}$$

Для экспериментальных измерений $R_{p\min}$ и θ_0 необходимо поворотное следящее устройство. Кроме того, можно провести измерения в некотором спектральном диапазоне. Параметры ξ' и ξ'' не зависят от угла.

Заключение. Предлагаемая в данной работе многослойная диэлектрическая структура с вкраплёнными на границах слоёв тонкими плёнками металла обеспечивает эффективное подавление пропускания в видимом спектральном диапазоне и высокий коэффициент пропускания T на выделяемой ультрафиолетовой длине волны. Уровень пропускания в полосе заграждения можно варьировать, изменяя толщину плёнок. Кратко дано описание методов для контроля параметров тонких металлических плёнок. Рассчитанная 27-слойная структура ZnS/криолит с четырьмя плёнками молибдена толщиной 10 нм имеет T > 50 % для $\lambda_0 = 270$ нм и с коэффициентом поглощения >80 % устраняет пропускание вне выделяемой полосы в спектре 0,2–0,4 мкм. Результаты проведённых исследований могут быть использованы для практических задач в оптике и астрономии.

СПИСОК ЛИТЕРАТУРЫ

- 1. Кабанов А. С. Прогрессивные методы расчёта и нанесения сложных покрытий // Фотоника. 2018. 12, № 8. С. 788–792.
- Hennessy J., Jewell A., Hoenk M., Nikzad S. Metal-dielectric filters for solar-blind silicon ultraviolet detectors // Appl. Opt. 2015. 54, N 11. P. 3507–3512.
- 3. Голдина Н. Д. Тонкослойные покрытия для лазерной оптики. Новосибирск: Академиздат, 2018. 132 с.
- 4. Голдина Н. Д. Дисперсионные свойства узкополосных металл-диэлектрических фильтров // Оптический журнал. 2007. 74, № 6. С. 75–79.
- Wolter H. Optik dunner Schichten In: Handbuch der Physik. Bd. 24. Berlin: Springer, 1956. S. 461–554.
- Троицкий Ю. В., Голдина Н. Д. О выделении одного типа колебаний в оптическом резонаторе // Письма в ЖЭТФ. 1968. 7, вып. 2. С. 49–52.
- 7. American Institute of Physics Handbook /Ed. D. E. Gray. N. Y., 1972. P. 6–124.
- Голдина Н. Д. Металл-диэлектрические фильтры в проходящем свете // Автометрия. 2008. 44, № 2. С. 107–112.

Поступила в редакцию 03.06.2019 После доработки 20.06.2019 Принята к публикации 21.06.2019