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Обобщены исследования по получению ванадия и показана перспективность применения 
флотационного извлечения. Обоснован прогнозный выбор фульвовой кислоты FulvAc в ка-
честве реагента-собирателя, селективно действующего по отношению к ценному компоненту 
ванадию, который в кислых продуктивных растворах находится в виде ванадила VO2+. 
На основе анализа параметров реакционной способности изучен механизм выделения и кон-
центрирования ванадила с использованием хелатообразующего реагента FulvAc. Проведено 
компьютерное моделирование флотационной системы, представляющей собой малораство-
римый металлокоплекс фульвата ванадила [VO2+

 – FulvAc]n. Эффективность применения 
FulvAc подтверждена лабораторными флотационными тестированиями, при которых извле-
чение ванадила составило не менее 92 %. Получение оксисолей ванадия обусловлено потреб-
ностями в сырье различных отраслей, [VO2+

 – FulvAc]n можно использовать в качестве ком-
плексных минеральных добавок в удобрительные смеси для нужд городского озеленения.  
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Конъюнктура мирового рынка ванадия, определяемая спросом на него металлургической, 
химической, автомобильной, электротехнической и другими отраслями промышленности, 
в перспективе представляется благоприятной. Годовой объем потребления ванадия превышает 
50 000 т, 80 – 87 % от общего числа идет на легирование не теряющих своей востребованности 
чугунов и сталей. 

За 2018 г. общая рыночная цена на ванадий из-за нехватки этого металла выросла более чем 
на 30 % для феррованадия и на 70 % для оксида ванадия (V). Ожидается, что в ближайшие годы 
рост цен на ванадий сохранится [1]. Кроме того, после коронавирусной пандемии удельный уро-
вень потребления ванадия начинает расти по мере восстановления мирового производства стали. 
Прогнозируется положительная динамика данного показателя до 2025 г. [2 – 4]. 

В рамках концепции ресурсосбережения ванадий добывают не только из руд, но и из тех-
ногенных источников: пирометаллургических шлаков, продуктов нефтепереработки и отрабо-
танных ванадиевых катализаторов [5 – 7]. 

Существует три основных способа получения ванадия: пирометаллургический, гидроме-
таллургический и гидрохимический. При пирометаллургическом методе осуществляется вы-
плавка ванадиевого чугуна из титаномагнетитовых и ильменитовых руд с последующей дева-
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надацией ванадийсодержащего шлака в качестве попутного продукта. Гидрометаллургически-
ми способами ванадий извлекают из ванадиевых шлаков с применением процессов “обжиг –
 выщелачивание” содовым или известково-сернокислотным методами [7]. Гидрохимический 
способ предусматривает химическое извлечение ванадия выщелачиванием из обожженных 
шлаков или титаносодержащих концентратов. С помощью гидрохимических технологий вана-
дий можно получать и из техногенного сырья, используя экстракцию, адсорбцию, гидролити-
ческое осаждение и флотацию [7, 8]. 

Перечисленные методы предполагают извлечение ванадия в основном из кислых техноген-
ных растворов, образующихся при переработке минерального сырья [9]. Вопрос извлечения 
ванадия из растворов достаточно сложен и, несмотря на наличие различных работ и подходов 
по данной теме, плохо изучен. Это связано с тем, что ванадий может находиться в растворах 
в разнообразных ионных формах, иметь несколько степеней окисления в зависимости от pH 
и концентрации [10 – 12]. 

Согласно [10, 12], в кислой среде ванадий имеет степень окисления + 5. В зависимости 
от рН среды в полученном растворе преобладают ионы ванадина 2VO+  (рис. 1). Однако ионы 

2VO+  не устойчивы, и в сильнокислой среде происходит восстановление ванадия (V) до вана-
дия (IV), представленного ванадилом 2VO +  — наиболее стабильной формой нахождения вана-
дия в растворе [10, 13]. 

 
Рис. 1. Диаграмма состояния ванадия в водных растворах по Баэсу и Мессмеру 

Многие исследователи работают только с соединениями пятивалентного ванадия, не уде-
ляя должного внимания наличию ванадил-ионов в растворах. В [14] предложен метод селек-
тивной экстракции ванадия(V) из раствора, содержащего катионы железа(III), при помощи экс-
трагентади-(2-этилгексил) фосфорной кислоты и трибутил фосфата. В [15] показана возмож-
ность экстракции ванадия(V) из сернокислых, солянокислых и азотнокислых растворов 
при помощи вторичных алифатических спиртов. Ванадий(V) также экстрагируют из растворов 
при помощи амина C21H45N [16] и три-н-октиламина в уайт-спирите [17], а из органической фа-
зы — щелочными растворами. 

К недостаткам экстракционных методов следует отнести неустойчивое состояние дисперс-
ной фазы эмульсии экстрагента, необходимость периодической его замены и регенерации, 
жесткое соблюдение условий проведения процесса. 
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Большое внимание уделяется и сорбционному методу выделения ванадия (+ 5) из растворов. 
Достаточно изучены сорбционные методы извлечения ванадия на различных анионообменных 
смолах [18, 19]. Для извлечения ванадия из сернокислых растворов могут применяться аниониты 
марок А500 и А111, имеющие функциональные третичные аминогруппы и N-глутаминовые 
группы [18]. Из слабокислых растворов ванадий может быть сорбирован на полиэтиленимино-
вые, винилпиридиновые и волокнистые АК-22 аниониты [19]. В диапазоне рН 1 – 10 из разбав-
ленных растворов ванадий сорбируется березовым активированным углем марки БАУ-А. 
При получении ванадия из растворов широко используются в качестве сорбентов слоистые 
алюмосиликаты [20]. Недостатками сорбционного метода можно назвать низкую линейную ско-
рость потока (менее 5 м∙ч–1), образование большого количества промывных растворов, высокую 
стоимость анионообменных смол и сложность с утилизацией отработанной смолы. 

Существует ряд способов получения ванадия нетрадиционными сорбентами, такими как 
биополимерный комплекс хитозана с цирконием и танином хурмы [21, 22]. Несмотря на высо-
кую селективность извлечения ванадия, в промышленности они не используются. Огромную 
роль в процессе осаждения играет многокомпонентность техногенных растворов, поскольку 
в состав осадка могут попасть примеси Na, Ca, Mg, Cr, Ti, Si, Mn, P, Fe в количестве 
до 18 масс. %. Чтобы этого избежать, ванадий предварительно отделяют при помощи анионо-
обменных смол в кислой среде. Применение такого способа позволяет получить пентаоксид 
ванадия с чистотой до 98 масс. %, однако при этом не удается достичь ПДК по ванадию — 
0.1 мг/л [20]. Следует обратить внимание и на тот факт, что осаждение четырехвалентного ва-
надия и железа происходит при близких значениях рН. С окислением в пульпе V4+ до V5+ 
наблюдается аналогичный переход Fe2+ → Fe3+ с образованием трудновскрываемого железова-
надиевого комплекса [18]. Рекомендуется при гидролитическом осаждении ванадия поддержи-
вать значение рН раствора 1.2 – 3.0 и температуру 85 – 95 °С для получения ванадиевого осадка 
кислоты [23]. В [24] установлено, что из растворов солей ванадила при рН ≈ 4 осаждается серо-
бурая гидроокись ванадила, при рН 8 – 10 VO(OH)2 растворяется, образуя соли поливанадистой 
кислоты. Таким образом, осуществлять гидролитическое осаждение ванадия из кислых поли-
компонентных растворов зачастую нецелесообразно ввиду сложности процесса и загрязнения 
осадка побочными продуктами, особенно при условии малого содержания ванадия в растворе 
по сравнению с другими компонентами системы. 

С помощью микрофлотации возможно выделение и разделение малых количеств ионов 
ванадия в виде их малорастворимых соединений коллоидной степени дисперсности  
с ПАВ-собирателями [20]. Имеются сведения о выделении ванадия методом микрофлотации 
как в слабощелочных растворах с использованием первичных алифатических аминов, так  
и в слабокислой среде с применением вторичных аминов. Известно, что комплексообразовате-
лями ионов ванадила могут служить трифенилметан, хлорид цетилтриметиламмония и дидецил-
метиламмоний хлорид, рекомендованные для селективного отделения соединений V (IV) [25]. 

В [26] продемонстрирована принципиальная возможность извлечения из разбавленных 
водных растворов методами флотации гидрофобных осадков ряда тяжелых металлов, среди ко-
торых представлен и ванадий. В качестве осадителей использовались диаминбензиин, гидрок-
сихинолин, α-нитрозо-β-нафтол, купферон, оксимы, а в качестве собирателей — хлористый до-
децилпиридиний и Arquad 2HT. 

Согласно [20], флотоактивные формы соединений ванадия существенно различаются 
в кислой и щелочной средах. При высоких концентрациях этого металла наибольшее извлече-
ние достигается в кислой среде (рН 2 – 5), что связано с поликонденсацией оксоанионов метал-
лов, а при низких (˂ 10–4 моль/л) — лучшие результаты по извлечению можно достигнуть 
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в щелочной среде (рН 7 – 10). Применению флотационного извлечения соединений ванадия 
в практике обогащения препятствует отсутствие эффективных реагентов-собирателей и прора-
ботка вопроса использования этих продуктов. 

Одним из путей развития технологий извлечения тяжелых металлов из продуктивных рас-
творов считается использование метода напорной флотации, преимуществом которого являет-
ся управляемая эффективность флотационного процесса посредством направленного прогноз-
ного подбора реагентов-собирателей [25]. Селективные хелатообразующие реагенты наиболее 
перспективны для флотационного выделения и концентрирования. Они способны к образова-
нию прочных флотационных систем “металл – реагент”. Важный аспект — использование до-
ступных экологически нетоксичных реагентов [27]. К решению этой задачи нужно подходить 
комплексно на основе изучения параметров реакционной способности извлекающего агента 
(реагента) и извлекаемого компонента (субстрата металла), а также глубокого понимания ме-
ханизма действия и применения компьютерного моделирования. 

В настоящей работе для извлечения ванадия из продуктивных кислых растворов, получен-
ных при комплексной физико-химической переработке железного концентрата АО “Святогор”, 
содержащего 58.50 % Feобщ, 1.37 % V2O5 и 5.64 % TiO2 (в пересчете на оксиды), предложен но-
вый нетоксичный (4 класс опасности) реагент-собиратель класса гуминовых веществ — фульво-
вая (7,8-дигидрокси-3-метил-10-оксо-1H,10H-пирано (4,3-b) хромен-9-карбоновой) кислота (со-
кращенно FulvAc) с канонической формулой С14Н10О7. 

Изучение химических свойств нового реагента, механизма его действия, а также моделиро-
вание системы “субстрат – реагент”, в которой ценный компонент (субстрат) — ванадил-ион 
(VO2+), а извлекающий агент — фульвовая кислота (FulvAc), проводили с применением систе-
мы программного обеспечения The Cambridge Crystallographic Data Centre (CCDC). В настоя-
щее время CCDC включает комплекс программ, совместимых с последней версией Python 3.0: 
Mercury (визуализация и анализ структурных данных), Cambridge Structural Database (пополня-
емая Кембриджская база данных), DASH (анализ рентгеновской порошковой дифракции), 
Mogul (валидация геометрии структур молекул), Hermes (программа визуализации кристалли-
ческих структур макромолекул и их комплексов с лигандами, в том числе полученных молеку-
лярным докингом, и их анализ) и т. д. [28]. С помощью системы программного обеспечения 
CCDC получена структурная и объемная модели фульвовой кислоты (рис. 2). Хромоновая 
кольцевая система по существу плоская, с гидроксильными и карбоновыми кислотными груп-
пами, копланарными кольцу. 

 
Рис. 2. Структурная формула (а) и модели фульвовой кислоты, полученные при помощи CCDC: 
шаростержневая (б); каркасная (в); молекулярная (г) 
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Фульвовая кислота — экологически безопасное органическое соединение природного про-
исхождения с большим количеством функциональных групп, желто-оранжевой окраски. Фуль-
вовые кислоты хорошо растворяются в воде, кислотах и щелочах [29]. В [29, 30] утверждается, 
что фульвовые кислоты за счет фенольных гидроксильных, карбонильных и карбоксильных 
групп способны образовывать хелатные комплексы с ионами различных металлов. 

На рис. 3 представлены MEP-карты фульвовой кислоты, входящие в инструментарий ана-
лиза CCDC Mercury. Одним из распространенных применений таких карт является визуализа-
ция активных центров связывания конкретных функциональных групп с рассматриваемой по-
верхностью молекулы [31]. 

 
Рис. 3. Примеры MEP-карт фульвовой кислоты: а — полного спектра; б — для карбонильного 
и атомарного кислорода; в — кислорода воды 

Данные МЕР-карты полного спектра (рис. 3а) подтверждают, что фульвовая кислота — хоро-
ший хелатообразующий агент, способный образовывать координационные связи не только 
с металлами, но и с различными функциональными структурами. Рис. 3б демонстрирует возмож-
ность взаимодействия с молекулой фульвовой кислоты атомарного кислорода, кислорода 
в спиртах и карбонильного кислорода, что является наиболее интересным ввиду рассмотрения во-
проса извлечения ванадил-катионов (VO)2+ и акваванадилкатионов [VO(H2O)4]2+. Наибольшая 
плотность МЕР-областей наблюдается у группировки COOH и на одной из групп — ОН. Отмеча-
ется также возможность образования связей около атомов водорода, что может быть обусловлено 
построением водородных связей, необходимых для стабилизации системы “субстрат – реагент”. 

Предварительный прогнозный выбор фульвовой кислоты как реагента-собирателя для из-
влечения оксокатионов ванадия (IV) основывался на результатах квантово-химических изме-
рений параметров реакционной способности. К важнейшим из них следует отнести энергию 
верхней занятой (ЕHOMO) и нижней свободной (ELUMO) молекулярных орбиталей извлекающих 
агентов (реагентов), значения абсолютной жесткости η, химического потенциала χ, электро-
фильности и нуклеофильности IЕ и IN, а также выявление энергетически наиболее выгодных, 
конформационно устойчивых и способных к собственной самосборке флотосистем “субстрат –
 реагент” путем расчета степени переноса заряда ∆N, энергии комплексообразования ∆Екомп 
и числа водородных связей в образующихся в процессе флотации молекулярных системах 
“субстрат – реагент” [25]. 

Значения параметров реакционной способности FulvAc и возможных извлекаемых форм 
субстрата ванадия представлены в табл. 1. Видно, что существенное различие между EHOMO ре-
агента и ELUMO субстрата указывает на осуществление “жестко-жесткого” взаимодействия 
между ионными формами субстратов VO2+, [VO(H2O)4]2+, [VO(H2O)4]2+ и реагентом FulvAc со-
гласно принципу Пирсона и преимущественно по зарядо-контролируемому механизму [25]. 
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ТАБЛИЦА 1. Параметры реакционной способности 

Соединение EHOMO, эВ ELUMO, эВ ŋ, эВ χ, эВ IЕ, эВ IN, Эв 
FulvAc – 5.77 – 2.63 3.14 4.20 2.81 0.36 
VO2+ – 4.53 – 4.12 0.41 4.33 22.86 0.04 

[VO(H2O)4]2+ – 6.04 – 3.78 2.23 4.91 5.41 0.18 
[VO(H2O)5]2+ – 4.13 – 2.46 1.67 3.30 3.26 0.31 

 
Значения степени переноса заряда, энергии комплексообразования и числа водородных 

связей представлены в табл. 2. Определено, что наиболее энергетически выгодной, конформа-
ционно устойчивой и способной к самосборке флотосистемой “субстрат – реагент” является си-
стема [VO(H2O)4]2+ – (FulvAc), характеризующаяся ∆N — 0.780, Екомп — 233.8 ккал/моль и оп-
тимальным числом водородных связей — 5, что соответствует требованиям к выбору эффек-
тивных реагентов-собирателей для ионной флотации [25]. 

ТАБЛИЦА 2. Рассчитанные параметры реакционной способности возможных систем 
“субстрат – реагент” 

Система 
“субстрат – реагент” ∆N Екомп, ккал/моль Число водородных 

связей 
(VO)2+

 – (FulvAc) 0.048 – 205.6 3 
[VO(H2O)4

2+
 – (FulvAc) 0.780 – 233.8 5 

[VO(H2O)5]2+
 – (FulvAc) 0.612 – 218.5 4 

 
Фрагмент пространственной структуры энергетически наиболее выгодной и устойчивой 

конформации комплекса [VO(H2O)4]2+ – (FulvAc) представлен на рис. 4. Хорошо просматрива-
ются пять водородных связей, вносящих значительный вклад в образование прочного металло-
комплекса и подтверждающих предварительную прогнозную оценку выбора реагента FulvAc. 
Длины водородных связей составляют 3.268; 2.819; 3.205; 3.410; 2.352 Å соответственно, моле-
кулярная масса комплекса — 717.436 г/моль. 

Малорастворимый металлокомплекс фульвата ванадила образуется по следующей схеме: 
 [VO(H2O)4]2+ + 2(FulvAc) + 6H2O → [VO(H2O)4] – (FulvAc)2↓ + 2H9O4+. 

 
Рис. 4. Пространственная структура комплекса [VO(H2O)4] – (FulvAc) 

Для изучения флотационной активности FulvAc по отношению к ванадию проведено лабо-
раторное тестирование. Исследовалось влияние расхода реагента — раствора фульвовой кис-
лоты с концентрацией 50 г/л и времени флотации на извлечение ванадийсодержащего продукта 
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в “пенку”. В работе использовались модельные растворы, содержащие ионы VO2+ c концентра-
цией 5·10–3 г/л. Время флотации варьировалось от 2 до 10 мин, расход реагента составил  
от 0.1 до 1.0 г/м3. 

Флотационное извлечение ванадия осуществлялось методом напорной флотации. Получе-
ние пузырьков воздуха в напорном флотаторе достигалось с помощью специального сатурато-
ра, наполненного водой. Сатуратор оснащался поршневым насосом для поддержания давления 
воздуха в нем на уровне 5.5 – 6.0 атм, а также прибором для отслеживания давления. 

Перемешивание исследуемых остаточных электролизных растворов после обработки их 
реагентом и водовоздушной смесью проводили в делительной воронке вместимостью 2 дм3. 
Последующее перемешивание пузырьками воздуха при декомпрессии водовоздушной смеси 
пульпы приводит к флотации твердой массы и уплотнению образующегося ванадиевого 
продукта. 

Полученный фульват ванадила осторожно снимали скребком и направляли в специальную 
накопительную емкость. Контролировали объем и рН водной фазы. Образованный труднорас-
творимый осадок направляли на химический анализ. Полученные результаты эксперимента 
представлены на рис. 5. Согласно зависимостям, отображенным на рис. 5а, максимальные по-
казатели извлечения ванадия составили 92.05 % при расходе реагента 0.5 г/м3 и времени флота-
ции 10 мин. Полученный металлокомплекс фульвата ванадила предлагается применять в каче-
стве комплексной минеральной добавки в почвогрунты для нужд городского озеленения. 

 
Рис. 5. Влияние расхода реагента на извлечение ванадия (а) и содержание ванадия (б) 

Установлено, что ионы ванадила VO2+ обладают цитопротекторными свойствами при вза-
имодействии с клетками растений, страдающих от окислительного стресса [32]. Доказано, что 
обработка комплексами с ванадил-ионами может быть использована для предотвращения 
накопления отдельных токсичных микроэлементов, таких как свинец и ртуть [33], и оказывать 
положительное влияние на рост растений в неблагоприятных условиях. Согласно [34], фульво-
вая кислота является хорошим синергетическим агентом при внесении комплексных мине-
ральных добавок и легко усваивается растениями, которые равномерно распределяют мине-
ральные ионы в растительных тканях. 

ВЫВОДЫ 

Научно обоснован прогнозный выбор эффективного реагента-собирателя фульвовой кис-
лоты FulvAc для селективного извлечения ванадия в виде ванадил-катиона VO2+ из кислых 
продуктивных растворов методом напорной флотации. 
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Предложен новый хелатобразующий реагент-собиратель FulvAc класса гуматов, имеющий 
оптимальный набор параметров реакционной способности для выделения и концентрирования 
ценного компонента ванадия из кислых продуктивных растворов по зарядо-контролируемому 
механизму действия. Проведено компьютерное моделирование CCDC образования флотацион-
ных систем фульвата ванадила с использованием программного обеспечения. Определено, что 
наиболее энергетически выгодные и конформационно устойчивые системы имеют состав 
[VO(H2O)4]2+ – (FulvAc). 

Экспериментальными исследованиями установлено, что при расходе фульвовой кислоты 
0.5 г/м3 и времени проведения процесса напорной флотации 10 мин извлекается до 92.05 % ва-
надия. Полученный фульват ванадила [VO2+ – FulvAc]n рекомендуется использовать в качестве 
комплексных минеральных добавок в удобрительные смеси почвогрунтов для нужд городского 
озеленения. 
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