УДК 519.6

Решение задачи оптимизации экономического ущерба от загрязнения окружающей среды локальными источниками*

И.С. Новиков

Институт вычислительной математики Российской академии наук, ул. Губкина, 8, Москва, 119333 E-mail: nissonsv@mail.ru

Новиков И.С. Решение задачи оптимизации экономического ущерба от загрязнения окружающей среды локальными источниками // Сиб. журн. вычисл. математики / РАН. Сиб. отд-ние. — Новосибирск, 2015. — Т. 18, № 4. — С. 407–424.

Сформулирована задача оптимизации экономического ущерба от локальных источников в регионе, предложен алгоритм ее решения. Проведены численные эксперименты, иллюстрирующие теоретические положения исследуемой задачи и эффективность работы предложенного алгоритма.

DOI: 10.15372/SJNM20150406

Ключевые слова: сопряженные уравнения, оптимальное управление, регуляризация Тихонова, экономический ущерб, численное моделирование загрязнений.

Novikov I.S. Solving the optimization problem of economic damage from environmental pollution by local sources // Siberian J. Num. Math. / Sib. Branch of Russ. Acad. of Sci. – Novosibirsk, 2015. – Vol. 18, \mathbb{N} 4. – P. 407–424.

An economic damage optimization problem from local sources in a region has been formulated. An algorithm for solving the problem is proposed. Numerical experiments illustrating theoretical statements of the formulated problem and effectiveness of the algorithm proposed were carried out.

Keywords: *adjoint equations, optimal control, Tikhonov regularization, economic damage, numerical modeling of pollution.*

1. Введение

Задача оценки и оптимизации экономического ущерба от загрязнений окружающей среды локальными источниками является актуальной проблемой в современном мире [3, 6, 7, 9, 10]. Локальными источниками могут быть трубы промышленных предприятий, а также лесные и торфяные пожары, которые вносят ощутимый вклад в загрязнение атмосферы (примером служит лето 2010 года). От эффективности и своевременности решения этой задачи зависит объем государственных средств, необходимых на ликвидацию последствий загрязнений, а также состояние здоровья людей, находящихся в регионе возможных загрязнений.

В настоящей работе исследуется задача оптимизации экономического ущерба в Московском регионе от локальных источников, предлагается и обсуждается алгоритм ее решения (на основе развития идей, предложенных в работах [1, 2, 13]). Опираясь на формулы, приведенные в монографии [12], получено соотношение для экономического

^{*}Работа выполнена при поддержке РНФ (проект № 14-11-00609).

[©] Новиков И.С., 2015

ущерба от загрязнения окружающей среды. При численном решении задачи используется монотонная схема первого порядка точности, построенная на основе результатов из монографий [8, 11]. В статье также демонстрируются результаты численного эксперимента, которые иллюстрируют эффективность работы алгоритма и справедливость теоретических положений по исследованию решаемой проблемы.

2. Обобщенные постановки задачи

В данном пункте приводятся исходные постановки задачи оптимизации экономического ущерба (без разбиения и с разбиением на подзадачи по группам локальных источников, стартующих в один момент времени), а также обобщенные постановки исследуемой задачи.

2.1. Исходные и обобщенные постановки задачи

В качестве математической модели распространения загрязнений используется трехмерное нестационарное уравнение конвекции–диффузии с граничными и начальным условиями вида

$$\frac{\partial \phi}{\partial t} + b_x \frac{\partial \phi}{\partial x} + b_y \frac{\partial \phi}{\partial y} + b_z \frac{\partial \phi}{\partial z} - \frac{\partial}{\partial x} \left(a_{xx} \frac{\partial \phi}{\partial x} \right) - \frac{\partial}{\partial y} \left(a_{yy} \frac{\partial \phi}{\partial y} \right) - \frac{\partial}{\partial z} \left(a_{zz} \frac{\partial \phi}{\partial z} \right) = 0 \quad \mathbf{B} \ \Omega \times (t_1, T), \ (1)$$

$$U_n^{(-)}\phi + \frac{\partial\phi}{\partial N} = 0 \quad \text{ Ha } (\Gamma/\Gamma_2) \times (t_1, T), \tag{2}$$

$$\beta\phi - a_{zz}\frac{\partial\phi}{\partial z} = \sum_{k=1}^{N_k} \sum_{l_k=1}^{N_L^*} m_{l_k}^k(x, y, t) \Big(u_{l_k}^k(t) + g_{l_k}^{\rm em}(t) \Big) \quad \text{ha } \Gamma_2 \times (t_1, T), \tag{3}$$

$$\phi = 0 \quad \text{при } t = t_1 \text{ в } \Omega. \tag{4}$$

Исследуемая задача рассматривается в декартовой системе координат $(x_1, x_2, x_3) \equiv (x, y, z)$ в области Ω :

$$\Omega = (A_1, A_2) \times (B_1, B_2) \times (C_1, C_2)$$

и на поверхности S, состоящей из границ:

$$\begin{split} &\Gamma_1 = \{(x,y,z) \mid x = A_1, \ B_1 < y < B_2, \ C_1 < z < C_2\}, \\ &\Gamma_2 = \{(x,y,z) \mid A_1 < x < A_2, \ B_1 < y < B_2, \ z = C_1\}, \\ &\Gamma_3 = \{(x,y,z) \mid x = A_2, \ B_1 < y < B_2, \ C_1 < z < C_2\}, \\ &\Gamma_4 = \{(x,y,z) \mid A_1 < x < A_2, \ B_1 < y < B_2, \ z = C_2\}, \\ &\Gamma_5 = \{(x,y,z) \mid A_1 < x < A_2, \ y = B_1, \ C_1 < z < C_2\}, \\ &\Gamma_6 = \{(x,y,z) \mid A_1 < x < A_2, \ y = B_2, \ C_1 < z < C_2\}. \end{split}$$

Через $\phi \equiv \phi(x, y, z, t)$ обозначим суммарную концентрацию загрязнения от локальных источников, стартовавших в разное время (при этом предполагается, что все источники попарно не пересекаются). Будем считать, что пожары стартуют группами в определенные моменты времени, от них распространяется лишь один тип поллютанта, а также будем пренебрегать взаимодействием примеси из различных пожаров друг с другом и фоновым загрязнением в области и на боковых границах. Тогда t_k — время старта каждого из $l_k = \overline{1, N_L^k}$ пожаров из k-й группы (t_1 — время старта первой группы локальных источников), N_L^k — число пожаров, которые начались в момент времени t_k , N_k — суммарное число моментов времени старта всех групп пожаров, T — конечный момент времени. Через $\vec{n} = (n_1, n_2, n_3)$ обозначается единичный вектор внешней нормали к границе $\Gamma \equiv \bigcup_{i=1}^6 \Gamma_i \equiv \partial \Omega$, а через $\frac{\partial}{\partial N}$ — "конормальная производная", соответствующая производной второго порядка из (1). Каждую из границ Γ_i , $i = \overline{1, 6}$, считаем гладкой класса $C^{(\infty)}$.

Величины b_x , b_y , b_z — проекции вектора скорости ветра на оси Ox, Oy, Oz соответственно, причем считается, что выполняется условие (до высоты 3 км, см. [3]):

div
$$b = 0$$
, $b \equiv (b_1, b_2, b_3) \equiv (b_x, b_y, b_z)$.

 b_x и b_y иногда будем называть "горизонтальными" скоростями ветра, b_z — "вертикальной" скоростью. Отмечаем, что $U_n = (\vec{b}, \vec{n})$, а $U_n^{(+)} = (|U_n| + U_n)/2$ (скорость вдоль потока) и $U_n^{(-)} = (|U_n| - U_n)/2$ (скорость против потока), $U_n = U_n^{(+)} - U_n^{(-)}$. Будем предполагать, что b_i , $i = \overline{1,3}$, и их первые производные по временной и пространственным переменным ограничены. Величины $a_{11} \equiv a_{xx}$, $a_{22} \equiv a_{yy}$ — коэффициенты "горизонтальной" диффузии, $a_{33} \equiv a_{zz}$ — коэффициент "вертикальной" диффузии, причем все они являются строго положительными ограниченными функциями, постоянными по времени, β — величина, характеризующая взаимодействие загрязняющих примесей с подстилающей поверхностью (постоянная положительная величина). Предполагаем, что "вертикальная" скорость ветра на нижней границе равна нулю.

Функция $g_{l_k}^{\text{em}} \equiv g_{l_k}^{\text{em}}(t) \in L_2(0,T)$ есть концентрация загрязнения, которая распространяется с единицы площади l_k -го источника на границе Γ_2 (интенсивность источника или коэффициент эмиссии, значение которого постоянно и положительно для конкретного вещества), $u_{l_k}^k \equiv u_{l_k}^k(t) \in L_2(0,T)$ — "управление" l_k -м источником из k-й группы ("дополнительное неизвестное", или закономерность, по которой нужно устранять загрязнение от этого локального источника), $m_{l_k}^k \equiv m_{l_k}^k(x,y,t)$ — характеристическая функция региона l_k -го локального источника из k-й группы на нижней границе (отметим, что $m_{l_k}^k(x,y,t) = 0$ при $t \leq t_k$). Считаем, что все функции, с которыми автор оперирует в настоящей работе, — вещественные.

Далее введем следующую "весовую" функцию:

$$w(x, y, z, t) = \begin{cases} \frac{I_t^{\text{инд}} Q_{2003}^{\text{атм}} A^{\text{атм}} \sigma}{T - t_1}, & \{(x, y, z) \in \Omega_{\text{obs}}\} \bigcap \{t \in (t_1, T)\}, \\ 0, & \{(x, y, z) \notin \Omega_{\text{obs}}\} \bigcup \{t \notin (t_1, T)\}. \end{cases}$$

Здесь $I_t^{\text{инд}}$ — коэффициент индексации удельного ущерба с учетом инфляции, задаваемый в Законе "О федеральном бюджете на *t*-й год", $\tilde{Q}_{2003}^{\text{атм}}$ — удельный экономический ущерб от выброса в атмосферу 1 т условного загрязняющего вещества, приведенный к ценам 2003 г., $A^{\text{атм}}$ — коэффициент относительной агрессивности выбрасываемого в атмосферу загрязняющего вещества (вообще говоря, он свой для каждого типа поллютанта; информацию по значению коэффициента можно найти, например, в [12], но в нашем случае будет учитываться лишь одно вещество, поэтому и коэффициент тоже один), σ — коэффициент относительной опасности воздействия примесей для разных типов загрязняемых территорий (фактически, "весовой" коэффициент, влияющий на величину ущерба от загрязнения конкретного типа территории), $\Omega_{\text{obs}} \subseteq \Omega$ есть "охраняемый регион" (регион, в котором оптимизируется экономический ущерб). Все приведенные коэффициенты — строго положительные величины. Обозначим через Q экономический ущерб в "охраняемом регионе" от загрязнений окружающей среды и будем определять его из следующего соотношения (которое аналогично тому, что приведено в [12]):

$$Q \equiv (\phi, w) \equiv (\phi, w)_{L_2(\Omega \times (t_1, T))} = \int_{t_1}^T \int_{\Omega} \phi w \, d\Omega \, dt = \int_{t_1}^T \int_{\Omega_{\text{obs}}} \phi w \, d\Omega \, dt$$

Для замыкания задачи (1)–(4) введем дополнительное условие вида

$$Q = Q^{\text{att}},\tag{5}$$

где Q^{att} — ущерб, который возможно достичь, управляя локальными источниками по закономерностям $u_{l_k}^k$, $l_k = \overline{1, N_L^k}$, $k = \overline{1, N_k}$. Этот ущерб считается известным и может определяться, например, из экспертных оценок или с помощью санитарных норм. Мы будем определять его с помощью специального соотношения, о котором речь пойдет в следующем пункте этой статьи.

Теперь сформулируем следующую задачу: найти ϕ , $u_{l_k}^k$, $l_k = \overline{1, N_L^k}$, $k = \overline{1, N_k}$, такие, что выполняются соотношения (1)–(5). Однако мы не будем исследовать и решать задачу в такой постановке (причины станут ясны из дальнейшего изложения), а поступим следующим образом. Поскольку мы предположили, что пожары стартуют группами в определенные моменты времени, от них распространяется лишь один тип поллютанта; взаимодействием примесей из различных пожаров друг с другом пренебрегаем, а также, используя линейность модели распространения загрязнений от локальных источников, разобьем задачу (1)–(5) на N_k независимых подзадач вида:

$$U_n^{(-)}\phi_k + \frac{\partial\phi_k}{\partial N} = 0 \quad \text{Ha} \ (\Gamma/\Gamma_2) \times (t_k, T), \tag{7}$$

$$\beta \phi_k - a_{zz} \frac{\partial \phi_k}{\partial z} = \sum_{l_k=1}^{N_L^*} m_{l_k}^k(x, y, t) \Big(u_{l_k}^k(t) + g_{l_k}^{\rm em}(t) \Big) \quad \text{ha } \Gamma_2 \times (t_k, T), \tag{8}$$

$$\phi_k = 0$$
 при $t = t_k$ в Ω , (9)

$$Q_k = Q_k^{\text{att}},\tag{10}$$

где функция $\phi_k \equiv \phi_k(x, y, z, t)$ — концентрация загрязнения, которая возникла в области Ω с момента времени t_k в результате распространения примеси от N_L^k непересекающихся локальных источников, Q_k^{att} — ущерб, нанесенный "охраняемому региону" k-й группой пожаров, который возможно достичь, управляя локальными источниками по закономерностям $u_{l_k}^k$, $l_k = \overline{1, N_L^k}$, Q_k — ущерб от загрязнения окружающей среды пожарами, которые начались в момент времени t_k .

Введем "весовые" функции w_k $(k = \overline{1, N_k})$:

$$w_k(x, y, z, t) = \begin{cases} \frac{I_t^{\text{инд}} \tilde{Q}_{2003}^{\text{атм}} \sigma}{T - t_k}, & \{(x, y, z) \in \Omega_{\text{obs}}\} \bigcap \{t \in (t_k, T)\}, \\ 0, & \{(x, y, z) \notin \Omega_{\text{obs}}\} \bigcup \{t \notin (t_k, T)\}. \end{cases}$$

Обозначим

$$(\phi_k, w_k) \equiv (\phi_k, w_k)_{L_2(\Omega \times (t_k, T))} = \int_{t_k}^T \int_{\Omega} \phi_k w_k \, d\Omega \, dt = \int_{t_k}^T \int_{\Omega_{\text{obs}}} \phi_k w_k \, d\Omega \, dt.$$

Ущербы $Q_k, k = \overline{1, N_k}$, будем определять из соотношений:

$$Q_k \equiv (\phi_k, w_k). \tag{11}$$

Наконец, формулируем исходную математическую постановку задачи: найти ϕ_k , $\vec{u}_k \equiv (u_1^k, \ldots, u_{N_L^k}^k)$ такие, что выполняются (6)–(10) при $k = \overline{1, N_k}$.

Сформулируем теперь обобщенные постановки N_k исходных задач (именно они используются в дальнейшем). Для этого введем следующие пространства функций: $W_2^{1,0}(\Omega \times (t_k,T))$ — гильбертово пространство, состоящее из элементов ϕ_k пространства $L_2(\Omega \times (t_k,T))$, имеющих квадратично суммируемые по $\Omega \times (t_k,T)$ обобщенные производные $\frac{\partial \phi_k}{\partial x_i}$, $i = \overline{1,3}$, а также пространство

$$\hat{W}_{2}^{1}(\Omega \times (t_{k},T)) = \{ \hat{\phi}_{k} \mid \hat{\phi}_{k} \in W_{2}^{1,1}(\Omega \times (t_{k},T)); \ \hat{\phi}_{k} \mid_{t=T} = 0 \},\$$

где $W_2^{1,1}(\Omega \times (t_k, T))$ — гильбертово пространство, состоящее из элементов $L_2(\Omega \times (t_k, T))$, имеющих обобщенные производные $\frac{\partial \hat{\phi}_k}{\partial x_i}$, $i = \overline{1, 3}$, и $\frac{\partial \hat{\phi}_k}{\partial t}$ из $L_2(\Omega \times (t_k, T))$.

Каждая из $k = \overline{1, N_k}$ задач (6)–(10) в обобщенной постановке имеет вид: найти $\phi_k \in W_2^{1,0}(\Omega \times (t_k, T)), \vec{u}_k \equiv (u_1^k, \dots, u_{N_L^k}^k) \in L_2(t_k, T), k = \overline{1, N_k}$, такие, что выполняются соотношения:

$$-\int_{t_{k}}^{T}\int_{\Omega}\phi_{k}\frac{\partial\hat{\phi}_{k}}{\partial t}\,d\Omega\,dt - \sum_{i=1}^{3}\int_{t_{k}}^{T}\int_{\Omega}b_{i}\phi_{k}\frac{\partial\hat{\phi}_{k}}{\partial x_{i}}\,d\Omega\,dt + \int_{t_{k}}^{T}\int_{\Gamma/\Gamma_{2}}U_{n}^{(+)}\phi_{k}\hat{\phi}_{k}\,d\Gamma\,dt + \\\sum_{i=1}^{3}\int_{t_{k}}^{T}\int_{\Omega}a_{ii}\frac{\partial\phi_{k}}{\partial x_{i}}\frac{\partial\hat{\phi}_{k}}{\partial x_{i}}\,d\Omega\,dt + \int_{t_{k}}^{T}\int_{\Gamma_{2}}\beta\phi_{k}\hat{\phi}_{k}\,d\Gamma_{2}\,dt$$

$$=\int_{t_{k}}^{T}\int_{\Gamma_{2}}\sum_{l_{k}=1}^{N_{L}^{k}}m_{l_{k}}^{k}g_{l_{k}}^{\mathrm{em}}\hat{\phi}_{k}\,d\Gamma_{2}\,dt + \int_{t_{k}}^{T}\int_{\Gamma_{2}}\sum_{l_{k}=1}^{N_{L}^{k}}m_{l_{k}}^{k}u_{l_{k}}^{k}\hat{\phi}_{k}\,d\Gamma_{2}\,dt \quad \forall\hat{\phi}_{k}\in\hat{W}_{2}^{1}\big(\Omega\times(t_{k},T)\big),$$

$$Q_{k}=Q_{k}^{\mathrm{att}}.$$

$$(12)$$

Легко проверить, что имеет смысл определять решение ϕ_k , \vec{u}_k каждой k-й задачи (6)–(10) как функции, удовлетворяющей (12). В дальнейшем мы, говоря о решении задачи (6)–(10), будем подразумевать, что речь идет о решении в обобщенной постановке. Также в дальнейшем упростим обозначение "управлений": $u_{l_k}^k \equiv u_{l_k}, l_k = \overline{1, N_L^k}, k = \overline{1, N_k}$.

Физически приведенная выше постановка означает следующее: необходимо найти такие скорости устранения локальных источников ("управления"), чтобы ущерб Q_k в "охраняемом регионе" Ω_{obs} и на интервале (t_k, T) был равен "достижимому" ущербу Q_k^{att} , $k = \overline{1, N_k}$, по значению. Однако в данной постановке задача, вообще говоря, является некорректной. Поэтому в следующем пункте приведем еще одну обобщенную постановку проблемы, в которой (10) понимается "в смысле наименьших квадратов".

2.2. Обобщенная постановка задачи "в смысле наименьших квадратов"

Любая из $k = \overline{1, N_k}$ задач предыдущего пункта является некорректно поставленной (некорректность имеет место, например, из-за условия замыкания (10), при наличии которого решение каждой из задач не единственно). По этой причине перейдем от рассмотрения исходной задачи (6)–(10) к следующей задаче. Найти

$$\phi_k \equiv \phi_k(\alpha), \ \vec{u}_k \equiv \vec{u}_k(\alpha)$$
 такие, что выполняются (6)–(9) и $J^k_\alpha(\phi_k, \vec{u}_k) \to \inf_{\vec{u}_k},$ (13)

где

$$J_{\alpha}^{k}(\phi_{k},\vec{u}_{k}) = \frac{\alpha \operatorname{Pr}^{2}}{2} \sum_{l_{k}=1}^{N_{L}^{k}} \int_{t_{k}}^{T} u_{l_{k}}^{2}(t) dt + \frac{1}{2} (Q_{k} - Q_{k}^{\mathrm{att}})^{2},$$
(14)

 $\alpha = \text{const} \geq 0$ — параметр регуляризации, а \Pr — стоимость устранения загрязнения с единицы площади (этот коэффициент вводится для того, чтобы размерность обоих слагаемых функционала совпадала, а также чтобы можно было привести размерности "управлений" к денежным единицам). В дальнейшем будут решаться N_k задач оптимального управления вида (13) с функционалом (14). В результате решения будут получены значения ϕ_k , по которым можно будет вычислить экономический ущерб Q_k , который возможно достичь, управляя по закономерностям \vec{u}_k (т. е. оптимизировать экономический ущерб в интересующем нас регионе). В следующем пункте мы выпишем решение поставленной задачи для \vec{u}_k в аналитическом виде и приведем численный алгоритм решения задачи.

3. Алгоритм решения задачи

Опишем алгоритм решения поставленной выше задачи. Сначала вводим N_k "вспомогательных" сопряженных задач $(k = \overline{1, N_k})$:

$$-\frac{\partial q_k}{\partial t} - b_x \frac{\partial q_k}{\partial x} - b_y \frac{\partial q_k}{\partial y} - b_z \frac{\partial q_k}{\partial z} - \frac{\partial}{\partial x} \left(a_{xx} \frac{\partial q_k}{\partial x} \right) - \frac{\partial}{\partial y} \left(a_{yy} \frac{\partial q_k}{\partial y} \right) - \frac{\partial}{\partial z} \left(a_{zz} \frac{\partial q_k}{\partial z} \right) \equiv w_k$$

$$B \ \Omega \times (t_k, T),$$

$$U_n^{(+)} q_k + \frac{\partial q_k}{\partial N} = 0 \quad \text{Ha} \ (\Gamma/\Gamma_2) \times (t_k, T),$$

$$\beta q_k - a_{zz} \frac{\partial q_k}{\partial z} = 0 \quad \text{Ha} \ \Gamma_2 \times (t_k, T),$$

$$q_k = 0 \quad \text{при } t = T \ B \ \Omega,$$

$$(15)$$

где $q_k \equiv q_k(x, y, z, t), k = \overline{1, N_k}, -$ решения сопряженных задач, имеющие смысл функций "чувствительности" определенной точки в определенный момент времени к загрязнению. Будем предполагать, что $q_k \ge 0 \ \forall t \in (t_k, T)$, а также, что $\int_{\Gamma_2} m_{l_k}^k q_k \, d\Gamma_2 > 0$ хотя бы для одного источника на всем временном интервале $(t_k, T), k = \overline{1, N_k}$ (оба предположения справедливы при численном решении в силу монотонности используемой схемы дискретизации). Величины $w_k, k = \overline{1, N_k}, -$ "весовые" функции, введенные в предыдущем пункте.

Обобщенные постановки "вспомогательных" сопряженных задач имеют следующий вид: найти $q_k \in \hat{W}_2^1(\Omega \times (t_k, T)), k = \overline{1, N_k}$, такие, что выполняются соотношения:

$$-\int_{t_{k}}^{T}\int_{\Omega}\frac{\partial q_{k}}{\partial t}\hat{q}_{k}\,d\Omega\,dt + \sum_{i=1}^{3}\int_{t_{k}}^{T}\int_{\Omega}b_{i}q_{k}\frac{\partial \hat{q}_{k}}{\partial x_{i}}\,d\Omega\,dt + \sum_{i=1}^{3}\int_{t_{k}}^{T}\int_{\Omega}a_{ii}\frac{\partial q_{k}}{\partial x_{i}}\frac{\partial \hat{q}_{k}}{\partial x_{i}}\,d\Omega\,dt + \int_{t_{k}}^{T}\int_{\Gamma_{2}}U_{n}^{(-)}q_{k}\hat{q}_{k}\,d\Omega\,dt + \int_{t_{k}}^{T}\int_{\Gamma_{2}}\beta q_{k}\hat{q}_{k}\,d\Gamma_{2}\,dt = \int_{t_{k}}^{T}\int_{\Omega}w_{k}\hat{q}_{k}\,d\Omega\,dt \quad \forall \hat{q}_{k}\in W_{2}^{1,0}\big(\Omega\times(t_{k},T)\big).$$
(16)

При некотором ограничении на скорости ветра и предположениях о физических коэффициентах задачи, приведенных выше, следуя [5], можно показать, что обобщенное решение задачи (15) в классе функций $\hat{W}_2^1(\Omega \times (t_k, T))$ существует и единственно. Легко заметить, что если положить в (16) $\hat{q}_k \equiv \phi_k$, где ϕ_k — решение задачи (6)–(10),

Легко заметить, что если положить в (16) $\hat{q}_k \equiv \phi_k$, где ϕ_k — решение задачи (6)–(10), а в (12) положить $\hat{\phi}_k \equiv q_k$, где q_k — решение (16), то справедливы следующие тождества (соотношения сопряженности):

$$\begin{aligned} Q_k &= -\int_{t_k}^T \int_{\Omega} \phi_k \frac{\partial q_k}{\partial t} \, d\Omega \, dt - \sum_{i=1}^3 \int_{t_k}^T \int_{\Omega} b_i \phi_k \frac{\partial q_k}{\partial x_i} \, d\Omega \, dt + \sum_{i=1}^3 \int_{t_k}^T \int_{\Gamma/\Gamma_2} U_n^{(+)} \phi_k q_k \, d\Gamma \, dt + \\ &\sum_{i=1}^3 \int_{t_k}^T \int_{\Omega} a_{ii} \frac{\partial \phi_k}{\partial x_i} \frac{\partial q_k}{\partial x_i} \, d\Omega \, dt + \int_{t_k}^T \int_{\Gamma_2} \beta \phi_k q_k \, d\Gamma_2 \, dt \\ &= \left(\sum_{l_k=1}^{N_L^k} m_{l_k}^k g_{l_k}^{\text{em}}, q_k \right)_{L_2(\Gamma_2 \times (t_k, T))} + \sum_{l_k=1}^{N_L^k} \left(m_{l_k}^k u_{l_k}, q_k \right)_{L_2(\Gamma_2 \times (t_k, T))} \end{aligned}$$

и, следуя подходу из [7], функционалы (14) переписываются в виде ("двойственное" представление функционалов):

$$J_{\alpha}^{k}(\phi_{k},\vec{u}_{k}) = \frac{\alpha \operatorname{Pr}^{2}}{2} \sum_{l_{k}=1}^{N_{L}^{k}} \int_{t_{k}}^{T} u_{l_{k}}^{2}(t) dt + \frac{1}{2} \left(\sum_{l_{k}=1}^{N_{L}^{k}} \left(m_{l_{k}}^{k} u_{l_{k}}, q_{k} \right)_{L_{2}(\Gamma_{2} \times (t_{k},T))} - \overline{Q}_{k}^{\operatorname{att}} \right)^{2}, \quad k = \overline{1, N_{k}}, \quad (17)$$

где

$$\overline{Q}_k^{\text{att}} = Q_k^{\text{att}} - \tilde{C}_k, \quad \tilde{C}_k = \left(\sum_{l_k=1}^{N_L^k} m_{l_k}^k g_{l_k}^{\text{em}}, q_k\right)_{L_2(\Gamma_2 \times (t_k, T))}$$

Варьируя каждый из функционалов (17) и используя тот факт, что первая вариация равна нулю, а также делая вычисления, аналогичные тем, что приведены в [1, 2, 13], получаем формулу для вычисления "управлений" при $k = \overline{1, N_k}$ в явном виде

$$u_{l_k}(t) = \frac{\overline{Q}_k^{\text{att}} \left(\int\limits_{\Gamma_2} m_{l_k}^k q_k \, d\Gamma_2\right)(t)}{\alpha \operatorname{Pr}^2 + \sum_{l_k=1}^{N_L^k} \int\limits_{t_k}^T \left(\int\limits_{\Gamma_2} m_{l_k}^k q_k \, d\Gamma_2\right)^2 dt} \qquad \text{при } t \in (t_k, T), \ l_k = \overline{1, N_L^k}.$$
(18)

Поскольку первая вариация функционала (17) равна нулю на таких "управлениях" и функционал квадратичный, то "управления", вычисляемые по формуле (18), доставляют

функционалу (17) глобальный минимум (см. [4]). Подставив "управления" (18) в (17), вычисляем минимум (который достигается!):

$$J_{\alpha}^{k}(\phi_{k}, \vec{u}_{k}) = \frac{\alpha \operatorname{Pr}^{2} \left(\overline{Q}_{k}^{\operatorname{att}}\right)^{2}}{2\left(\alpha \operatorname{Pr}^{2} + \sum_{l_{k}=1}^{N_{L}^{k}} \int_{t_{k}}^{T} \left(\int_{\Gamma_{2}} m_{l_{k}}^{k} q_{k} \, d\Gamma_{2}\right)^{2} dt\right)}.$$

Из последнего равенства вытекает

Теорема 1. В предположении, что $\int_{\Gamma_2} m_{l_k}^k q_k d\Gamma_2 \neq 0$ хотя бы для одного l_k на всем временном интервале (t_k, T) , выполняется $\lim_{\alpha \to 0} J^k_{\alpha}(\phi_k, \vec{u}_k) = 0$.

Теорема 1 гарантирует, что при малых параметрах регуляризации ущерб Q_k , получаемый в результате "управлений", вычисляемых по формуле (18), на практике должен быть близок по значению к Q_k^{att} .

Следует отметить, что "управления" (18), вообще говоря, могут быть достаточно большими отрицательными по значению и положительными по модулю величинами, поскольку $\overline{Q}_k^{\rm att}$ может оказаться меньше нуля, что в результате численного моделирования может привести к получению отрицательной концентрации загрязнения. Поэтому для случая $\overline{Q}_k^{\rm att} \leq 0$ необходимо ввести некоторые ограничения на "управления", что делается ниже.

Итак, рассматриваем случай $Q_k^{\text{att}} \leq \tilde{C}_k, \ k = \overline{1, N_k}$. Тогда "управления" не могут принимать положительные значения ни в один из моментов времени ни для одного источника (что видно из формулы (18)). Напоминаем, что $g_{l_k}^{\text{em}}$ — постоянная и положительная величина, предполагается, что $q_k \geq 0 \ \forall t \in (t_k, T), \ k = \overline{1, N_k}$, а также $\int_{\Gamma_2} m_{l_k}^k q_k \, d\Gamma_2 > 0$ хотя бы для одного источника на всем временном интервале (t_k, T) . Обозначим:

$$Lt_{\text{zero}}^{k} = \left\{ l_{k} = \overline{1, N_{L}^{k}}, \ t \in (t_{k}, T) \mid \left(\int_{\Gamma_{2}} m_{l_{k}}^{k} q_{k} \, d\Gamma_{2} \right)(t) = 0 \right\}, \quad k = \overline{1, N_{k}},$$
$$Lt_{\text{pos}}^{k} = \left\{ l_{k} = \overline{1, N_{L}^{k}}, \ t \in (t_{k}, T) \mid \left(\int_{\Gamma_{2}} m_{l_{k}}^{k} q_{k} \, d\Gamma_{2} \right)(t) > 0 \right\}, \quad k = \overline{1, N_{k}}.$$

Очевидно, что множества Lt_{zero}^k и Lt_{pos}^k , $k = \overline{1, N_k}$, не пересекаются, а их объединение образует множество всех возможных l_k и t для исследуемой задачи. Поскольку $\int_{\Gamma_2} m_{l_k}^k q_k d\Gamma_2 > 0$ хотя бы для одного источника на всем временном интервале (t_k, T) , то

$$\sum_{l_k=1}^{N_L^k} \int_{t_k}^T \left(\int_{\Gamma_2} m_{l_k}^k q_k \, d\Gamma_2 \right)^2 dt > 0, \quad k = \overline{1, N_k}.$$

Введем условие

(A)
$$\tilde{C}_{k} - \frac{g_{l_{k}}^{\mathrm{em}}(t) \left(\alpha \operatorname{Pr}^{2} + \sum_{l_{k}=1}^{N_{L}^{k}} \int_{\Gamma_{2}}^{T} \left(\int_{\Gamma_{2}} m_{l_{k}}^{k} q_{k} \, d\Gamma_{2} \right)^{2} dt \right)}{\left(\int_{\Gamma_{2}} m_{l_{k}}^{k} q_{k} \, d\Gamma_{2} \right)(t)} \leq Q_{k}^{\mathrm{att}}, \quad \{l_{k}, t\} \in Lt_{\mathrm{pos}}^{k}, \ k = \overline{1, N_{k}}.$$

Справедлива следующая

Теорема 2. Ограничение вида

(B) $|u_{l_k}(t)| \le g_{l_k}^{\text{em}}(t) \quad \forall l_k = \overline{1, N_L^k}, \ \forall t \in (t_k, T), \ k = \overline{1, N_k},$

имеет место тогда и только тогда, когда выполнено ограничение (A).

Доказательство. Сначала докажем, что из (Б) следует условие (А). По определению модуля из условия (Б) получаем равносильную систему неравенств:

$$|u_{l_k}(t)| \le g_{l_k}^{\mathrm{em}}(t) \Leftrightarrow \begin{cases} u_{l_k}(t) \le g_{l_k}^{\mathrm{em}}(t), \\ u_{l_k}(t) \ge -g_{l_k}^{\mathrm{em}}(t). \end{cases}$$
(19)

Используя второе неравенство из (19), а также формулу (18), получаем

$$\frac{\overline{Q}_{k}^{\operatorname{att}}\left(\int\limits_{\Gamma_{2}}m_{l_{k}}^{k}q_{k}\,d\Gamma_{2}\right)(t)}{\alpha\operatorname{Pr}^{2}+\sum_{l_{k}=1}^{N_{L}^{k}}\int\limits_{\Gamma_{2}}^{T}\left(\int\limits_{\Gamma_{2}}m_{l_{k}}^{k}q_{k}\,d\Gamma_{2}\right)^{2}dt} \geq -g_{l_{k}}^{\operatorname{em}}(t) \quad \forall l_{k}=\overline{1,N_{L}^{k}}, \; \forall t \in (t_{k},T), \; k=\overline{1,N_{k}}.$$

Пусть сначала $\{l_k, t\} \in Lt_{\text{zero}}^k, k = \overline{1, N_k}$. В этом случае последнее неравенство принимает вид

$$0 \ge -g_{l_k}^{\text{em}}(t) \quad \forall \{l_k, t\} \in Lt_{\text{zero}}^k, \ k = \overline{1, N_k},$$

что верно $\forall Q_k^{\text{att}}, k = \overline{1, N_k}$. Теперь рассмотрим ситуацию, когда $\{l_k, t\} \in Lt_{\text{pos}}^k$. Поскольку в этом случае $\int_{\Gamma_2} m_{l_k}^k q_k d\Gamma_2 > 0$, то справедлива следующая цепочка равносильных неравенств $(k = \overline{1, N_k})$:

$$\begin{aligned} & \frac{\overline{Q}_{k}^{\mathrm{att}} \bigg(\int\limits_{\Gamma_{2}} m_{l_{k}}^{k} q_{k} \, d\Gamma_{2} \bigg)(t)}{\alpha \operatorname{Pr}^{2} + \sum_{l_{k}=1}^{N_{L}^{k}} \int\limits_{\tau_{k}}^{T} \bigg(\int\limits_{\Gamma_{2}} m_{l_{k}}^{k} q_{k} \, d\Gamma_{2} \bigg)^{2} \, dt} & \Leftrightarrow \\ & \Leftrightarrow \quad \overline{Q}_{k}^{\mathrm{att}} \geq - \frac{g_{l_{k}}^{\mathrm{em}}(t) \bigg(\alpha \operatorname{Pr}^{2} + \sum_{l_{k}=1}^{N_{L}^{k}} \int\limits_{\tau_{k}}^{T} \bigg(\int\limits_{\Gamma_{2}} m_{l_{k}}^{k} q_{k} \, d\Gamma_{2} \bigg)^{2} \, dt \bigg)}{\bigg(\int\limits_{\Gamma_{2}} m_{l_{k}}^{k} q_{k} \, d\Gamma_{2} \bigg)(t)} \quad \Leftrightarrow \end{aligned}$$

$$\Leftrightarrow \quad Q_k^{\text{att}} \ge \tilde{C}_k - \frac{g_{l_k}^{\text{em}}(t) \left(\alpha \operatorname{Pr}^2 + \sum_{l_k=1}^{N_L^k} \int_{t_k}^T \left(\int_{\Gamma_2} m_{l_k}^k q_k \, d\Gamma_2\right)^2 dt\right)}{\left(\int_{\Gamma_2} m_{l_k}^k q_k \, d\Gamma_2\right)(t)}.$$
(20)

Формула (20) — условие (А). Таким образом, прямое утверждение теоремы доказано.

Теперь докажем обратное утверждение. В случае, если $\{l_k, t\} \in Lt_{\text{zero}}^k$, то $u_{l_k}(t) = 0$, $k = \overline{1, N_k}$, а это означает, что выполняется

$$|u_{l_k}(t)| \le g_{l_k}^{\text{em}}(t), \quad \{l_k, t\} \in Lt_{\text{zero}}^k, \ k = \overline{1, N_k}.$$

В случае, когда $\{l_k, t\} \in Lt_{\text{pos}}^k$, имеет место (20). Используя цепочку равносильных неравенств, записанную выше при доказательстве прямого утверждения теоремы, а также формулу (18), получаем

$$u_{l_k}(t) \ge -g_{l_k}^{\text{em}}(t), \quad \{l_k, t\} \in Lt_{\text{pos}}^k, \ k = \overline{1, N_k}.$$

Поскольку рассматриваемые "управления" неположительные (что отмечалось выше), то справедлива система неравенств из (19), равносильная

$$|u_{l_k}(t)| \le g_{l_k}^{\text{em}}(t), \quad \{l_k, t\} \in Lt_{\text{pos}}^k, \ k = \overline{1, N_k}.$$

Объединение множеств Lt_{zero}^k и Lt_{pos}^k образует множество всех возможных l_k и t для исследуемой задачи, т. е. выполняется ограничение (Б).

Замечание 1. Отметим, что условие (А) требуется лишь для $\{l_k, t\} \in Lt_{\text{pos}}^k$. В случае, если $\{l_k, t\} \in Lt_{\text{zero}}^k$, то из (18) следует, что $u_{l_k}(t) = 0$, $k = \overline{1, N_k}$, поэтому ограничение (Б) выполнено всегда и дополнительных условий для Q_k^{att} вводить не нужно.

Замечание 2. В данной задаче Q_k^{att} — "достижимый" экономический ущерб от k-й группы пожаров, т.е. число, а не функция. Поэтому на практике на Q_k^{att} , $k = \overline{1, N_k}$, можно накладывать условие вида

(B)
$$\tilde{C}_k - \min_{\{l_k, t \in (t_k, T)\}} \left(\frac{g_{l_k}^{\text{em}}(t)}{\left(\int\limits_{\Gamma_2} m_{l_k}^k q_k \, d\Gamma_2\right)(t)} \right) \left(\alpha \operatorname{Pr}^2 + \sum_{l_k=1}^{N_L^k} \int\limits_{t_k}^T \left(\int\limits_{\Gamma_2} m_{l_k}^k q_k \, d\Gamma_2\right)^2 dt \right) \le Q_k^{\text{att}}.$$

Отмечаем, что выполнение данного условия является достаточным для выполнения условия (А). Поэтому при его введении сформулированная теорема остается справедливой.

Заменяя нестрогое неравенство в условии (В) равенством, получаем формулу для вычисления ущерба от N_L^k источников, возникших в момент времени t_k , до которого возможно уменьшить ущерб Q_k , управляя по закономерностям (18):

$$Q_k^{\text{att}} = \tilde{C}_k - \min_{\{l_k, t \in (t_k, T)\}} \left(\frac{g_{l_k}^{\text{em}}(t)}{\left(\int\limits_{\Gamma_2} m_{l_k}^k q_k \, d\Gamma_2\right)(t)} \right) \left(\alpha \operatorname{Pr}^2 + \sum_{l_k=1}^{N_L^k} \int\limits_{t_k}^T \left(\int\limits_{\Gamma_2} m_{l_k}^k q_k \, d\Gamma_2\right)^2 dt \right).$$
(21)

Оценка ущерба по такой формуле в силу сформулированной выше теоремы гарантирует выполнение неравенства $(k = \overline{1, N_k})$:

416

$$u_{l_k}(t) + g_{l_k}^{\text{em}}(t) \ge 0$$
 при $t \in (t_k, T), \ l_k = \overline{1, N_{L_k}^k},$

что обеспечивает "физичность" (неотрицательность) решений ϕ_k в дискретном случае при использовании монотонной разностной схемы для дискретизации (6)–(9) с известными "управлениями" (см., например, [11]). В дальнейшем в качестве Q_k^{att} мы будем рассматривать (21).

Как отмечалось выше, все N_k задач независимы между собой, поэтому для оценки ущерба на всем временном интервале (t_1, T) $(t_1 -$ время старта первой группы пожаров) от всех источников достаточно сложить ущербы от всех групп источников, возникших в один и тот же момент времени.

Итак, алгоритм решения каждой k-й задачи вида (13) состоит в следующем:

- решаем "вспомогательную" сопряженную задачу (15), находим q_k ;
- оцениваем ущерб Q_k^{att} от группы источников, возникших в момент времени t_k , до которого можно уменьшить ущерб Q_k , по формуле (21);
- вычисляем "управления" $u_{l_k}, l_k = \overline{1, N_L^k}$, по формуле (18);
- решаем задачу (6)–(9) с известными "управлениями".

После решения всех N_k независимых задач вычисляем Q_k по формуле (11), а затем суммарный "достижимый" ущерб Q^{att} и ущерб Q, который получился после "управлений" всеми источниками на интервале (t_1, T) , по формулам:

$$Q = \sum_{k=1}^{N_k} Q_k, \qquad Q^{\text{att}} = \sum_{k=1}^{N_k} Q_k^{\text{att}}.$$

Наконец, сравниваем Q и Q^{att} . Аналогично тому, как была доказана справедливость теоремы 1, можно показать, что имеет место следующая

Теорема 3. В условиях теоремы 1

$$\lim_{\alpha \to 0} J_{\alpha} = \lim_{\alpha \to 0} \left(\frac{\alpha \operatorname{Pr}^2}{2} \sum_{k=1}^{N_k} \sum_{l_k=1}^{N_L^k} \int_{t_k}^T u_{l_k}^2(t) \, dt + \frac{1}{2} \left(Q - Q^{\operatorname{att}} \right)^2 \right) = 0$$

на "управлениях", вычисляемых по формуле (18).

Из сформулированной теоремы следует, что значения величин Q и Q^{att} на практике должны оказаться близкими. В следующем пункте справедливость этого факта будет проиллюстрирована результатами численного эксперимента.

Замечание 3. В завершении данного пункта отметим следующее. Решение задачи оптимизации экономического ущерба с разбиением на подзадачи по группам локальных источников, стартующих в один момент времени, выгоднее, чем решение аналогичной задачи без разбиения, по нескольким причинам. Мы заранее не знаем, в какие моменты времени стартуют пожары, поэтому мы не можем сказать, в какие моменты времени следует начать их устранение. Отсюда следует, что правая часть уравнения (3) трудно реализуется при построении численной модели, а вот правую часть уравнения (8) легко реализовать на практике (загрязнение региона локальными источниками и "управление" ими начинаются одновременно). Также отметим, что описанный выше алгоритм решения задачи с разбиением может быть положен в основу решения задачи управления риском загрязнений "охраняемого региона", так как вычисляются ущербы $Q_k, k = \overline{1, N_k}$, которые нанесли бы группы пожаров, стартовавших в различные моменты времени (в отличие от алгоритма решения задачи без разбиения, где вычислялся бы лишь один ущерб от всех пожаров). Решению задачи управления риском загрязнений предполагается посвятить отдельную публикацию.

4. Результаты численного эксперимента

В первом подпункте настоящего пункта приведем размерности всех величин и значения постоянных величин, а также схему дискретизации рассматриваемой задачи. Во втором подпункте продемонстрируем результаты численного эксперимента и обсудим некоторые возможности улучшения алгоритма решения задачи.

4.1. Аспекты численной реализации

Сначала приведем размерности всех величин и функций задачи (6)–(9). Если величина постоянная, то будем приводить ее значение. Концентрация загрязнений ϕ_k измеряется в мг/м³, "управления" \vec{u}_k — в мг/(м²c). Коэффициент эмиссии измеряется в тех же величинах, что и "управления", причем он постоянный во все моменты времени. Поскольку расчеты мы будем проводить на примере CO (оксид углерода), то этот коэффициент принимает постоянное значение и $g_{l_k}^{\rm em}(t) \equiv g^{\rm em} = 270 \text{ мг/(m^2c)} \quad \forall t, l_k = \overline{1, N_L^k}$. Величины b_x , b_y , b_z , $U_n^{(-)}$, $U_n^{(+)}$ и β измеряются в м/с, причем $\beta = 0.05 \text{ м/с}$ (значение взято из [3]). Коэффициенты горизонтальной диффузии постоянны по величине и $a_{xx} = a_{yy} = 2000 \text{ м}^2/\text{c}$, а коэффициент вертикальной диффузии — переменный, его значения здесь не приводим, а лишь отметим, что он много меньше коэффициентов горизонтальной диффузии (величина измерения также в м²/с).

Теперь опишем размерности величин и коэффициентов, входящих в сопряженную задачу (15), а также в определение ущерба. $I_t^{\text{инд}} \approx 2.2$ (на конец 2013 года) — безразмерная величина, $\tilde{Q}_{2003}^{\text{атм}} = 144$ руб./усл. т, $A^{\text{атм}} = 1$ усл. т/т (для CO), σ — переменный безразмерный коэффициент. Отметим, что при численном моделировании тонны переводились в мг. Учитывая, что временные параметры (t_k , T, ...) измеряются в секундах и, вспоминая определение w_k из первого пункта данной статьи (которая является правой частью сопряженной задачи (15)), получаем, что w_k измеряется в руб./(мг с). Из этой размерности и из вида "вспомогательной" сопряженной задачи получаем, что величина измерения q_k — руб./мг, экономического ущерба Q_k — руб. Наконец, стоимость тушения пожара средней интенсивности Pr ≈ 0.557 руб./(мг/м²) (на основе информации, взятой на сайте о лесной промышленности (http://www.lesonline.ru/news/?id=210600), Pr ≈ 4.3 руб./(мг/м²), но конкретного вещества не указано, поэтому происходил перевод этой стоимости в аналогичную для CO). Параметр регуляризации оценивался экспериментально из неравенства

$$\alpha \ll \frac{\min_{\{k=\overline{1,N_k}\}} \left(\sum_{l_k=1}^{N_L^k} \int_{t_k}^T \left(\int_{\Gamma_2} m_{l_k}^k q_k \, d\Gamma_2 \right)^2 dt \right)}{\Pr^2},$$

т. е. выбирался достаточно малым, чтобы первое слагаемое в знаменателе из формулы (18) для вычисления "управлений" было много меньше второго слагаемого $\forall k = \overline{1, N_k}$. В приводимом ниже численном эксперименте $\alpha = 10^{-5}$ с.

Приведем далее параметры области и сетки. Область выбиралась следующей:

$$Ω = (35° E, 42° E) × (54° N, 57° N) × (0 км, 1 км),$$

где $A_1 = 35^{\circ}$ Е, $A_2 = 42^{\circ}$ Е, $B_1 = 54^{\circ}$ N, $B_2 = 57^{\circ}$ N, $C_1 = 0$ км, $C_2 = 1$ км.

Отметим, что при численных расчетах все эти величины переводились в метры, приближенные значения перевода данных величин показаны ниже:

 $A_1 = 2225000 \text{ m}, A_2 = 2670000 \text{ m}, B_1 = 5994000 \text{ m}, B_2 = 6327000 \text{ m}, C_1 = 0 \text{ m}, C_2 = 1000 \text{ m}.$

Расчет проводился со следующими параметрами сетки по пространству:

$$\begin{split} h_x &= (A_2 - A_1)/N_x, & N_x = 147, & h_x \approx 3000 \, \mathrm{m}, \\ h_y &= (B_2 - B_1)/N_y, & N_y = 110, & h_y \approx 3000 \, \mathrm{m}, \\ h_z &= (C_2 - C_1)/N_z, & N_z = 20, & h_z = 50 \, \mathrm{m}. \end{split}$$

Еще нам потребуются следующие обозначения (для "охраняемого региона" $\Omega_{\rm obs}$):

 $A_{o,max}$ — максимальная координата по Ox, $A_{o,min}$ — минимальная координата по Ox, $B_{o,max}$ — максимальная координата по Oy, $B_{o,min}$ — минимальная координата по Oy.

В качестве "охраняемой зоны" $\Omega_{\rm obs}$ брались регионы Москвы и Московской области, приближенные прямоугольниками (см. рис. 1). На рисунках 2–4 показаны три зоны, в которых могут возникать локальные источники (территории лесов и торфяников). Из рис. 1 видно, что в данном случае $A_{\rm o,min} = 35^{\circ}19'48'' \text{E}$, $A_{\rm o,max} = 39^{\circ}52'48'' \text{E}$, $B_{\rm o,min} = 54^{\circ}16'12'' \text{N}$, $B_{\rm o,max} = 56^{\circ}57'00'' \text{N}$.

Рис. 1. "Охраняемый регион" $\Omega_{\rm obs}$

Рис. 2. Первая зона лесов и торфяников

Рис. 3. Вторая зона лесов и торфяников

Теперь приводим временные величины: T = 259200 c, $N_t = 72$, $h_t = 3600 \text{ c}$. Всего решались $N_k = 4$ прямых и сопряженных задач, пожары стартовали в следующие моменты времени:

$$t_1 = 0$$
 ч, $t_2 = 18$ ч, $t_3 = 36$ ч, $t_4 = 54$ ч.

В каждый из приведенных выше моментов времени всего начиналось $N_L^k = 42$ пожара (всего было 168 локальных источников) площадью в одну расчетную ячейку на границе каждый (приблизительно 9 км²).

В завершении описания параметров задачи оговорим, что при численном моделировании значения коэффициентов σ брались не из монографии [12], а задавались следующим соотношением (при $(x, y) \in \Omega_{obs}$):

$$\sigma(x,y) = \begin{cases} 1.2 & \text{при } A_{\text{o,min}} \le x < \frac{A_{\text{o,max}} + A_{\text{o,min}}}{2}, \ B_{\text{o,min}} \le y < \frac{B_{\text{o,max}} + B_{\text{o,min}}}{2}, \\ 3.0 & \text{при } \frac{A_{\text{o,max}} + A_{\text{o,min}}}{2} \le x \le A_{\text{o,max}}, \ B_{\text{o,min}} \le y < \frac{B_{\text{o,max}} + B_{\text{o,min}}}{2}, \\ 2.0 & \text{при } A_{\text{o,min}} \le x < \frac{A_{\text{o,max}} + A_{\text{o,min}}}{2}, \ \frac{B_{\text{o,max}} + B_{\text{o,min}}}{2} \le y \le B_{\text{o,max}}, \\ 0.7 & \text{при } \frac{A_{\text{o,max}} + A_{\text{o,min}}}{2} \le x \le A_{\text{o,max}}, \ \frac{B_{\text{o,max}} + B_{\text{o,min}}}{2} \le y \le B_{\text{o,max}}. \end{cases}$$

По порядку величины эти тестовые коэффициенты совпадают с теми, что приведены в [12]. В дальнейших работах предполагается брать уже реальные коэффициенты для каждой из точек $\Omega_{\rm obs}$.

Отмечаем, что при численном решении задачи используется монотонная схема первого порядка точности, аналогичная той, что построена в монографии [11]. Для дискретизации по пространству использовался метод конечных объемов, а по времени — неявная схема.

Замечание 4. Следует подчеркнуть, что разностная схема, полученная по методу конечных объемов, с точностью до величин первого порядка точности по пространственным переменным совпадает со схемой, получаемой методом интегральных тождеств (см. [8, с. 324]) на прямоугольной сетке с базисными функциями, которые являются произведением трех кусочно-линейных функций, поэтому применение конечно-объемного метода для численного решения исследуемой задачи оправдано. Доказательство этого факта мы здесь не приводим, этому предполагается посвятить отдельную публикацию.

4.2. Результаты численного эксперимента по решению исследуемой задачи

В данном эксперименте расчет производился со следующими скоростями ветра:

$$b_x(x, y, z, t) = 40 \frac{T - 4t}{4T} \frac{A_2 + A_1 - 2x}{2(A_2 - A_1)},$$

$$b_y(x, y, z, t) = -50 \frac{T - 4t}{4T} \frac{B_2 + B_1 - 2y}{2(A_2 - A_1)},$$

$$b_z(x, y, z, t) = 10 \frac{T - 4t}{4T} \frac{C_2 + C_1 - 2z}{2(A_2 - A_1)}.$$

Для них выполняется соотношение бездивергентности, но они переменные по времени и по пространству. Все остальные параметры указаны в предыдущем пункте, здесь не будем их касаться. Иллюстрации приводятся только для задачи, в которой источники возникли в момент времени $t_1 = 0$ ч (т. е. для задачи с k=1).

На рис. 5–8 приведена зависимость "управлений" от времени в некоторых точках. Координаты точек следующие:

$$(\tilde{A}_1, \tilde{B}_1) = (39^{\circ}33'18'' \text{E}, 55^{\circ}06'00'' \text{N}), \quad (\tilde{A}_2, \tilde{B}_3) = (37^{\circ}21'00'' \text{E}, 56^{\circ}31'48'' \text{N}), \quad (\tilde{A}_2, \tilde{B}_3) = (37^{\circ}21'00'' \text{E}, 56^{\circ}31'48'' \text{N}),$$

00["]N),
$$(\tilde{A}_2, \tilde{B}_2) = (39^{\circ}39'00'' \text{E}, 55^{\circ}47'24''N),$$

Рис. 5. "Управление" u_1 в точке $(\tilde{A}_1, \tilde{B}_1)$

Рис. 7. "Управление" u_1 в точке $(\tilde{A}_3, \tilde{B}_3)$

Рис. 6. "Управление" u_1 в точке $(\tilde{A}_2, \tilde{B}_2)$

Рис. 8. "Управление" u_1 в точке $(\tilde{A}_4, \tilde{B}_4)$

"Управления" физически в основном определяются направлением и значением вектора скорости ветра: если он направлен в сторону "охраняемого региона", то устранять локальные источники нужно с большей скоростью, чем в противном случае. Также значения "управлений" определяются месторасположением локальных источников: чем ближе источник загрязнений к "охраняемому региону" (или месту региона, коэффициент σ в котором наибольший), тем с большей скоростью его надо устранять. Из этих рисунков следует, что решая поставленную задачу по приведенному в предыдущем пункте алгоритму, можно оценить на какие из регионов необходимо тратить наибольшее количество ресурсов (что согласуется с результатами работ [1, 2, 13]).

Математически величина "управлений" определяется функцией "чувствительности" q_k , которая является решением (15), а само решение зависит от скорости ветра, координаты в пространстве и др.

На рис. 9, 10 показаны значения концентрации ϕ_1 в исследуемой области на высоте 50 метров в случае, когда задача решалась с "управлениями", вычисляемыми по формуле (18) (рис. 9) и без "управлений" (рис. 10). Как и следовало ожидать, значение концентраций на графиках слева меньше, чем та же величина справа, а скорость ее устранения в конкретном месте в конкретный момент времени зависит от "управлений" (например, две группы источников, которые находятся в "охраняемом регионе", устраняются практически до нуля, поскольку модуль величины "управлений" наибольший в этих регионах).

Рис. 9. Концентрация ϕ_1 на высоте 50 м в мо-**Рис. 10.** Концентрация ϕ_1 на высоте 50 м в мент времени t = 12ч (задача с "управлениями")

момент времени t = 12 ч (задача без "управлений")

Теперь приведем значения ущербов и количества ресурсов, необходимых на устранение локальных источников. Результаты получились следующими:

 $\begin{array}{ll} Q_1^{\rm att} = 81835700 \mbox{ py6.}, & Q_1 = 79278800 \mbox{ py6.}, \\ Q_2^{\rm att} = 54682700 \mbox{ py6.}, & Q_2 = 49109200 \mbox{ py6.}, \\ Q_3^{\rm att} = 42206600 \mbox{ py6.}, & Q_3 = 39927300 \mbox{ py6.}, \\ Q_4^{\rm att} = 15784600 \mbox{ py6.}, & Q_4 = 13085800 \mbox{ py6.}, \\ Q_4^{\rm att} = 194509600 \mbox{ py6.}, & Q = 181401000 \mbox{ py6.}. \end{array}$

Из приведенных величин следует, что значения "достижимого" ущерба и ущерба после "управлений" совпадают с точностью до второго знака. Равенства между ними быть не может, поскольку в расчетах использовалась схема первого порядка точности, на каждом шаге вычислений (например, решений СЛАУ) имеют место ошибки, и параметр регуляризации брался положительным и ненулевым. Тем не менее, все приведенные величины близки по значению, и результаты эксперимента иллюстрируют справедливость теоретических предположений, о которых шла речь в предыдущем пункте настоящей статьи. Ущербы, которые получились бы без "управлений" (первоначальные ущербы при $\vec{u}_k = 0$):

$$Q_1 = 151081000$$
руб., $Q_2 = 67773700$ руб., $Q_3 = 76136900$ руб., $Q_4 = 30414300$ руб., $Q = 325406000$ руб.

Как видим, в данном случае первоначальный ущерб удалось уменьшить на 144005000 рублей (приблизительно в два раза).

Количество ресурсов, необходимое для решения поставленной задачи, вычислялось по формуле

$$\operatorname{Res} = -\operatorname{Pr}\sum_{k=1}^{N_k} \sum_{l_k=1}^{N_L^k} \int_{t_k}^T u_{l_k}(t) \, dt$$

и получилось равным Res = 817333000 рублей. Отметим, что если бы устранялись все источники, причем с максимально возможными "управлениями" (по модулю равными значению $g^{\rm em}$), то Res = 4095950000 рублей (приблизительно в пять раз больше). Отсюда можно сделать следующий вывод: вычисление "управлений" с помощью функции "чувствительности" позволяет значительно сэкономить ресурсы по сравнению с тем, если бы они оценивались через коэффициенты эмиссии без учета "чувствительности". Также экономия средств на устранение локальных источников важна в свете того, что количество средств, вообще говоря, ограничено и следует рассматривать задачу с ограничением на ресурсы. В дальнейших работах планируется ввести такое ограничение и решать задачу уже в условиях ограниченных средств.

5. Заключение

В данной работе поставлена задача оптимизации экономического ущерба от загрязнения окружающей среды локальными источниками в Московском регионе, предложен алгоритм ее решения, а также приведены результаты численных экспериментов, которые иллюстрируют справедливость теорем, сформулированных в статье.

На основе результатов этой статьи будет вестись дальнейшая работа, а именно будет решена задача управления риском загрязнений окружающей среды, а также учтена возможная нехватка ресурсов, необходимых для решения проблемы.

Благодарности. Автор выражает благодарность В.И. Агошкову, В.П. Шутяеву и Н.А. Асееву за обсуждение работы и ценные замечания.

Литература

- 1. Агошков В.И., Асеев Н.А., Новиков И.С. Методы исследования и решения задач о локальных источниках при локальных или интегральных наблюдениях. М.: ИВМ РАН, 2012.
- Агошков В.И., Новиков И.С. Задача минимизации концентрации загрязнений от пожаров в регионе // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа: сб. научн. тр. / НАН Украины, МГИ, ИГН, ОФ ИнБЮМ. / Иванов В.А. и др. — Севастополь, 2013. — Т. 2, вып. 26. — С. 321–338.

- 3. **Алоян А.Е.** Моделирование динамики и кинетики газовых примесей и аэрозолей. М.: Наука, 2008.
- 4. Вайнберг М.М. Функциональный анализ. М.: Просвещение, 1979.
- 5. Ладыженская О.А. Краевые задачи математической физики. М.: Наука, 1973.
- Марчук Г.И. Математическое моделирование в проблеме окружающей среды. М.: Наука, 1982.
- 7. Марчук Г.И. Сопряженные уравнения и анализ сложных систем. М.: Наука, 1992.
- 8. Марчук Г.И., Агошков В.И. Введение в проекционно-сеточные методы. М.: Наука, 1981.
- 9. Пененко В.В. Методы численного моделирования атмосферных процессов. Л.: Гидрометеоиздат, 1981.
- Пененко В.В., Алоян А.Е. Модели и методы для задач охраны окружающей среды. Новосибирск: Наука, 1985.
- 11. Самарский А.А. Теория разностных схем. 3-е изд., испр. М.: Наука, 1989.
- 12. **Тарасова Н.П., Ермоленко Б.В., Зайцев В.А., Макаров С.В.** Оценка воздействия промышленных предприятий на окружающую среду. М.: БИНОМ. Лаборатория знаний, 2012.
- 13. Novikov I.S. Problem of minimization of pollution concentration related to fires in Moscow region // Russ. J. Numer. Anal. Math. Modelling. 2013. Vol. 28, № 1. P. 13–35.

Поступила в редакцию 21 ноября 2014 г., в окончательном варианте 20 марта 2015 г.

Литература в транслитерации

- 1. Agoshkov V.I., Aseev N.A., Novikov I.S. Metody issledovaniya i resheniya zadach o lokal'nykh istochnikakh pri lokal'nykh ili integral'nykh nablyudeniyakh.—M.: IVM RAN, 2012.
- 2. Agoshkov V.I., Novikov I.S. Zadacha minimizatsii kontsentratsii zagryaznenij ot pozharov v regione // Ekologicheskaya bezopasnost' pribrezhnoj i shel'fovoj zon i kompleksnoe ispol'zovanie resursov shel'fa: sb. nauchn. tr. / NAN Ukrainy, MGI, IGN, OF InBYuM. / Ivanov V.A. i dr. Sevastopol', 2013. T. 2, vyp. 26. S. 321–338.
- 3. Aloyan A.E. Modelirovanie dinamiki i kinetiki gazovykh primesej i aerozolej. M.: Nauka, 2008.
- 4. Vajnberg M.M. Funktsional'nyj analiz. M.: Prosveshchenie, 1979.
- 5. Ladyzhenskaya O.A. Kraevye zadachi matematicheskoj fiziki. M.: Nauka, 1973.
- Marchuk G.I. Matematicheskoe modelirovanie v probleme okruzhayushchej sredy. M.: Nauka, 1982.
- 7. Marchuk G.I. Sopryazhennye uravneniya i analiz slozhnykh sistem. M.: Nauka, 1992.
- 8. Marchuk G.I., Agoshkov V.I. Vvedenie v proektsionno-setochnye metody. M.: Nauka, 1981.
- 9. **Penenko V.V.** Metody chislennogo modelirovaniya atmosfernykh protsessov. L.: Gidrometeoizdat, 1981.
- 10. Penenko V.V., Aloyan A.E. Modeli i metody dlya zadach okhrany okruzhayushchej sredy.— Novosibirsk: Nauka, 1985.
- 11. Samarskij A.A. Teoriya raznostnykh skhem. 3-e izd., ispr. M.: Nauka, 1989.
- 12. Tarasova N.P., Ermolenko B.V., Zajtsev V.A., Makarov S.V. Otsenka vozdejstviya promyshlennykh predpriyatij na okruzhayushchuyu sredu. M.: BINOM. Laboratoriya znanij, 2012.
- 13. Novikov I.S. Problem of minimization of pollution concentration related to fires in Moscow region // Russ. J. Numer. Anal. Math. Modelling. 2013. Vol. 28, № 1. P. 13-35.