2023

№ 3

ТЕХНОЛОГИЯ ДОБЫЧИ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

УДК 622.453

СИСТЕМНАЯ ФОРМАЛИЗАЦИЯ И ИДЕНТИФИКАЦИЯ ПРОЦЕССОВ ФИЛЬТРАЦИОННОГО И ДИФФУЗИОННОГО МАССОПЕРЕНОСА ПРИ ДЕГАЗАЦИИ УГОЛЬНЫХ ПЛАСТОВ

М. В. Курленя¹, К. Х. Ли², В. Г. Казанцев², Ли Хи Ун², С. В. Кулявцева³

¹Институт горного дела им. Н. А. Чинакала СО РАН, E-mail: kurlenya@misd.ru, Красный проспект, 54, 630091, г. Новосибирск, Россия ²АО "НЦ ВостНИИ", E-mail: leeanatoly@mail.ru, ул. Институтская, 3, 650002, г. Кемерово, Россия ³ОАО ФНПЦ "Алтай", E-mail: wts-01@mail.ru, ул. Социалистическая, 1, 659322, г. Бийск, Россия

Рассмотрены механизмы массопереноса газа при создании обнажения в угольном массиве исходя из феноменологических представлений о его газоносности. Проведено разделение явления массопереноса на основные составляющие — фильтрацию и диффузию, позволившее выделить наиболее важные их черты в общем процессе движения газа.

Угольный пласт, дегазация, фильтрация, диффузия, сорбционное давление, концентрация газа, пористость

DOI: 10.15372/FTPRPI20230305

В современных исследованиях широко используются две модели для описания системы "уголь – метан". Согласно одной из них, метан находится в свободном и адсорбированном состоянии, фильтрационное пространство обеспечивается обширной сетью мелких открытых пор, через которые осуществляется связь с обнажениями [1-3]. Другая модель содержит развитие представлений о блоковом строении угля [4]. Угольный массив состоит из отдельностей и блоков, бо́льшей частью с образованием твердого углегазового раствора в виде абсорбированных молекул [5-7]. Структура газоносности пласта в невозмущенной зоне включает в себя до 12 % свободного и до 85 % сорбированного в блоках газа [8]. Поры сообщаются с внешним пространством и служат путями эвакуации газа после его диффузии из микроблоков. Ведущим процессом является фильтрация. По мере фильтрации давление газа в фильтрационном объеме снижается, создавая предпосылку возникновения термодинамической силы для десорбции метана из блоков в фильтрационный объем посредством диффузии. Разработка прогнозных моделей на основе представлений о блоковом строении угля с точки зрения мезомеханики не представляется возможной из-за неопределенности иерархии блоков, текстуры массива, наличия трещин и пор в свете их размеров, размеров блоков и конфигурации поверхности фаз, а также необходимости учета их бесконечного множества.

Попытки отечественных и зарубежных ученых перекинуть мостик непосредственно от мезамеханического подхода описания структуры массива к феноменологическому не привели к успеху. Выход из тупика подобен решению проблемы механики твердого тела, когда атомарное строение материала вынужденно представляется непрерывным массивом в соответствии с гипотезой сплошной среды.

По аналогии, оставаясь на феноменологических физико-механических суждениях о структуре массива, углепородный пласт представим некоторой идеальной средой, в которой отдельные поры и трещины не имеют значения, поскольку в элементарном объеме (в объеме сплошной среды) раскрытость и длина трещин несоизмеримо меньшие, чем исследуемая область. Таким образом, газоносный пласт характеризуется как некая идеальная сплошная среда с равномерными или частично равномерными распределенными газодинамическими свойствами.

Для построения феноменологической модели массопереноса примем известные общие закономерности, отражающие физико-механические и газодинамические свойства углепородного массива [9–14].

1. Сорбционное давление — давление газа в порах и трещинах единого фильтрационного пространства ненарушенного массива зависит от глубины залегания пласта и вычисляется по закону, близкому к гидростатическому [9]:

$$P_1 = \delta \gamma_1 \frac{H}{10^5},\tag{1}$$

где δ — коэффициент несоответствия, учитывающий верхнюю границу зоны метановых газов угольных пластов (глубина от дневной поверхности 100–230 м, для шахт Кузбасса $\delta \approx 0.863$); γ_1 — удельный вес воды, кг/м³; H — глубина залегания пласта, м.

2. Для твердого раствора содержание метана устанавливается с помощью экспериментальных изотерм сорбции, связывающих концентрацию газа с сорбционным давлением, температурой и временем. Наиболее часто используются изотермы Генри, Ленгмюра, Фрейндлиха, уравнение Брунауэра – Эммета – Теллера и др. модели. В настоящей работе принята изотерма сорбции Ленгмюра [11, 12]:

$$C_1 = \frac{abP_1}{1+bP_1},\tag{2}$$

 C_1 — концентрация сорбированного газа, кг/м³; *a* [кг/м³], *b* [м²/кг] — постоянные изотермы.

3. Концентрация свободного газа в порах определяется сорбционным давлением и эффективной пористостью угля [14]:

$$C_2 = P_1 \frac{m}{R_m T}.$$
(3)

Здесь R_m — газовая постоянная для метана; m — эффективная пористость или открытая пористость (суммарный объем пор в расчете на единицу объема угля, сообщающихся каналами с обнажением); T — абсолютная температура.

4. Моделирование концентрационных профилей и потоков молекул диффузанта в гетерогенной сорбционно-активной среде, в том числе с изменяющимися во времени и пространстве составом и структурой (прямая задача), осуществляется с использованием дифференциального уравнения второго закона Фика [15]:

$$\frac{\partial C}{\partial t} = D_1 \left(\frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial y^2} + \frac{\partial^2 C}{\partial z^2} \right) = D_1 \text{div} \operatorname{grad} C = D_1 \nabla^2 C , \qquad (4)$$

где

$$D_1 = \frac{D}{m + \frac{1 - m}{v}} \tag{5}$$

— эффективный коэффициент диффузии; $D = 10^{-14} \div 10^{-15}$ — коэффициент твердотельной диффузии метана в угле, м²/с; 1 - m — блок массива (твердый углегазовый раствор), включающий в себя закрытую пористость (поры внутри блока, не сообщающиеся каналами с поверхностью); $v \approx 10^{-1} \div 10^{-2}$ — константа растворимости метана в угле. Согласно [16–18] и соотношению (5), коэффициент диффузии D_1 учитывает наличие закрытых пор в блоке угля.

5. Основное дифференциальное уравнение неустановившейся фильтрации газа, линеаризованное по Лейбензону, представляется виде [19]:

$$a_x^* \left(\frac{\partial^2 P_1^2}{\partial x^2} \right) + a_y^* \left(\frac{\partial^2 P_1^2}{\partial y^2} \right) + a_z^* \left(\frac{\partial^2 P_1^2}{\partial x^2} \right) = \frac{\partial P_1^2}{\partial t}, \tag{6}$$

здесь

$$a_i^* = \frac{K_i P_1}{\mu(P_1)m}, \quad i = x, y, z ,$$
 (7)

— коэффициент пьезопроводности для газовых залежей, м²/с; K — коэффициент проницаемости, м²; $\mu(P_1)$ — динамический коэффициент вязкости, зависящий от пластового давления газа P_1 , МПа·с; m — коэффициент эффективной пористости пласта.

При реализации МКЭ функционал, связанный с (6), позволяет рассматривать поле пласта в виде набора конечных подобластей (конечных элементов), каждая из которых может иметь различные геофильтрационные характеристики.

Решение уравнения (4) с начальными и граничными условиями для известной расчетной схемы углепородного массива позволяет рассмотреть кинетику изменения концентрационных профилей в пространстве угольного пласта. В настоящее время для оценки влияния десорбции метана из массива угля могут применяться аналитические решения, приведенные в [18]. Однако они пригодны лишь для исследования дегазации с использованием упрощенных расчетных схем, например для неограниченных по простиранию изотропных угольных пластов с обнажениями. Для более сложных задач, таких как оценка взаимодействия произвольно расположенных по полигону пласта дегазационных скважин, их взаимозависимость с выработками и выработанными пространствами, анизотропия пласта угля, а также другие усложнения в схемах дегазации требуют привлечения численных методов анализа. В этом случае математическое моделирование проницаемости гетерогенных сред дает более надежные результаты, поскольку в аналитических подходах не учитывается многообразие факторов природного явления. Один из наиболее эффективных численных методов структурного анализа — метод конечных элементов (МКЭ). При вариационной формулировке краевых задач на базе МКЭ с идеализацией континуума подобластями конечных размеров появляется возможность не рассматривать соответствующие дифференциальные уравнения, а использовать энергетический функционал процесса (фильтрации, диффузии, температуры), поскольку выражения, стоящие под интегралом функционала, имеют более низкий порядок производных по сравнению с исходными дифференциальными.

Определение диффузии можно отнести к решению уравнения (4) с граничными и начальными условиями, которое эквивалентно отысканию минимума функционала [9]:

$$F(x, y, z) = \int_{V} \frac{1}{2} \left[A_{x} \left(\frac{\partial \varphi}{\partial x} \right)^{2} + A_{y} \left(\frac{\partial \varphi}{\partial y} \right)^{2} + A_{z} \left(\frac{\partial \varphi}{\partial z} \right)^{2} - 2 \left(Q - \frac{\partial \varphi}{\partial t} \right) \varphi \right] dV + \int_{S_{1}} q\varphi dS + \int_{S_{2}} \frac{\xi}{2} \left[\varphi^{2} - 2\varphi \varphi_{\infty} + \varphi_{\infty}^{2} \right] dS,$$
(8)

где φ — полевая функция (в задачах диффузии соответствует параметру концентрации газа C, коэффициенты A_x , A_y , A_z — коэффициенту диффузии; Q — источник или сток газа; q — просачивание газа через слой вдоль границы S_1 ; ξ — коэффициент массообмена вдоль границ S_2 ; φ_{∞} — параметр C вне фильтрационного объема V (например, концентрация газа в атмосфере обнажений или в порах). Функционал (8) положен в основу решения задач диффузии и фильтрации в формулировке МКЭ.

При рассмотрении задач нестационарной фильтрации и диффузии можно указать на возможность использования широко распространенного пакета прикладных программ — системного пакета ANSYS Mechanical. Поскольку пакет программ ANSYS непосредственно не содержит программ для решения задач диффузии и фильтрации, появляется возможность использования для этих целей уже известных алгоритмов нестационарной теплопроводности, достаточно полно представленных в пакете ANSYS.

Ниже приведены результаты исследований фильтрации и диффузии метана из углеметановых пластов, полученные с помощью моделей нестационарной теплопроводности, реализованные в CAE системы ANSYS Mechanical Student и адаптированные для решения задач диффузии и фильтрации. Адаптация пакета ANSYS к решениям задач фильтрации и диффузии осуществляется встраиванием в него специальных дополнительных процедур (макросов), которые написаны авторами на языке параметрического программирования ANSYS APDL.

Для оценки точности и работоспособности пакета ANSYS, дополненного встроенными процедурами диффузии и фильтрации, рассмотрим решение задачи о дегазации полубесконечной пластины с постоянным распределением концентрации метана в ней (десорбция), имеющей аналитическое решение. Использовались следующие геометрические и диффузионные характеристики: $P_1 = 3.45$ МПа — сорбционное давление, как для глубины разработки пласта H=400 м; ширина пластины h=0.25 м; эффективная пористость m=4%; коэффициент твердотельной диффузии угля $D=10^{-15}$ м²/с; эффективный коэффициент диффузии принят как для системы "метан–уголь" $D_1 = 0.5 \cdot 10^{-12}$ м²/с. Начальные и граничные условия задачи: концен-

трация на границах пластины C(x = 0, t) = C(x = h, t) = 0; исходная концентрация газа в растворе (в пластине) $C_0 = C(x, 0) = 15.5$ кг/м³ (постоянные изотермы: a = 20 кг/м³, $b = 0.1 \cdot 10^{-4}$ м²/кг); коэффициент растворимости для угля $\nu \approx 5 \cdot 10^{-2}$; t — время десорбции.

Кинетика концентрационных профилей диффузанта для сформулированной задачи определена в результате решения дифференциального уравнения, следующего из соотношения (4):

$$\frac{\partial C}{\partial t} = D_1 \left(\frac{\partial^2 C}{\partial x^2} \right). \tag{9}$$

Аналитическое решение уравнения (9) получено в [15] и записывается в виде

$$C(x,t) = \frac{4}{\pi} C_0 \sum_{k=0}^{\infty} \frac{1}{2k+1} \exp\left\{-\frac{(2k+1)^2 \pi^2 D_1 t}{h^2}\right\} \sin\frac{(2k+1)\pi}{h} x \,. \tag{10}$$

Ряд (10) быстро сходится, поэтому достаточно ограничиться первыми тремя членами разложения для времен до 10 лет, чтобы получить решение с точностью не выше 1 % относительной ошибки.

На рис. 1 приведены результаты сопоставления профилей концентрации, рассчитанные по МКЭ и зависимости (10). Граничные условия для МКЭ: $q = \partial C / \partial n = 0$ (n — нормаль к граничной поверхности), граничные условия II рода — упругая стенка, которые переводят расчетную схему пластины конечных размеров в полубесконечную расчетную схему. Все прочие условия соответствуют условиям для пластины.

1 ис. 1. десороция метана из пластины (уголь). 1 - 1 год, 2 - 5 лег, 5 - 10 лег

Для более детального сравнения результаты численных решений (МКЭ) и расчета по зависимости (10) для десорбции полубесконечной пластины для случая t=5 лет ее дегазации представлены ниже:

x / h	0	0.100	0.200	0.300	0.400	0.500
<i>C</i> ₁ , кг/м ³	0	0.384	0.702	0.878	0.961	0.981
<i>C</i> ₂ , кг/м ³	0	0.390	0.716	0.887	0.958	0.975
$\delta,\%$	0	1.500	1.900	1.000	0.300	0.600

Здесь *C*₁ — концентрация газа, полученная в результате аналитического решения задачи по соотношению (10); *C*₂ — концентрация газа, полученная в результате численного решения задачи МКЭ. Анализ результатов расчетов показал пригодность использования функционала (8), эквивалентного функционалу нестационарной теплопроводности для решения разнообразных задач диффузии.

При исследованиях массопереноса метана в углепородном массиве принципиальное значение имеет разделение его на две составляющие — фильтрацию и диффузию, что позволяет выделить наиболее важные их черты. В настоящей работе основное внимание уделяется диффузионным особенностям переноса и их сопоставлению с другим физическим явлением — фильтрацией. Ниже изложены результаты исследований диффузии метана в угольном массиве с использованием соответствующих расчетов методом конечных элементов.

На практике интересны исследования истощения пласта угля во времени для случаев пассивной дегазации, когда газ выводится из пласта в выработки естественным путем и далее за пределы опасного участка или на поверхность без привлечения дополнительных средств дегазации. При рассмотрении случая плановой диффузии газа в изотропном пласте угля соотношение (4) преобразуется следующим образом:

$$\frac{\partial C}{\partial t} = D_1 \left(\frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial y^2} \right) = D_1 \nabla^2 C \,.$$

Это соотношение оправданно, если реализуется предположение о несущественном проявлении вертикальной составляющей скорости диффузии флюида (вдоль мощности пласта, $\partial V_z / \partial z \approx 0$), что приводит в пределах газоносного пласта к схеме двумерного планового диффузионного потока. Мощность пласта, как и его диффузионные характеристики, учитывается в процессе решения задачи при определении объема и физических свойств каждого из конечных элементов, на которые дискретизируется расчетная схема. Это дает возможность рассмотреть пласт с меняющимися мощностью и газодиффузионными параметрами по его простиранию.

Для оценки особенностей диффузионных процессов проанализируем решение задачи о плановой неустановившейся диффузии метана в угольном пласте, оконтуренном со всех сторон выработками. Пласт изотропный, диффузия газа происходит из тела пласта в выработки. На рис. 2 показана расчетная схема задачи и ее дискретизация на конечные элементы.

Рис. 2. Расчетная схема пласта и ее дискретизация на конечные элементы

Исходные данные: глубина залегания пласта *H*=400 м; мощность пласта *h*=2 м. Граничные условия: концентрация газа на границах пласта

$$C(x, y = 0, t = 0) = C(x, y = 200, t = 0) = C(x = 0, y, t = 0) = C(x = 800, y, t = 0) = C(x = 0, y, t = 0) = 0.$$

Начальные условия: $C(x, y, t = 0) = 15.5 \text{ кг/м}^3$, такие же, как для рассмотренной выше пластины. Для рассматриваемой твердотельной диффузии угольного массива коэффициент диффузии изменяется в пределах [16]: $D_1 = (10^{-14} \div 10^{-16}) \text{ м}^2/\text{с}$. По аналогии с диффузионными параметрами пластины коэффициент эффективной диффузии принят равным $D_1 = 0.5 \cdot 10^{-12} \text{ м}^2/\text{с}$.

Результаты расчетов концентрационного профиля метана в течение 12 мес дегазации пласта за счет молекулярной диффузии приведены на рис. 3. Видно, что протяженность зоны десорбции пласта у его краевых частей невелика. Через 12 мес протяженность зоны не превышает $X_{ef} \approx 0.056$ м. С удалением от обнажения ($X > X_{ef}$) углепородный массив находится в зоне обеспеченного питания.

Рис. 3. Линии уровня концентрационного профиля и распределение концентрации метана вдоль линии *ab*

Проведем сравнительный анализ влияния фильтрации и диффузии метана на естественную дегазацию угольного пласта. Для корректного сопоставления результатов расчетов по обоим физическим процессам расчетная схема для задачи фильтрации соответствует расчетной схеме, принятой в задаче о диффузии (рис. 2).

Для плановой фильтрации дифференциальное уравнения неустановившейся фильтрации газа (6) примет вид

$$a_x^*\left(\frac{\partial^2 P_1^2}{\partial x^2}\right) + a_y^*\left(\frac{\partial^2 P_1^2}{\partial y^2}\right) = \frac{\partial P_1^2}{\partial t}.$$

Глубина разработки пласта 400 м, его мощность 2 м. Граничные условия: по периметру пласта задано давление P = 0.1 МПа; пористость пласта m = 4 %; почва и кровля изолированы. Начальное условие: пластовое давление $P_1 = 3.45$ МПа; расчетное время дегазации пласта t = 12 мес.

Коэффициент пьезопроводности (7) для случая решения сформулированной задачи — изотропного пласта и плановой фильтрации $a^* = a^*_x = a^*_y$ приводится к соотношению

$$a^* = K \frac{P_1}{\mu(P_1)m}.$$

Для $P_1 = 3.45$ МПа, коэффициента динамической вязкости $\mu(\sim 3.5) = 3.6 \cdot 10^{-11}$ МПа·с и коэффициента пористости m = 4 % коэффициент пьезопроводности определится выражением

$$a^* = K \cdot 2.4 \cdot 10^{12} \,. \tag{11}$$

Для последующих расчетов фильтрации и сравнительного анализа с параметрами диффузионного процесса коэффициент пьезопроводности рассчитаем, как для коэффициента проницаемости, приближающегося к своему минимальному значению, т. е. при $K = 10^{-17}$ м², $a^* = 2.4 \cdot 10^{-5}$ м²/с.

Согласно [1], для основных угольных бассейнов стран СНГ $K = (0.4 \div 1.0) \cdot 10^{-15} \text{ м}^2$. Тогда в соответствии с (11) оценочные значения коэффициента пьезопроводности угольного массива будут находиться в диапазоне $a^* = (0.96 \div 2.40) \cdot 10^{-3} \text{ м}^2/\text{с}$.

На рис. 4 показаны результаты расчетов давления метана в фильтрационном поле пласта после 12 мес его естественной дегазации. Заметим, что протяженность краевой зоны пласта, подверженная дегазации, составляет $X_{ef} \approx 55$ м.

Рис. 4. Линии уровня сорбционного давления метана в краевых частях угольного пласта и распределение давления газа вдоль линии *ab*

Для детальной сравнительной оценки результаты расчетов степени дегазации пласта за счет фильтрации k_1 и молекулярной диффузии метана k_2 в угольном массиве представлены ниже:

<i>t</i> , мес	2	4	6	8	10	12
k_1 , %	3.600	5.300	6.600	7.700	8.800	9.800
$k_{2}, \%$	0.045	0.049	0.052	0.056	0.059	0.062

Степень дегазации пласта оценивалась как

$$k_i = \frac{V_1}{V_2} 100\%, \quad i = 1, 2,$$

где V_1 — объем эвакуированного из пласта газа на заданный момент времени дегазации t, приведенный к одной атмосфере; V_2 — объем газа в фильтрационном пространстве пласта в задачах фильтрации или объем газа твердого углегазового раствора в задачах диффузии метана, приведенный к одной атмосфере.

Объем V_1 можно рассчитать по данным численных расчетов МКЭ с использованием закона Бойля – Мариотта и следствий, вытекающих из этого закона:

для задач диффузии —

$$V_{1} = \frac{(1-m)P_{1}}{P} \sum_{i=1}^{N} hS_{i} \left(\frac{C(x_{i}, y_{i}, t=0)}{C(x_{i}, y_{i}, t)} - 1 \right),$$
$$V_{2} = \sum_{i=1}^{N} (1-m)hS_{i},$$

для задач фильтрации —

$$V_{1} = \frac{mP_{1}}{P} \sum_{i=1}^{N} hS_{i} \left(\frac{P_{1}}{P(x_{i}, y_{i}, t)} - 1 \right),$$
$$V_{2} = \sum_{i=1}^{N} mhS_{i},$$

N--число конечных элементов расчетной схемы; S_i-- площадь i-го конечного элемента.

Полученные данные по дегазации пласта за счет фильтрации и диффузии газа свидетельствуют о том, что ведущий процесс дегазации — фильтрация. И это несмотря на то, что основное количество газа содержится в твердом углегазовом растворе. Действительно, для одних и тех же условий залегания пласта угля из соотношения (2) следует, что при сорбционном давлении 3.45 МПа, коэффициентах изотермы a = 20 кг/м³, $b = 0.1 \cdot 10^{-4}$ м²/кг количество связанного газа (растворенного в угле) составляет 15.5 кг/м³. В то же время в соответствии с зависимостью (3) для $R_m = 0.0053 \cdot 10^4$ м/Т, T = 300 К, пористости 4%, $P_1 = 3.45$ МПа количество свободного газа (в фильтрационном, поровом пространстве) составляет всего 0.87 кг/м³.

При построении методов, методик и алгоритмов моделирования процессов массопереноса приобретают немаловажное значение исследования, устанавливающие газодинамические определяющие соотношения, диффузионные и фильтрационные константы угольного массива. При использовании таких исследований оказывается важной оценка достоверности получаемых материаловедами результатов. Иногда они бывают противоречивыми в работах различных авторов при исследованиях ими одного и того же материала. Например, как отмечается в [17] по теоретическим оценкам одного из авторов, коэффициент диффузии для угля должен превышать значения $10^{-6} \div 10^{-7}$ м²/с, в то время как согласно экспериментам другого автора, этот коэффициент значительно меньше $10^{-14} \div 10^{-16}$ и характерен для диффузии в твердых телах. При сравнительном анализе разделенных процессов фильтрации и диффузии в угле намеренно были занижены коэффициенты фильтрации (пьезопроводности) по сравнению с среднестатистическими значениями и завышены коэффициенты диффузии.

Тем не менее для принятых газодинамических параметров результаты расчетов массопереноса метана в угольном пласте показывают, что при анализе эффективности процесса дегазации, построении схем дегазации массопереносом газа за счет диффузии можно пренебречь изза малого времени, которое отводится для выполнения работ по дегазации пласта в условиях производства (до 3 лет), по сравнению с временами, необходимыми для установления сорбционного давления газа (сотни лет). Однако с методической точки зрения при прогнозе дегазации метана из пласта оба физических процесса (диффузия и фильтрация) должны включаться в расчетные методики, поскольку при больших временах диффузия и фильтрация происходят синфазно, т. е. количество метана, поступающего из блоков в фильтрационный объем, равно количеству метана, выходящего вовне.

Вместе с тем при отработке пласта в реальном масштабе времени уголь выдается на поверхность с большим содержанием метана, сосредоточенным в разрушенных блоках угля в виде углеметанового раствора, и фракции угля продолжают выделять газ еще долгое время.

В настоящем исследовании умышленно не рассмотрены вопросы влияния горного давления на дегазацию угольных пластов, имеющие большое значения в связи с изменениями структуры угля вблизи обнажений, поскольку разделение массопереноса на основные составляющие физических процессов вкладывается в нашу концепцию. Влияние горного давления необходимо изучать и учитывать как явление, вносящее определенный вклад в дегазацию и газодинамическое состояние угольного массива.

Оставаясь на позициях феноменологического подхода в задачах массопереноса в углепородных массивах, для успешного решения широкого класса задач этой направленности следует основываться на общих закономерностях, получающихся из макроскопических экспериментов с углем в лабораторных и полевых условиях.

Общее решение задач дегазации угольных пластов в модели массо- и газопереноса можно связать с изучением последовательного или параллельного соединения рассматриваемых физических явлений в единое алгоритмическое целое, например с использованием методики последовательной смены стационарных состояний.

выводы

Основываясь на экспериментальных данных отечественных и зарубежных ученых при оценке коэффициентов диффузии и коэффициентов проводимости при фильтрации, численными решениями задачи о дегазации угольного пласта получено, что массопереносом газа за счет диффузии можно пренебречь вследствие короткого времени, которое отводится для выполнения работ по дегазации залежи в условиях производства (до 3 лет). Ключевой фактор дегазации пласта — фильтрация газа из межпорового пространства массива. Протяженность дегазации угля во времени за счет диффузии на несколько порядков превышает протяженность истощения массива угля за счет фильтрации.

СПИСОК ЛИТЕРАТУРЫ

- **1.** Алексеев А. Д., Айруни А. Т., Зверев И. В. Распад газоугольных твердых растворов // ФТПРПИ. 1994. № 3. С. 65-70.
- Желтов Ю. П., Золотарев П. П. О фильтрации газа в трещиноватых породах // ПМТФ. 1962. № 5. — С. 135-139.

- **3.** Van Krevelen D. W. Coal, Amsterdam, Elsevier, 1993. 1002 p.
- 4. Harpalani S. and Schraufnagel R. Shrinkage of coal matrix with release of gas and its impact on permeability of coal, Fuel, 1990, Vol. 69. P. 551.
- 5. Кузнецов С. В., Трофимов В. А. Природа и механизм формирования газопроницаемых зон в угольных пластах // ФТПРПИ. 1999. № 1. С. 21–27.
- 6. Малышев Ю. Н., Трубецкой К. Н., Айруни А. Т. Фундаментально-прикладные методы решения проблемы угольных пластов. М.: ИАГН, 2000. 519 с.
- 7. Алексеев А. Д., Айруни А. Т., Васючков В. Ф., Зверев И. В., Синолицкий В. В., Долгова М. О., Эттингер И. Д. Свойство органического вещества угля образовывать с газами метастабильные однофазные системы по типу твердых растворов. Открытие, диплом № 9. Заявка № А-016 от 30.06.94. М., 1994. Рег. № 16.
- 8. Полевщиков Г. Я., Непеина Е. С., Цуран Е. М. Разработка методики оценки термодинамики распада углеметановых геоматериалов // Вестн. КГТУ. 2015. № 6. С. 13–18.
- 9. Ли К. Х., Казанцев В. Г., Ли Хи Ун, Зыков В. С., Иванов В. В. Влияние дегазационных скважин на кинетику состояния углеметановых пластов // Вестн. Научного центра по безопасности работ в угольной пром-сти. 2023. № 1. С. 33–41.
- **10.** Айруни А. Т., Галазов Р. А., Сергеев И. В. и др. Газообильность каменноугольных шахт СССР. Комплексное освоение газоносных угольных месторождений. М.: Наука, 1990. 213 с.
- 11. Кабирова С. В., Ворошилов В. Г., Портнов В. С., Ахматнуров Д. Р. Оценка газоносности пласта К10 в пределах Шерубайнуринского участка Карагандинского угольного бассейна // Изв. ТПУ. Инжиниринг георесурсов. 2019. Т. 330. № 5. С. 64–74.
- **12. Карнаухов А. П.** Адсорбция. Текстура дисперсных и пористых материалов. Новосибирск: Наука, 1999. 470 с.
- **13. Кузнецов С. В., Трофимов В. А.** Основная задача теории фильтрации газа в угольных пластах // ФТПРПИ. — 1999. — № 5. — С. 13–18.
- 14. Малинникова О. Н., Трофимов В. А., Филиппов Ю. А. Соотношение сорбированного и свободного газа в угольном пласте // Современные проблемы в горном деле и методы моделирования горно-геологических условий при разработке месторождений полезных ископаемых. — Кемерово: КГТУ, 2015. — 8 с.
- 15. Бэкман И. Н. Математика диффузии. М.: ОнтоПринт, 2016. 399 с.
- 16. Калугина Н. А. Взаимное влияние диффузии и фильтрации в процессе истечения метана из угольного массива // Физика и техника высоких давлений. 2010. Т. 20. № 3. С. 140–149.
- 17. Алексеев А. Д., Василенко Т. А., Гуменник К. В., Калугина Н. А., Фельдман Э. П. Диффузионнофильтрационная модель выхода метана из угольного пласта // Журн. техн. физики. — 2007. — Т. 77. — Вып. 4. — С. 65–75.
- 18. Стариков Г. П., Юрченко В. М., Мельник Т. Н., Худолей О. Г., Кравченко А. В. Активация диффузии метана в угле под воздействием изменяющихся механических и термодинамических параметров пласта // Физика и техника высоких давлений. — 2019. — Т. 29. — № 3. — С. 122–130.
- **19.** Лейбензон Л. С. Движение природных жидкостей и газов в пористой среде. М.: ОГИЗ, 1947. 244 с.

Поступила в редакцию 10/IV 2023 После доработки 30/IV 2023 Принята к публикации 18/V 2023