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Решается задача о вынужденных изгибных колебаниях стержня-полосы с двумя консо-
лями и закрепленным участком конечной длины на одной из лицевых поверхностей. Для
описания процессов деформирования консолей используется модель Тимошенко без уче-
та поперечного обжатия, закрепленного участка — такая же модель деформирования
с учетом поперечного обжатия, модифицированная за счет учета наличия неподвиж-
ного закрепленного участка. Сформулированы условия кинематического сопряжения
консолей и закрепленного участка. На основе вариационного принципа Гамильтона —
Остроградского сформулированы уравнения движения и граничные условия, а также
силовые условия сопряжения участков стержня. Получены точные аналитические ре-
шения уравнений движения при воздействии гармонической поперечной силы на конце
одной из консолей стержня. Проведены численные эксперименты, в которых исследова-
лось прохождение резонансных колебаний через закрепленный участок конечной длины
в стержнях, выполненных из дюралюминия и волокнистого композита, с учетом и без
учета поперечного обжатия закрепленного участка. Обнаружено значительное увеличе-
ние амплитуды колебаний конца ненагруженной консоли дюралюминиевого стержня за
счет поперечного обжатия закрепленного участка. Для композитного стержня ампли-
туда колебаний увеличилась незначительно.

Ключевые слова: колебания, стержень-полоса, закрепленный участок конечной дли-
ны, сдвиговая модель Тимошенко, поперечное обжатие

Введение. В настоящее время для экспериментального определения демпфирующих
характеристик материалов в диапазоне частот 50÷ 5000 Гц рекомендуется использовать
стандарт испытаний ASTM E-756-05 [1], в соответствии с которым исследуются спектры
резонансных режимов изгибных колебаний консольно закрепленных образцов с различной

структурой в указанном диапазоне частот (рис. 1,а).
В работах [2, 3] предложена методика определения демпфирующих свойств материалов

в низкочастотном диапазоне, основанная на исследовании затухающих изгибных колеба-
ний образцов по первой моде. Использовались образцы значительной длины (рис. 1,б), что
позволяет в достаточно широком диапазоне изменять длину испытываемой консоли a1,
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Рис. 1. Схемы закрепления образцов в экспериментах при воздействии осцил-
лирующей нагрузки:
а — стержень-полоса с одной консолью, б — стержень-полоса с двумя консолями; 1 —
образец, 2 — жесткие опорные элементы

а следовательно, и частоту первого тона ее изгибных колебаний. В соответствии с предло-
женной методикой консоль образца длиной a1 при испытании подвергалась воздействию

статически приложенной нагрузки P (см. рис. 1,б), после снятия которой образец совер-
шал затухающие изгибные колебания по первой моде. Обработка виброграмм затухающих
колебаний образцов при различных значениях длины a1 (частоты собственных колебаний)
позволяет определить параметры демпфирования материалов в зависимости от частоты

колебаний и амплитуды изгибных деформаций [2, 3]. С использованием предлагаемой ме-
тодики можно уменьшить количество испытываемых образцов и, как следствие, обеспе-
чить стабильность свойств испытываемых материалов в одном образце.

Следует отметить, что при проведении испытаний при различной длине правой консо-
ли образца длиной a1 (см. рис. 1,б) обнаружено не описанное ранее явление прохождения
колебаний в левую консоль длиной a2 через участок жесткого соединения образца с его

опорными элементами. Так, при кратных отношениях квадратов длин консолей a2
1/a

2
2,

что соответствует кратным отношениям собственных частот колебаний консолей f2/f1,
динамическое возбуждение изгибных колебаний правой консоли вызывает гармонические

изгибные колебания левой консоли (см. рис. 1,б). Данное явление в предположении боль-
шой жесткости и неподвижности опорного элемента можно объяснить лишь податливо-
стью закрепленного участка образца (стержня), имеющего, как правило, большую длину.

При постановке и решении задач механики деформирования тонкостенных элемен-
тов конструкций реальные условия их закрепления на опорных элементах обычно заменя-
ются условиями шарнирного опирания или жесткого защемления (см., например, [4–8]),
что вносит погрешность в решения данных задач. В работах [9–12] с использованием
результатов проведенных экспериментальных исследований [9] показано, что при теоре-
тическом исследовании наблюдаемого в экспериментах явления прохождения вибраций

через закрепленные участки конечных размеров в многоопорных неразрезных стержнях

необходимо учитывать деформируемость данных участков. При проведении теоретиче-
ских исследований предполагалось, что прохождение изгибных колебаний через закреп-
ленный участок конечной длины осуществляется за счет перехода изгибного напряженно-
деформированного состояния динамически нагруженного участка стержня в состояние с

продольными поперечно-сдвиговыми колебаниями закрепленного участка, а затем в состо-
яние с изгибными колебаниями соседнего участка.
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Рис. 2. Схема нагружения и закрепления стержня-полосы:
0 — закрепленный участок, 1 — нагружаемая консоль, 2 — свободная консоль

Соединение тонкостенных элементов с другими элементами конструкции или с ее

опорными узлами обычно осуществляется внахлест на одной из лицевых поверхностей.
Как правило, такое соединение применяется для тонкостенных элементов, выполненных из
композитных материалов, разрушение которых происходит в основном за счет напряжений
поперечного сдвига. В работе [13] проведено исследование статического деформирования
стержня-полосы, выполненного из однонаправленного волокнистого композита на осно-
ве углеродного волокна марки ЭЛУР-П и связующего ХТ-118, с закрепленным участком
конечной длины на одной из лицевых поверхностей. Показано, что максимальное напря-
жение поперечного сдвига возникает в сечении, расположенном на закрепленном участке
стержня, непосредственно в зоне сопряжения его с незакрепленным участком, причем это
напряжение почти в семь раз превышает значение, полученное без учета податливости
закрепленного участка стержня.

Теоретические исследования динамического деформирования тонкостенных элементов

конструкций с учетом податливости закрепленных участков конечной длины на одной из

лицевых поверхностей проведены в работах [10–12], в которых для описания процессов
деформирования данных элементов (плоских стержней) используется сдвиговая модель
Тимошенко, основанная на линейной аппроксимации тангенциальных перемещений по по-
перечной координате, когда прогиб считается не зависящим от этой координаты. Данная
модель позволяет выявить прохождение вибраций через закрепленный участок конечной

длины лишь в стержнях, выполненных из однонаправленно армированных волокнистых
композитных материалов, характеризующихся малой жесткостью на сдвиг; в стержнях из
металлических конструкционных материалов отмеченное явление удается выявить лишь

в случае малой длины закрепленного участка, в то время как в экспериментах оно наблю-
дается и в случае закрепленных участков достаточно большой длины.

В настоящей работе, в отличие от [10–12], для закрепленного участка стержня пред-
лагается использовать модель Тимошенко [14–18] с учетом поперечного обжатия (модель
первого порядка точности), модифицированную за счет выполнения условий неподвижно-
сти точек лицевой поверхности на закрепленном участке.

1. Основные соотношения. Рассмотрим тонкостенный элемент конструкции в ви-
де стержня-полосы (рис. 2), закрепленный на абсолютно жестком опорном элементе на
поверхности z = −t/2 и нагруженный в сечении x = a1 внешней гармонической силой

P = P̃ eiωτ (i — мнимая единица; τ — время) с амплитудой P̃ и круговой частотой ω.

В работах [10–12] для перемещений U (0), W (0) произвольной точки закрепленного

участка рассматриваемого стержня-полосы принималась простейшая аппроксимация, по-
строенная на основе сдвиговой модели Тимошенко:

U (0) = (1 + 2z/t)u(0), W (0) = w(0) = 0, −l 6 x 6 0, (1.1)



184 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2024. Т. 65, N-◦ 1

где u(0), w(0) — осевые перемещения и прогибы средней линии Ox данного участка со-
ответственно. Однако, как показали численные эксперименты, для стержней из метал-
лических конструкционных материалов с модулями упругости при растяжении-сжатии и
сдвиге E1, G13, связанными зависимостью G13 = E1/[2(1+ν13)] (ν13 — коэффициент Пуас-
сона), модель (1.1) при больших значениях безразмерного параметра k2 = 3G13l

2/(E1t
2)

является жесткой, что не позволяет описать с приемлемой точностью переход изгибных

форм движения, возбуждаемых на незакрепленном участке 1 стержня, через закрепленный
участок 0 в изгибные колебания незакрепленного участка 2 стержня.

С учетом сказанного выше вместо (1.1) предлагается использовать уточненную мо-
дель, учитывающую поперечное обжатие стержня на закрепленном участке:

U (0) = u(0) + zγ(0), W (0) = w(0) + zϕ(0), −l 6 x 6 0 (1.2)

(γ(0), ϕ(0) — угол поворота поперечного сечения и функция, учитывающая поперечное
обжатие закрепленного участка, соответственно). Если на закрепленном участке −l 6
x 6 0 в точках граничной плоскости z = −t/2 на перемещения U (0) и W (0) наложить

кинематические ограничения U (0)(x, z) = 0, W (0)(x, z) = 0 (z = −t/2), то из (1.2) следуют
уравнения связи

γ(0) = 2u(0)/t, ϕ(0) = 2w(0)/t. (1.3)

Подставляя (1.3) в модель (1.2), получаем зависимости

U (0) = (1 + 2z/t)u(0), W (0) = (1 + 2z/t)w(0), (1.4)

которым в геометрически линейном приближении соответствуют деформации

ε
(0)
x = (1 + 2z/t)u

(0)
,x , ε

(0)
z = (2/t)w(0),

γ
(0)
xz = U

(0)
,z + W

(0)
,x = (2/t)u(0) + (1 + 2z/t)w

(0)
,x .

(1.5)

Здесь нижние индексы x, z после запятой означают дифференцирование по соответству-
ющей координате. С учетом (1.5) при использовании соотношений обобщенного закона
Гука

σ
(0)
x = Ē1(ε

(0)
x + ν31ε

(0)
z ), σ

(0)
z = Ē3(ε

(0)
z + ν13ε

(0)
x ), σ

(0)
xz = G13γ

(0)
xz ,

где

Ē1 = E1/(1− ν13ν31), Ē3 = E3/(1− ν13ν31), E1ν31 = E3ν13,

получаем зависимости для напряжений

σ
(0)
x = Ē1

[(
1 +

2z

t

)
u

(0)
,x +

2ν31

t
w(0)

]
, σ

(0)
z = Ē3

[2

t
w(0) + ν13

(
1 +

2z

t

)
u

(0)
,x

]
,

σ
(0)
xz = G13

[(
1 +

2z

t

)
w

(0)
,x +

2

t
u(0)

]
.

(1.6)

Для перемещений U (k), W (k) (k = 1, 2) точек незакрепленных участков стержня, как
и в [10–12], принимаются зависимости, аналогичные представлениям (1.2), но без учета
поперечного обжатия:

U (1) = u(1) + zγ(1), W (1) = w(1), 0 6 x 6 a1,

U (2) = u(2) + zγ(2), W (2) = w(2), −b 6 x 6 −l.

(1.7)
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Здесь u(k), w(k), γ(k) (k = 1, 2) — осевые перемещения и прогибы средней линииOx, а также
углы поворота поперечных сечений соответствующих участков стержня. В соответствии
с (1.7) в случае малых перемещений имеют место кинематические соотношения

ε
(1)
x = u

(1)
,x + zγ

(1)
,x , γ

(1)
xz = w

(1)
,x + γ(1), 0 6 x 6 a1,

ε
(2)
x = u

(2)
,x + zγ

(2)
,x , γ

(2)
xz = w

(2)
,x + γ(2), −b 6 x 6 −l,

(1.8)

которым соответствуют нормальные и касательные напряжения

σ
(1)
x = E1(u

(1)
,x + zγ

(1)
,x ), σ

(1)
xz = G13(w

(1)
,x + γ(1)), 0 6 x 6 a1,

σ
(2)
x = E1(u

(2)
,x + zγ

(2)
,x ), σ

(2)
xz = G13(w

(2)
,x + γ(2)), −b 6 x 6 −l.

(1.9)

Налагая на функции (1.4), (1.7) условия непрерывности перемещений в сечениях x = 0
и x = −l, записываемые в виде

U (1)
∣∣
x=0

= U (0)
∣∣
x=0

, W (1)
∣∣
x=0

= W (0)
∣∣
x=0

,

U (2)
∣∣
x=−l

= U (0)
∣∣
x=−l

, W (2)
∣∣
x=−l

= W (0)
∣∣
x=−l

,

и приравнивая соответствующие коэффициенты при одинаковых степенях z, получаем
кинематические условия сопряжения участков

u(1)
∣∣
x=0

= u(0)
∣∣
x=0

, w(1)
∣∣
x=0

= w(0)
∣∣
x=0

, γ(1)
∣∣
x=0

=
2

t
u(0)

∣∣
x=0

,

u(2)
∣∣
x=−l

= u(0)
∣∣
x=−l

, w(2)
∣∣
x=−l

= w(0)
∣∣
x=−l

, γ(2)
∣∣
x=−l

=
2

t
u(0)

∣∣
x=−l

.

(1.10)

2. Построение уравнений движения стержня. При действии на стержень внеш-
ней поперечной силы P = P̃ eiωτ можно записать вариационное уравнение Гамильтона —
Остроградского

τ2∫
τ1

( 2∑
j=0

δΠ(j) −
2∑

j=0

δK(0) − δA
)

dτ = 0, (2.1)

где δΠ(j), δK(j) (j = 0, 1, 2) — вариации потенциальной энергии деформации и кинетиче-
ской энергии соответствующих участков стержня (см. рис. 1), имеющие вид

δΠ(0) =

0∫
−l

t/2∫
−t/2

(
σ

(0)
x δε

(0)
x + σ

(0)
z δε

(0)
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)
dz dx,
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a1∫
0
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(
σ

(1)
x δε

(1)
x + σ

(1)
xz δγ

(1)
xz

)
dz dx,

δΠ(2) =

−l∫
−b

t/2∫
−t/2

(
σ

(2)
x δε

(2)
x + σ

(2)
xz δγ

(2)
xz

)
dz dx,

δK(0) = ρ

0∫
−l

t/2∫
−t/2

(
Ü (0) δU (0) + Ẅ (0) δW (0)

)
dz dx,

(2.2)
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δK(1) = ρ

a1∫
0

t/2∫
−t/2

(
Ü (1) δU (1) + Ẅ (1) δW (1)

)
dz dx,

δK(2) = ρ

−l∫
−b

t/2∫
−t/2

(
Ü (2) δU (2) + Ẅ (2) δW (2)

)
dz dx,

δA — вариация работы силы P , определяемая выражением

δA = P δw(1)
∣∣
x=a1

, (2.3)

ρ — плотность материала стержня.
С учетом зависимостей (1.4)–(1.9) выражения (2.2) после нахождения определенных

интегралов по переменной z можно привести к виду

δΠ(0) =

0∫
−l

(
T

(0)
x δu

(0)
,x + T

(0)
z δw(0) + N

(0)
xz δw

(0)
,x + T

(0)
xz δu(0)

)
dx,

δΠ(1) =

a1∫
0

[
T

(1)
x δu

(1)
,x + M

(1)
x δγ

(1)
,x + T

(1)
xz (δw

(1)
,x + δγ(1))

]
dx,

δΠ(2) =

−l∫
−b

[
T

(2)
x δu

(2)
,x + M

(2)
x δγ

(2)
,x + T

(2)
xz (δw

(2)
,x + δγ(2))

]
dx,

δK(0) =
4ρt

3

0∫
−l

(
ü(0) δu(0) + ẅ(0) δw(0)

)
dx,

(2.4)

δK(1) = ρt

a1∫
0

(
ü(1) δu(1) + ẅ(1) δw(1) +

t2

12
γ̈(1) δγ(1)

)
dx,

δK(2) = ρt

−l∫
−b

(
ü(2) δu(2) + ẅ(2) δw(2) +

t2

12
γ̈(2) δγ(2)

)
dx,

где

T
(0)
x =

t/2∫
−t/2

σ
(0)
x

(
1 +

2z

t

)
dz = Ē1

(4t

3
u

(0)
,x + 2ν31w

(0)
)
,

T
(0)
z =

t/2∫
−t/2

2

t
σ

(0)
z dz = Ē3

(4

t
w(0) + 2ν31u

(0)
,x

)
,

N
(0)
xz =

t/2∫
−t/2

σ
(0)
xz

(
1 +

2z

t

)
dz = G13

(4t

3
w

(0)
,x + 2u(0)

)
,

(2.5)
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T
(0)
xz =

t/2∫
−t/2

2

t
σ

(0)
xz dz = 2G13

(
w

(0)
,x +

2

t
u(0)

)
;

T
(k)
x = Bu

(k)
,x , M

(k)
x = Dγ

(k)
,x , T

(k)
xz = B13(w

(k)
,x + γ(k)), k = 1, 2,

B = E1t, B13 = G13t, D = E1t
3/12.

(2.6)

Подставляя затем соотношения (2.3), (2.4) в вариационное уравнение (2.1) и используя

кинематические условия сопряжения (1.10), в силу независимости вариаций δu(j), δw(j)

(j = 0, 1, 2), δγ(1), δγ(2) и отличия их от нуля получаем уравнения движения закрепленного

участка

T
(0)
x,x − T

(0)
xz −

4ρt

3
ü(0) = 0, N

(0)
xz,x − T

(0)
z − 4ρt

3
ẅ(0) = 0, −l 6 x 6 0, (2.7)

уравнения движения консолей стержня

T
(1)
,x − ρtü(1) = 0, M

(1)
,x − T

(1)
xz −

ρt3

12
γ̈(1) = 0,

T
(1)
xz,x − ρtẅ(1) = 0, 0 6 x 6 a1,

T
(2)
,x − ρtü(2) = 0, M

(2)
,x − T

(2)
xz −

ρt3

12
γ̈(2) = 0,

(2.8)

T
(2)
xz,x − ρtẅ(2) = 0, −b 6 x 6 −l,

а также граничные условия

T
(1)
x

∣∣
x=a1

= 0, M
(1)
x

∣∣
x=a1

= 0, T
(1)
xz

∣∣
x=a1

= P,

T
(1)
x

∣∣
x=−b

= 0, M
(2)
x

∣∣
x=−b

= 0, T
(2)
xz

∣∣
x=−b

= 0

(2.9)

и силовые условия сопряжения участков(
T

(0)
x − T

(1)
x − 2

t
M

(1)
x

)∣∣∣
x=0

= 0, (N
(0)
xz − T

(1)
xz )

∣∣
x=0

= 0,(
T

(0)
x − T

(2)
x − 2

t
M

(2)
x

)∣∣∣
x=−l

= 0, (N
(0)
xz − T

(2)
xz )

∣∣
x=−l

= 0.

(2.10)

3.Построение аналитического решения задачи о вынужденных колебаниях.
С использованием соотношений упругости (2.5), а также представлений

u(0)(x, τ) = ũ(0)(x) eiωτ , w(0)(x, τ) = w̃(0)(x) eiωτ (3.1)

уравнения (2.7) для закрепленного участка стержня можно привести к виду

ũ
(0)
,xx − r̃0ũ

(0) − r̃1w̃
(0)
,x = 0, w̃

(0)
,xx − r̃2w̃

(0) − r̃3ũ
(0)
,x = 0, (3.2)

где

r̃0 =
3G13

Ē1t2
− ρω2

Ē1
, r̃1 =

3

2t

(G13

Ē1
− ν31

)
, r̃2 =

3Ē3

G13t2
− ρω2

G13
, r̃3 =

3

2t

(Ē3ν13

G13
− 1

)
.

Первое уравнение системы (3.2) тождественно удовлетворяется при введении разре-

шающей функции Φ(0) в виде

ũ(0) = Φ
(0)
,x , w̃(0) = − r̃0

r̃1
Φ(0) +

1

r̃1
Φ

(0)
,xx, (3.3)
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а при подстановке зависимостей (3.3) во второе уравнение системы (3.2) получаем урав-
нение

Φ
(0)
,xxxx − n2Φ

(0)
,xx + n0Φ

(0) = 0, (3.4)

где

n0 = r̃0r̃2 =
(3G13

Ē1t2
− ρω2

Ē1

)( 3Ē3

G13t2
− ρω2

G13

)
,

n2 = r̃2 + r̃0 + r̃3r̃1 =
3Ē3

G13t2
+

3G13

Ē1t2
+

9

4t2

(G13

Ē1
− ν31

)(Ē3ν31

G13
− 1

)
−

( 1

Ē1
+

1

G13

)
ρω2.

Уравнение (3.4) имеет решение

Φ(0) = g
(0)
1 eλ1x + g

(0)
2 eλ2x + g

(0)
3 eλ3x + g

(0)
4 eλ4x =

4∑
j=1

g
(0)
j eλjx, (3.5)

где g
(0)
j (j = 1, 2, 3, 4) — постоянные интегрирования; λ1, λ2, λ3, λ4 — корни характери-

стического уравнения для (3.4):

λ1 =
(
n2/2 +

√
n2

2/4− n0

)1/2
, λ2 = −

(
n2/2 +

√
n2

2/4− n0

)1/2
,

λ3 =
(
n2/2−

√
n2

2/4− n0

)1/2
, λ4 = −

(
n2/2−

√
n2

2/4− n0

)1/2
.

В соответствии с (3.3), (3.5) находим функции

ũ(0) =
4∑

j=1

g
(0)
j λj eλjx, w̃(0) =

4∑
j=1

βjg
(0)
j eλjx, (3.6)

где

βj = (−r̃0 + λ2
j)/r̃1. (3.7)

Уравнения (2.8) для консолей стержня с учетом соотношений (2.6) принимают вид

Bu
(k)
,xx − ρtü(k) = 0; (3.8)

Dγ
(k)
,xx −B13(w

(k)
,x + γ(k))− (ρt3/12)γ̈(k) = 0,

B13(w
(k)
,xx + γ

(k)
,x )− ρtẅ(k) = 0, k = 1, 2.

(3.9)

Введем разрешающие функции Φ(k) (k = 1, 2) в соответствии с представлениями

w(k) =
(
− 1 +

D

B13

∂2

∂x2

)
Φ(k), γ(k) = Φ

(k)
,x . (3.10)

Тогда первое уравнение системы (3.9) при подстановке в него (3.10) и в пренебрежении

слагаемым −(ρt3/12)γ̈(k) удовлетворяется тождественно, а второе преобразуется к виду

DΦ
(k)
,xxxx − (ρtD/B13)Φ

(k)
,xx + ρtΦ̈(k) = 0, k = 1, 2. (3.11)

Решения уравнений (3.8), (3.11) будем искать в виде

u(k) = ũ(k) eiωτ , Φ(k) = Φ̃(k) eiωτ . (3.12)
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Введя обозначения

Ω2
u =

ρω2

E1
, r =

D

B13
, Ω2

w =
ρtω2

D
,

представим (3.8), (3.11) в форме

ũ
(k)
,xx + Ω2

uũ(k) = 0; (3.13)

Φ̃
(k)
,xxxx + Ω2

wrΦ̃
(k)
,xx − Ω2

wΦ̃(k) = 0. (3.14)

Полученные уравнения (3.13), (3.14) имеют решения

ũ(k) = g
(k)
5 cos (Ωux) + g

(k)
6 sin (Ωux); (3.15)

Φ̃(k) = g
(k)
1 er1x + g

(k)
2 er2x + g

(k)
3 er3x + g

(k)
4 er4x =

4∑
j=1

g
(k)
j erjx, (3.16)

где g
(k)
1 , . . . , g

(k)
6 (k = 1, 2) — постоянные интегрирования; r1, r2, r3, r4 — корни характе-

ристического уравнения для (3.14):

r1 =
(
− Ω2

wr/2 +
√

Ω4
wr2/4 + Ω2

w

)1/2
, r2 = −

(
− Ω2

wr/2 +
√

Ω4
wr2/4 + Ω2

w

)1/2
,

r3 =
(
− Ω2

wr/2−
√

Ω4
wr2/4 + Ω2

w

)1/2
, r4 = −

(
− Ω2

wr/2−
√

Ω4
wr2/4 + Ω2

w

)1/2
.

При использовании представлений γ(k) = γ̃(k) eiωτ , w(k) = w̃(k) eiωτ в соответствии с (3.10),
(3.12), (3.16) получаем зависимости

γ̃(k) =
4∑

j=1

g
(k)
j rj erjx, w̃(k) =

4∑
j=1

g
(k)
j (−1 + rr2

j ) erjx . (3.17)

Решения уравнений (3.17) будем искать в виде

M
(k)
x = M̃

(k)
x eiωτ , T

(k)
x = T̃

(k)
x eiωτ , T

(k)
xz = T̃

(k)
xz eiωτ , k = 1, 2,

T
(0)
x = T̃

(0)
x eiωτ , N

(0)
xz = Ñ

(0)
xz eiωτ ,

(3.18)

где в соответствии с (2.5), (2.6), (3.6), (3.15), (3.17)

M̃
(k)
x = D

4∑
j=1

g
(k)
j r2

j erjx, T̃
(k)
x = BΩu[−g

(k)
5 sin (Ωux) + g

(k)
6 cos (Ωux)],

T̃
(k)
xz = B13r

4∑
j=1

g
(k)
j r3

j erjx, k = 1, 2, (3.19)

T̃
(0)
x = E∗

1

4∑
j=1

(4t

3
λ2

j + 2ν31βj

)
g
(0)
j eλjx, Ñ

(0)
xz = G13

4∑
j=1

(4t

3
βj + 2

)
g
(0)
j λj eλjx .

Налагая на (3.18) условия (2.10), с учетом выражений (3.19) получаем четыре алгебраи-
ческих уравнения

Ē1

4∑
j=1

(4t

3
λ2

j + 2ν31βj

)
g
(0)
j −BΩug

(1)
6 − 2

t
D

4∑
j=1

g
(1)
j r2

j = 0,
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G13

4∑
j=1

(4t

3
βj + 2

)
g
(0)
j λj −B13r

4∑
j=1

g
(1)
j r3

j = 0,

Ē1

4∑
j=1

(4t

3
λ2

j + 2ν31βj

)
g
(0)
j e−λj l− (3.20)

−BΩu[−g
(2)
5 sin (−Ωul) + g

(2)
6 cos (−Ωul)]− 2

t
D

4∑
j=1

g
(2)
j r2

j e−rj l = 0,

G13

4∑
j=1

(4t

3
βj + 2

)
g
(0)
j λj e−λj l−B13r

4∑
j=1

g
(2)
j r3

j e−rj l = 0.

С учетом схемы закрепления и нагружения стержня (см. рис. 2) к силовым условиям
сопряжения участков (2.10) необходимо добавить шесть силовых граничных условий (2.9),
которые с учетом (3.18), (3.19) добавляют к четырем уравнениям (3.20) еще шесть алгеб-
раических уравнений

−g
(1)
5 sin (Ωua1) + g

(1)
6 cos (Ωua1) = 0,

4∑
j=1

g
(1)
j r2

j erja1 = 0,

B13r
4∑

j=1

g
(1)
j r3

j erja1 = P̃ , −g
(2)
5 sin (−Ωub) + g

(2)
6 cos (−Ωub) = 0, (3.21)

4∑
j=1

g
(2)
j r2

j e−rjb = 0,
4∑

j=1

g
(2)
j r3

j e−rjb = 0.

Наконец, для определения 16 постоянных интегрирования g
(k)
5 , g

(k)
6 (k = 1, 2), g

(q)
j

(j = 1, 2, 3, 4; q = 0, 1, 2) к 10 уравнениям (3.20), (3.21) добавляются еще шесть уравнений,
полученных из (1.10) с использованием соотношений (3.6), (3.7), (3.15), (3.17):

4∑
j=1

g
(0)
j − g

(1)
5 = 0,

4∑
j=1

βjg
(0)
j −

4∑
j=1

g
(1)
j (−1 + rr2

j ) = 0,

2

t

4∑
j=1

g
(0)
j λj −

4∑
j=1

g
(1)
j rj = 0,

4∑
j=1

g
(0)
j λj e−λj l−g

(2)
5 cos (−Ωul)− g

(2)
6 sin (−Ωul) = 0, (3.22)

4∑
j=1

βjg
(0)
j e−λj l−

4∑
j=1

g
(1)
j (−1 + rr2

j ) e−rj l = 0,

2

t

4∑
j=1

g
(0)
j λj e−λj l−

4∑
j=1

g
(2)
j rj e−rj l = 0.
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Та бли ц а 1
Механические характеристики материалов

Материал E1, ГПа E3, ГПа G13, ГПа ν13 δ1 δ3 δ13 ρ, кг/м3

Д16АТ 55,4 55,4 21,3 0,30 0,005 0,005 0,002 2770
Композит 100,0 5,7 1,0 0,34 0,050 0,050 0,100 1500

Полученные функции (3.6), (3.17) с учетом найденных из системы уравнений

(3.20)–(3.22) постоянных интегрирования g
(k)
5 , g

(k)
6 (k = 1, 2), g

(q)
j (j = 1, 2, 3, 4; q = 0, 1, 2) и

зависимостей (1.5), (1.6) полностью определяют напряженно-деформированное состояние
закрепленного и незакрепленных участков рассматриваемого стержня (см. рис. 2).

Однако следует заметить, что разработанная методика решения задачи о вынужден-
ных колебаниях стержня не учитывает демпфирующие свойства материала и поэтому

позволяет получить корректное решение только при частотах, находящихся вдали от ре-
зонансной зоны, в то время как прохождение колебаний через закрепленный участок стерж-
ня обычно наблюдается в резонансных режимах нагружения, при которых демпфирующие
свойства материала необходимо учитывать [19]. При использовании гармонического зако-
на деформирования стержня можно получить корректное решение с помощью известной

гипотезы комплексного внутреннего трения [20–22], заменяя модули упругости E1, E3, G13

материала их комплексными аналогами

E∗
1 = E1 + i

E1δ1

π
, E∗

3 = E3 + i
E3δ3

π
, G∗

13 = G13 + i
G13δ13

π
,

где δ1, δ3, δ13 — логарифмические декременты колебаний материала при растяжении-
сжатии в направлениях осей Ox, Oz и при сдвиге в плоскости Oxz соответственно.

4. Численные эксперименты и обсуждение полученных результатов. Иссле-
довалось прохождение колебаний в ненагруженную консоль стержня-полосы через закреп-
ленный участок конечной длины l при действии гармонической силы P = P̃ eiωτ (см. рис. 2)
с амплитудой P̃ и круговой частотой ω = ω1 (ω1 — низшая частота свободных колебаний

стержня). Геометрические параметры стержня имели следующие значения: a1 = 180 мм,
a2 = b − l = 300 мм (длина ненагруженной консоли), t = 2,9 мм. Длина закрепленного
участка варьировалась в диапазоне l = 25÷ 15 мм. Амплитуда вынуждающей силы равна
P̃ = 2150 Н/м (на единицу ширины стержня).

Рассматривались два материала: дюралюминий марки Д16АТ и однонаправленный
волокнистый композит на основе углеродного волокна марки ЭЛУР-П и связующего

ХТ-118. В табл. 1 приведены механические характеристики данных материалов. В ка-
честве модулей E1, E3 дюралюминия в табл. 1 указаны динамические модули упругости,
взятые из работы [23], G13 = E1/[2(1 + ν13)].

В табл. 2 приведены низшие циклические частоты f1 = ω1/(2π) колебаний дюра-

люминиевого стержня и амплитуды колебаний w̃(1)(a1), w̃(2)(−b) концов нагруженной и
ненагруженной консолей соответственно в зависимости от длины l закрепленного участ-
ка, полученные с учетом поперечного обжатия этого участка стержня. Для сравнения
приведены значения f∗1 , w̃(1)∗(a1), w̃(2)∗(−b), найденные без учета поперечного обжатия
закрепленного участка с использованием методики, изложенной в работах [10, 12]. Часто-
ты f∗1 определялись в результате модального анализа конечно-элементной модели стерж-
ня методом итераций в подпространстве [24] при моделировании стержня одномерными
конечными элементами [11] в рамках модели Тимошенко. Влияние поперечного обжатия
закрепленного участка стержня на прохождение колебаний в ненагруженную консоль оце-
нивалось отношением k = w̃(2)(−b)/w̃(2)∗(−b).
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Та бли ц а 2
Низшие циклические частоты и амплитуды колебаний стержня из дюралюминия

l, мм
С учетом поперечного обжатия Без учета поперечного обжатия

k
f1, Гц w̃(1)(a1), мм w̃(2)(−b), мм f∗

1 , Гц w̃(1)∗(a1), мм w̃(2)∗(−b), мм

25,0 23,145 43,146 −0,326 23,173 43,012 −0,111 2,937
22,5 23,145 43,146 −0,780 23,173 43,012 −0,281 2,776
20,0 23,145 43,146 −1,862 23,173 43,012 −0,708 2,630
17,5 23,145 43,146 −4,448 23,173 43,012 −1,787 2,489
15,0 23,145 43,146 −10,626 23,173 43,012 −4,510 2,356

Та бли ц а 3
Низшие циклические частоты и амплитуды колебаний стержня из композитного материала

l, мм
С учетом поперечного обжатия Без учета поперечного обжатия

k
f1, Гц w̃(1)(a1), мм w̃(2)(−b), мм f∗

1 , Гц w̃(1)∗(a1), мм w̃(2)∗(−b), мм

60 41,237 25,534 −11,586 41,286 25,479 −10,768 1,071
50 41,233 25,540 −21,052 41,282 25,483 −19,591 1,075
40 41,219 25,564 −38,396 41,269 25,497 −35,497 1,082

Частоты f1 с учетом поперечного обжатия закрепленного участка получены путем

незначительного уменьшения соответствующих частот f∗1 до достижения максимального

по модулю значения w̃(2)(−b) (уменьшение значений f1 по сравнению с f∗1 обусловлено
некоторым увеличением податливости закрепленного участка за счет учета его попереч-
ного обжатия).

Из табл. 2 следует, что значения f1, w̃(1)(a1), f∗1 и w̃(1)∗(a1) практически не зависят

от длины l закрепленного участка стержня, а значения w̃(2)(−b) и w̃(2)∗(−b) при умень-

шении l по модулю существенно увеличиваются. При этом амплитуды прогибов w̃(2)(−b)
по модулю значительно (более чем в два раза) превышают соответствующие амплиту-

ды w̃(2)∗(−b), что свидетельствует о более существенном увеличении амплитуды колеба-
ний, проходящих в ненагруженную консоль, при учете поперечного обжатия закрепленного
участка стержня.

В табл. 3 приведены значения тех же величин, что и в табл. 2, полученные для ком-
позитного стержня при l = 60 ÷ 40 мм. Из табл. 3 следует, что при уменьшении длины
закрепленного участка от значения l = 60 мм до значения l = 40 мм частоты f1, f∗1 и

амплитуды w̃(1)(a1), w̃(1)∗(a1) практически не меняются, а амплитуды колебаний w̃(2)(−b)

и w̃(2)∗(−b) по модулю значительно увеличиваются и превышают соответствующие зна-
чения для дюралюминиевого стержня (см. табл. 2). Этот результат можно объяснить до-
статочно малым значением модуля сдвига G13 для однонаправленного волокнистого ком-
позита, что приводит к увеличению податливости закрепленного участка стержня при

действии сдвиговых напряжений σ
(0)
xz . Однако влияние поперечного обжатия закрепленно-

го участка композитного стержня на прохождение колебаний в ненагруженную консоль,
оцениваемое, как и выше, отношением k = w̃(2)(−b)/w̃(2)∗(−b), оказывается незначитель-
ным.

На рис. 3, 4 приведены амплитуды нормальных напряжений σ̃
(0)
x , σ̃

(1)
x , σ̃

(2)
x на поверх-

ности z = t/2 и амплитуды касательных напряжений σ̃
(0)
xz , σ̃

(1)
xz , σ̃

(2)
xz (σ̃

(1)
xz , σ̃

(2)
xz не зависят

от z, а σ̃
(0)
xz зависит от z и получена при z = t/2) на участках 0, 1, 2 дюралюминиевого

стержня, найденные при l = 20 мм с учетом и без учета поперечного обжатия закреп-
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Рис. 3. Амплитуды нормальных напряжений σ̃
(0)
x , σ̃

(1)
x , σ̃

(2)
x на поверхности

z = t/2 с учетом (а) и без учета (б) поперечного обжатия закрепленного участка
дюралюминиевого стержня при l = 20 мм:
0 — σ̃

(0)
x , 1 — σ̃

(1)
x , 2 — σ̃

(2)
x
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Рис. 4. Амплитуды касательных напряжений σ̃
(0)
xz , σ̃

(1)
xz , σ̃

(2)
xz с учетом (а) и

без учета (б) поперечного обжатия закрепленного участка дюралюминиевого
стержня при l = 20 мм:
0 — σ̃

(0)
xz , 1 — σ̃

(1)
xz , 2 — σ̃

(2)
xz

ленного участка. На рис. 5, 6 приведены амплитуды тех же напряжений в композитном
стержне при l = 50 мм, найденные с учетом и без учета поперечного обжатия указанного
участка стержня.

Из рис. 3, 4 следует, что при переходе через границу между нагруженной консолью и
закрепленным участком конечной длины наблюдаются значительное изменение парамет-
ров напряженно-деформированного состояния дюралюминиевого стержня и локализация
напряжений вблизи сечения x = 0 закрепленного участка. При этом амплитуды напря-

жений σ̃
(1)
x в сечении x = 0, полученные с учетом поперечного обжатия закрепленного

участка стержня (см. рис. 3,а), практически совпадают с амплитудами соответствующих
напряжений, найденных без учета поперечного обжатия указанного участка стержня (см.

рис. 3,б), а амплитуды напряжений σ̃
(0)
x в том же сечении с учетом поперечного обжа-

тия (см. рис. 3,а) по модулю приблизительно на 12 % больше амплитуд, найденных без
учета поперечного обжатия (см. рис. 3,б). Распределения амплитуд касательных напряже-
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Рис. 5. Амплитуды нормальных напряжений σ̃
(0)
x , σ̃

(1)
x , σ̃

(2)
x на поверхности

z = t/2 с учетом (а) и без учета (б) поперечного обжатия закрепленного участка
композитного стержня при l = 50 мм:
0 — σ̃

(0)
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Рис. 6. Амплитуды касательных напряжений σ̃
(0)
xz , σ̃

(1)
xz , σ̃

(2)
xz с учетом (а) и без

учета (б) поперечного обжатия закрепленного участка композитного стержня
при l = 50 мм:
0 — σ̃

(0)
xz , 1 — σ̃

(1)
xz , 2 — σ̃

(2)
xz

ний σ̃
(0)
xz по длине закрепленного участка с учетом (см. рис. 4,а) и без учета (см. рис. 4,б)

его поперечного обжатия количественно и качественно существенно различаются.

Для композитного стержня амплитуды нормальных напряжений σ̃
(0)
x , σ̃

(1)
x , σ̃

(2)
x , по-

лученные с учетом поперечного обжатия закрепленного участка (см. рис. 5,а), практи-
чески совпадают с соответствующими амплитудами напряжений без учета поперечного

обжатия (см. рис. 5,б). При этом амплитуды напряжений σ̃
(2)
x одного порядка с амплиту-

дами σ̃
(1)
x , что соответствует прохождению колебаний в ненагруженную консоль стерж-

ня (см. табл. 3). Распределения амплитуд касательных напряжений σ̃
(0)
xz в композитном

стержне с учетом (см. рис. 6,а) и без учета (см. рис. 6,б) поперечного обжатия закреп-
ленного участка, так же как и в дюралюминиевом стержне, количественно и качественно

существенно различаются. При этом значение σ̃
(0)
xz в сечении x = 0, полученное без уче-

та поперечного обжатия закрепленного участка (см. рис. 6,б), по модулю приблизительно



В. Н. Паймушин, В. М. Шишкин 195

x, ìì

à á

_15_20 _10 _5

0

50

100 30

_50
x, ìì_40_50 _30 _20 _10

10

0

20

_10

sz , ÌÏà(0)sz , ÌÏà(0)

Рис. 7. Амплитуды нормальных напряжений σ̃
(0)
z на оси Ox закрепленного

участка конечной длины l дюралюминиевого (l = 20 мм) (а) и композитного
(l = 50 мм) (б) стержней

в 10 раз превышает амплитуду σ̃
(1)
xz в том же сечении нагруженной консоли. При уче-

те поперечного обжатия закрепленного участка максимальное по модулю значение σ̃
(0)
xz

достигается на незначительном расстоянии от сечения x = 0 (см. рис. 6,а) и превышает

значение σ̃
(1)
xz приблизительно в восемь раз. В обоих случаях (с учетом и без учета попереч-

ного обжатия закрепленного участка) наблюдается существенное изменение параметров
напряженно-деформированного состояния при переходе колебаний через границы x = 0 и
x = −l закрепленного участка стержня (см. рис. 6).

На рис. 7 приведены амплитуды нормальных напряжений σ̃
(0)
z на оси Ox закрепленно-

го участка конечной длины l дюралюминиевого и композитного стержней, обусловленные
поперечным обжатием данного участка. Полученные результаты для амплитуд напря-

жений σ̃
(0)
z соответствуют имеющимся представлениям о характере распределения их по

длине закрепленных участков рассматриваемых дюралюминиевого и композитного стерж-
ней.

Заключение. В работе построены основные соотношения, описывающие процесс де-
формирования стержня-полосы с двумя консолями и закрепленным участком конечной

длины на поверхности z = −t/2 на основе сдвиговой модели Тимошенко с учетом попереч-
ного обжатия закрепленного участка стержня. Сформулированы условия кинематического
сопряжения участков стержня. На основе вариационного принципа Гамильтона — Ост-
роградского построены уравнения движения закрепленного участка и консолей стержня,
сформулированы граничные условия для консолей стержня и силовые условия сопряжения

их с закрепленным участком конечной длины. Получены точные аналитические решения
построенных уравнений движения при воздействии гармонической поперечной силы на

конце одной из консолей стержня.
Проведены численные эксперименты, в которых исследовалось прохождение колебаний

через закрепленный участок конечной длины при резонансе на низшей частоте ω1 в стерж-
нях, выполненных из дюралюминия Д16АТ и однонаправленного волокнистого компози-
та на основе углеродного волокна марки ЭЛУР-П и связующего ХТ-118, при различной
длине закрепленного участка с учетом и без учета его поперечного обжатия. Обнаружено
незначительное уменьшение частоты ω1 и существенное (более чем в два раза) увеличе-
ние амплитуды колебаний конца ненагруженной консоли дюралюминиевого стержня за

счет учета поперечного обжатия закрепленного участка. Для композитного стержня уве-
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личение амплитуды колебаний ненагруженной консоли оказалось незначительным (7–8 %
в зависимости от длины закрепленного участка).

Полученные результаты могут быть использованы при постановке соответствующих

задач механики плоских стержней с закрепленными участками конечной длины с помощью

уточненных моделей деформирования, учитывающих поперечное обжатие.
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