УДК 546.882

# АВТОВОЛНОВЫЕ ХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ ВЫСОКОЭКЗОТЕРМИЧЕСКИХ СМЕСЕЙ НА ОСНОВЕ ОКСИДА НИОБИЯ С АЛЮМИНИЕМ

# В. И. Юхвид, Д. Е. Андреев, В. Н. Санин, Н. В. Сачкова

Институт структурной макрокинетики и проблем материаловедения РАН, 142432 Черноголовка yukh@ism.ac.ru

Композиционные материалы на основе Nb с функциональными (Si, C, B) и легирующими добавками (Hf, Ti, Al и др.) перспективны для промышленного освоения в авиационном двигателестроении. Ранее авторами было показано, что такие композиционные материалы можно синтезировать в автоволновом режиме (режиме горения), используя высокоэкзотермические смеси Nb<sub>2</sub>O<sub>5</sub> с Al, Si, Hf и Ti. Было обнаружено, что в волне горения Hf активно участвует в восстановлении Nb<sub>2</sub>O<sub>5</sub>, что усложняет его введение в композиционный материал, а также приводит к избытку Al в сплаве. В настоящем исследовании изучена возможность замены Hf в исходной смеси менее активным соединением HfAl<sub>3</sub>, а также определено влияние дисперсности HfAl<sub>3</sub> на содержание Hf в композиционном материале.

Ключевые слова: автоволновой синтез, CBC-металлургия, химическое превращение, композиционный материал, силицид ниобия.

DOI 10.15372/FGV20170512

#### ВВЕДЕНИЕ

Основными методами получения композиционных материалов (KM) на основе Nb для авиационного двигателестроения [1, 2] являются сплавление или спекание компонентов сплава в вакуумных высокотемпературных печах [3–5]. Для получения таких КМ может быть использована центробежная СВСметаллургия [6, 7]. Базовой частью исходной смеси для получения KM на основе Nb является смесь Nb<sub>2</sub>O<sub>5</sub>/Al. Высокая температура горения  $(2700 \div 3000 \text{ K})$  позволяет вводить в базовый состав значительное количество функциональных и легирующих элементов и получать литые KM (Nb—Si—Hf—Ti—Al). В экспериментальных исследованиях было показано, что Нf активно участвует в восстановлении Nb<sub>2</sub>O<sub>5</sub>, что усложняет его введение в сплав, а также приводит к избытку Al в KM.

В настоящем исследовании изучена возможность замены Hf менее активным HfAl<sub>3</sub> для повышения его выхода в KM.

## МЕТОДИКА ЭКСПЕРИМЕНТОВ И АНАЛИЗА ПРОДУКТОВ СИНТЕЗА

Для синтеза KM использовали смеси Nb<sub>2</sub>O<sub>5</sub> с Al, Si, Hf, HfAl<sub>3</sub> и Ti. Характеристики реагентов представлены в табл. 1. Эксперименты проводили методом, получившим название центробежной CBC-металлургии [4]. Схема радиальной центробежной установки представлена на рис. 1. Установка позволяла сжигать высокоэкзотермические смеси термитного типа под воздействием перегрузки до a = 500g. Смесь засыпали в прозрачные кварцевые стаканчики (15 г) или графитовые формы (100 г) и уплотняли на вибростоле. Формы со смесью

Таблица 1

| Характеристики | реагентов |
|----------------|-----------|
|----------------|-----------|

| Реагенты                    | Марка | Размер частиц, мкм                                        |
|-----------------------------|-------|-----------------------------------------------------------|
| $\mathrm{Nb}_2\mathrm{O}_5$ | TC    | ≤50                                                       |
| Al                          | АСД-1 | ≤50                                                       |
| Si                          | KP-0  | ≤60                                                       |
| Hf                          | ΓФМ-1 | ≤180                                                      |
| HfAl <sub>3</sub>           | CBC   | $0 \div 40; 40 \div 100;$<br>$100 \div 160; 160 \div 300$ |
| Ti                          | ПТС   | $\leqslant 45$                                            |

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 15-08-01442).

<sup>©</sup> Юхвид В. И., Андреев Д. Е., Санин В. Н., Сачкова Н. В., 2017.



Рис. 1. Схема центробежной установки:

1 — электрический мотор, 2 — тахометр, 3 — коллектор, 4 — ротор, 5 — фотодиоды, 6 — кварцевая форма, 7 — экзотермическая смесь, 8 — инициирующая спираль

помещали на ротор центрифуги и задавали частоту вращения. Воспламенение смеси инициировали с пульта управления. После завершения горения и охлаждения вращение центрифуги прекращали. Затем продукты горения извлекали из формы и проводили анализ химического и фазового состава, макро- и микроструктуры продуктов синтеза.

Процесс горения контролировали с помощью системы видеонаблюдения и видеосъемки, определяли скорость горения (u), глубину диспергирования ( $\eta_1$ ) и глубину фазоразделения ( $\eta_2$ ):  $u = h/t_{comb}$ ,  $\eta_1 = (\Delta m/m_0) \cdot 100 \%$ ,  $\eta_2 = (m_{exp}/m_{cal}) \cdot 100 \%$ , h— высота слоя смеси,  $t_{comb}$ — время его горения,  $\Delta m$ — потеря массы смеси при горении,  $m_0$ — исходная масса смеси,  $m_{exp}$ — экспериментальная масса металлического продукта,  $m_{cal}$ — расчетная масса металлического слитка.

Для исследования микроструктуры и химического состава структурных составляющих продуктов синтеза использовали автоэмиссионный сканирующий электронный микроскоп сверхвысокого разрешения Carl Zeiss Ultra plus на базе Ultra 55. Фазовый состав конечных продуктов горения определяли на дифрактометре ДРОН-3М, источником излучения служила рентгеновская трубка типа БСВ-27 с медным анодом ( $\lambda = 1.54178$  Å).

### РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

Горение смесей Nb<sub>2</sub>O<sub>5</sub> с Al, Si, Hf, HfAl<sub>3</sub> и Ті в центробежной установке при введении Hf в виде порошка ГФМ-1 и HfAl<sub>3</sub> протекает различно: в первом случае — во взрывоподобном режиме с полным выбросом смеси из реакцион-

Таблица 2 Состав смеси и композиционного материала

| Смесь, % (эксперимент) |                            |                 |            |      |  |  |
|------------------------|----------------------------|-----------------|------------|------|--|--|
| $Nb_2O_5$              | Al Si Ti HfAl <sub>3</sub> |                 |            |      |  |  |
| 54.6                   | 13.1                       | 3.9             | 10.2       | 18.2 |  |  |
|                        |                            |                 |            |      |  |  |
|                        | KM                         | , % (pac•       | нет)       |      |  |  |
| Nb                     | KM<br>Si                   | , % (расч<br>Нf | нет)<br>Ti | Al   |  |  |

ной формы; во втором случае — стационарно со скоростью  $0.8 \div 1.5$  см/с и небольшими потерями смеси при горении. В основных сериях экспериментов порошки ГФМ-1 не использовали.

Было проведено две серии экспериментов, в которых изучали влияние перегрузки и дисперсности гранул HfAl<sub>3</sub> на процесс синтеза, состав и структуру литых сплавов. Экспериментальный состав смеси и расчетный состав KM приведены в табл. 2. Использовались гранулы HfAl<sub>3</sub> следующих фракций: 0 ÷ 40, 40 ÷ 100, 100 ÷ 160 и 160 ÷ 300 мкм. Гранулы были изготовлены из слитков HfAl<sub>3</sub>, полученных методом CBC-металлургии.

В экспериментах установлено, что с ростом перегрузки от 50 до 500g скорость горения смеси и полнота выхода сплава в слиток возрастают от 0.8 до 1.5 см/с и от 70 до 100 % (по массе) соответственно, а разброс материала смеси не превышает 10 % и слабо уменьшается (рис. 2), содержание Нf в KM заметно уменьшается, а Ti возрастает, при этом содержание  $C_i$  всех других целевых элементов в сплаве меняется слабо (рис. 3).

С увеличением размера частиц HfAl<sub>3</sub> содержание Hf в KM возрастает, а количество Nb и Ti убывает. Содержание других элементов в KM изменяется незначительно (рис. 4).

На рентгенограмме KM, полученного при использовании «крупных» фракций частиц HfAl<sub>3</sub> (рис. 5), выявлены три фазы: Nb (основа), Nb<sub>5</sub>Si<sub>3</sub> и небольшое количество Nb<sub>3</sub>Si. Других фаз на базе Hf, Ti и Al на рентгенограммах не обнаружено, несмотря на то, что они присутствуют в заметных количествах в химическом составе (табл. 3). Это позволяет предположить, что они растворяются в установленных фазах и внедряются в их решетки. Из сопоставления расчетного и экспериментального составов следует, что в синтезированном KM



Рис. 2. Влияние перегрузки на скорость горения, глубину диспергирования  $(\eta_1)$  и глубину фазоразделения  $(\eta_2)$   $(m_0 = 15$  г,  $d_{gran} = 0 \div 40$  мкм)



Рис. 3. Влияние перегрузки на интегральный химический состав KM ( $m_0 = 100$  г,  $d_{gran} = 0 \div 40$  мкм)

существует дефицит Hf и Ti и избыток Al.

Из анализа интегрального химического состава (см. табл. 3) и анализа микроструктуры и состава структурных составляющих оксидного (шлакового) слоя (рис. 6, табл. 4) следует, что эти отличия являются результатом активного участия Hf и Ti в восстановлении  $Nb_2O_5$  с образованием твердых оксидных растворов на основе оксидов гафния и титана. Отметим, что в шлаковом продукте оксиды Si и Nb практически отсутствуют, т. е. кремний в восстановлении не принимает участия, а оксид ниобия полностью восстанавливается.



Рис. 4. Влияние размера гранул HfAl<sub>3</sub> на интегральный химический состав KM ( $m_0 = 100 \text{ г}, a = 250g$ )



Рис. 5. Фазовый состав КМ ( $m_0 = 100$  г,  $a = 250g, d_{gran} = 160 \div 300$  мкм)

# ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТОВ

Из анализа экспериментальных результатов можно предположить следующие схемы химического стадийного превращения смесей  $Nb_2O_5/Al/Si/Hf/Ti$  и  $Nb_2O_5/Al/Si/HfAl_3/Ti$  в волне горения.

1. Для смеси Nb<sub>2</sub>O<sub>5</sub>/Al/Si/Hf/Ti ведущей стадией, определяющей режим и закономерности горения, является Nb<sub>2</sub>O<sub>5</sub>/Hf  $\rightarrow$  Nb— HfO<sub>2</sub>. Все другие: Nb<sub>2</sub>O<sub>5</sub>/Al  $\rightarrow$  Nb—Al<sub>2</sub>O<sub>3</sub>, Nb<sub>2</sub>O<sub>5</sub>/Ti  $\rightarrow$  Nb—Ti<sub>2</sub>O<sub>3</sub> и т. д. — осуществляются в режиме слияния с ведущей стадией [8].

| Составы Кімі и оксидного продукта ( $a = 250g$ , $m = 100$ Г, $a_{gran} = 100 \div 500$ мкм) |                         |     |             |            |             |      |
|----------------------------------------------------------------------------------------------|-------------------------|-----|-------------|------------|-------------|------|
| Ň                                                                                            | Содержание элементов, % |     |             |            |             |      |
| Метод                                                                                        | Nb                      | Si  | Hf          | Ti         | Al          | 0    |
| Расчетный состав КМ                                                                          | 58.5                    | 5.9 | 19.3        | 15.6       | 0.7         |      |
| Экспериментальный состав КМ                                                                  | 72.1                    | 7.8 | 3.5         | 9.5        | 7.1         |      |
| Экспериментальный состав оксидного слоя                                                      | 0.5                     | 0.4 | 12.9        | 6.2        | 30.7        | 48.4 |
| Экспериментальный состав КМ<br>Экспериментальный состав оксидного слоя                       | 0.5                     | 0.4 | 3.5<br>12.9 | 9.5<br>6.2 | 7.1<br>30.7 | 48.4 |

 ${
m Taблицa}\ 3$ Составы КМ и оксидного продукта (a=250g, m=100 г,  $d_{gran}=$  160  $\div$  300 мкм)



20 MKM

Таблица 4

Рис. 6. Микроструктура оксидного слоя ( $m_0 = 100$  г, a = 250g,  $d_{gran} = 160 \div 300$  мкм)

| Состав структурных сос- | тавляющих оксидного сло | Я |
|-------------------------|-------------------------|---|
| $(d_{gran} = 16)$       | 50÷300 мкм)             |   |

| Точки    | Содержание элементов в сплаве, с |      |      |      |     | ве, % |
|----------|----------------------------------|------|------|------|-----|-------|
| анализа* | Al                               | Hf   | Ti   | 0    | Nb  | Si    |
| 1        | 44.4                             | 0.4  | 1.0  | 54.0 | 0.2 |       |
| 2        | 45.0                             | 0.2  | 1.0  | 53.9 |     | 0.1   |
| 3        | 10.7                             | 33.5 | 20.3 | 33.5 | 0.6 | 0.4   |
| 4        | 10.4                             | 32.5 | 20.8 | 33.7 | 0.9 | 0.8   |
| 5        | 5.0                              | 48.2 | 16.3 | 28.6 | 1.0 | 0.5   |
| 6        | 4.5                              | 49.5 | 16.7 | 27.3 | 1.0 | 0.6   |

\*См. рис. 6.

Вследствие высокой активности гафния, горение протекает во взрывоподобном режиме и сопровождается выбросом продуктов горения из реакционной формы. Причиной выброса является образование газообразных продуктов (пары металлов, субоксиды и др.) в реакционном объеме («эффект шампанского»).

2. При замене Hf на HfAl<sub>3</sub> ведущей стадией, определяющей режим и закономерности горения, становится стадия Nb<sub>2</sub>O<sub>5</sub>/Al  $\rightarrow$ Nb—Al<sub>2</sub>O<sub>3</sub>. Bce другие: Nb<sub>2</sub>O<sub>5</sub>/HfAl<sub>3</sub>  $\rightarrow$  Nb— HfO<sub>2</sub>—Al<sub>2</sub>O<sub>3</sub>, Nb<sub>2</sub>O<sub>5</sub>/Ti  $\rightarrow$  Nb—Ti<sub>2</sub>O<sub>3</sub> и т. п. — реализуются в режиме слияния с ведущей стадией. Вследствие меньшей активности Al и HfAl<sub>3</sub>, чем у гафния, горение протекает стационарно, со скоростью 0.8  $\div$  1.5 см/с и небольшими потерями смеси при горении. С ростом размера гранул HfAl<sub>3</sub> степень участия гранул в восстановлении Nb<sub>2</sub>O<sub>5</sub> уменьшается, что приводит к увеличению содержания Hf в KM.

#### выводы

1. Замена Hf на HfAl<sub>3</sub> в составе исходной смеси (Nb<sub>2</sub>O<sub>5</sub>/Al/Si/Hf/Ti) позволяет снизить активность автоволнового химического превращения и перевести взрывное горение смеси в режим стационарного горения.

2. С увеличением размера гранул  $HfAl_3$  в смеси  $Nb_2O_5/Al/Si/HfAl_3/Ti$  содержание Hf в KM возрастает.

3. Реализация автоволнового химического превращения смеси (Nb<sub>2</sub>O<sub>5</sub>/Al/Si/HfAl<sub>3</sub>/Ti) с размером гранул HfAl<sub>3</sub> 160 ÷ 300 мкм под воздействием перегрузки более 250g позволяет получать литые композиционные материалы на основе силицидов ниобия с содержанием гафния до 3.5 %.

#### ЛИТЕРАТУРА

- Bewlay B. P., Jackson M. T., Zhao J. C., Subramanian P. R., Mendiratta V. G., Lewandovski J. J. Ultrahigh-temperature Nb silicide-based composites // MRS Bull. — 2003. — V. 28, N 9. — P. 646–653.
- 2. Bewlay B. P., Jackson M. T., Gigliotti M. F. X. Niobium silicide-high-temperature in situ

composite, in intermetallic compounds // Principles and Practice / R. L. Reischer, J. H. Westbrook (Eds). — Wiley J. & Sons, 2011. — V. 3. — P. 541–560.

- Subramanian P. R., Mendiratta M. G., Dimiduk D. M., Stucke M. A. Advanced intermetallic alloys: Beyond gamma titanium aluminides // Mater. Sci. Eng. — 1997. — V. A239– A240. — P. 1–13.
- Bewley B. P., Jackson M. R., Subramanian P. R. Processing high temperature refractory metall-silicide in situ composites // J. Metals. — 1999. — V. 51, N 4. — P. 32–36.
- 5. Светлов И. Л., Бабич Б. Н., Власенко С. Я., Ефимочкин И. Ю., Тимофеева О. Б., Абузин Ю. А. Высокотемпературные ниобиевые композиты, упрочненные силицидами нио-

бия // Журн. функциональных материалов. — 2007. — Т. 1, № 2. — С. 48–53.

- Юхвид В. И., Алымов М. И., Санин В. Н., Андреев Д. Е., Сачкова Н. В. Синтез композиционных материалов на основе силицидов ниобия методами СВС-металлургии // Неорган. материалы. — 2015. — Т. 51, № 12. — С. 1347–1354.
- 7. Алымов М. И., Юхвид В. И., Андреев Д. Е., Санин В. Н. Химические превращения в волнах горения многокомпонентных смесей термитного типа // Докл. АН. Сер. Физ. химия. 2015. Т. 460, № 2. С. 173–176.
- Yukhvid V. I., Vishnyakova G. A., Silyakov S. L., Sanin V. N., Kachin A. R. Structural macrokinetics of alumothermic SHS processes // Intern. J. SHS. — 1996. — V. 1, N 1. — P. 93– 105.

Поступила в редакцию 1/XII 2016 г.