УДК 519.853.32

Невыпуклая минимизация квадратичной функции на шаре

Е.А. Котельников

Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, просп. Акад. М.А. Лаврентьева, 6, Новосибирск, 630090

Котельников Е.А. Невыпуклая минимизация квадратичной функции на шаре // Сиб. журн. вычисл. математики / РАН. Сиб. отд-ние.—Новосибирск, 2015.—Т. 18, № 2.— С. 163–176.

Задача минимизации невыпуклой функции на шаре сводится к последовательности задач минимизации выпуклых ее мажорант на шаре. Для построения мажорант используются представление целевой функции в виде разности выпуклых квадратичных функций и результат решения задачи на предыдущем шаге. Представление целевой функции в виде разности выпуклых квадратичных функций базируется на модифицированной процедуре декомпозиции Холесского симметричной знакопеременной матрицы.

DOI: 10.15372/SJNM20150205

Ключевые слова: квадратичная минимизация на шаре, коллинеарность градиентов, выпуклая мажоранта, разложение Холесского.

Kotel'nikov E.A. Non-convex minimization of a quadratic function on a sphere // Siberian J. Num. Math. / Sib. Branch of Russ. Acad. of Sci. – Novosibirsk, 2015. – Vol. 18, \mathbb{N} 2. – P. 163–176.

The minimization of convex functions on a sphere reduces to a sequence of problems minimizing its convex majorants on a sphere. To build majorants, the representation of the target function as a difference of convex quadratic functions and the solutions of the problem at the previous step is used. Representation of the target function in the form of a difference of convex quadratic functions is based on a modified procedure of decomposition of the Cholesky symmetric alternating-sign matrices.

Keywords: quadratic optimization on sphere, collinearity gradients, convex majorant, Cholesky decomposition.

Введение

Рассматривается задача минимизации квадратичной функции $f(s) = \frac{1}{2}s^{\top}Qs + g^{\top}s$ на шаре $S = \{s \in \mathbb{R}^n : ||s|| \le \delta\}$:

найти
$$\min_{s \in S} f(s),$$
 (1)

где Q — симметричная знакопеременная матрица; $g \in \mathbb{R}^n, g \neq 0$. Здесь и далее $\|\cdot\|$ — евклидова норма.

Сформированная задача является основным элементом метода доверительной области для решения задач безусловной оптимизации [1]. Кроме того, она может быть использована как вспомогательное средство для решения более сложных задач оптимизации, например для решения задачи минимизации квадратичной функции при выпуклых квадратичных ограничениях [2]. Краткий обзор области применения задачи (1) и некоторые подходы ее решения можно найти в [3–5].

Обозначим через h_1, h_2, \ldots, h_n собственные числа матрицы $Q; z_1, z_2, \ldots, z_n$ — соответствующие им собственные векторы. Пусть $h_1 \ge h_2 \ge \cdots \ge h_n$, тогда $h_1 > 0, h_n < 0$.

© Котельников Е.А., 2015

Функция f не имеет безусловного минимума, так как из любой точки $s \in \mathbb{R}^n$ можно найти направление сдвига, вдоль которого функция f убывает. Например, в качестве вектора сдвига можно взять вектор z_n , который ориентирован так, чтобы $\nabla f(s)^{\top} z_n \leq 0$. Тогда при $\lambda > 0$:

$$f(s + \lambda z_n) - f(s) = \lambda \nabla f(s)^{\top} z_n + \frac{1}{2} h_n ||z_n||^2 < 0.$$

Следовательно, любой локальный минимум задачи (1) лежит на поверхности шара S и ее можно заменить на задачу:

найти
$$\min_{\|s\|=\delta} f(s).$$
 (2)

Решением последней задачи будем считать точку глобального минимума, т. е. точку, доставляющую минимальное значение функции f среди всех точек локального минимума.

Если для некоторого числа μ^* точка s^* удовлетворяет условиям:

$$\nabla f(s^*) = \mu^* s^* \tag{3}$$

для некоторого числа μ^* ,

$$\|s^*\| = \delta,\tag{4}$$

$$s^{\top}(Q - \mu^* I)s > 0 \tag{5}$$

для всех s, удовлетворяющих равенству $(s^*)^{\top}s = 0$, то s^* — точка локального минимума функции f на шаре S [6]. Тогда $\mu^* < 0$, так как для любого $s \in S \ \nabla f(s^*)^{\top}(s-s^*) > 0$ и $(s^*)^{\top}(s-s^*) < 0$. Кроме того, точка s^* является точкой глобального минимума, если $\mu^* \leq h_n$, и такое значение μ^* единственно [3].

Если ограничение (5) заменить на ограничение $s^{\top}(Q-\mu^*I)s < 0$, то точка s^* окажется точкой локального максимума и $\mu^* > 0$.

Обозначим через T множество точек, удовлетворяющих условиям (3), (4). Оно содержит все точки локального минимума, и поэтому точку глобального минимума функции fна шаре S можно искать среди точек из множества T. В связи с тем, что в любой точке $v \in T$ нормали поверхностей $S_{\delta} = \{s : ||s|| = \delta\}$ и $\{s : f(s) = f(v)\}$ коллинеарны в точке v, будем называть точки из множества T точками касания. Анализ свойств точек из множества T позволяет поставить в соответствие функциям ||s|| и $f(s), s \in \mathbb{R}^n$, числовые функции $\varphi(\mu)$ и $\psi(\mu)$ одной переменной μ . Например, если $s^* \in T$, то $\psi(\mu^*) = 2f(s^*)$.

В первом пункте данной статьи и описывается способ построения функций φ и ψ , и приводится их анализ, который позволяет проследить поведение поверхностей S_{δ} и $P_{\alpha} = \{s : f(s) = \alpha\}$ при изменении параметров δ и α . Параллельно с этим удалось получить другое доказательство неравенства $\mu^* \leq h_n$ и указать условия равенства $\mu^* = h_n$, в число которых не входит ограничение на величину радиуса шара. Кроме того, показано, что если эти условия равенства $\mu^* = h_n$ не выполнены, то при увеличении радиуса шара растет значение модуля параметра μ^* . Эти факты к формированию алгоритма решения задачи (1) не имеют отношения и носят только теоретический характер, но могут пригодится в других ситуациях, например при решении серии задач минимизации одной и той же функции на шарах с увеличивающейся последовательностью значений радиусов. В этом случае в качестве начального приближения μ_0 текущей задачи можно взять значение μ^* , полученное при решении предыдущей задачи.

Во втором пункте описывается алгоритм решения задачи (1), представленной в виде последовательности алгоритмов решения более простых задач — задач минимизации на шаре выпуклых квадратичных мажорант целевой функции. Представление в виде последовательности простых задач можно найти и у других авторов. Например, в [4] предлагается на каждом шаге последовательности решать систему линейных уравнений $(Q + \mu I)x = -g$, где μ определяется как середина отрезка $[\mu_1, \mu_2]$. Первоначально $\mu_1 = 0$, а μ_2 находится из условия $\mu_2 > |h_n|$. Затем после решения системы уравнений выбирается левый отрезок ($\mu_2 = \mu$) или правый ($\mu_1 = \mu$) в зависимости от выполнения ряда условий. Процесс продолжается до тех пор, пока длина текущего отрезка не станет меньше заданного малого числа, а полученное решение системы x есть решение задачи (1).

В третьем пункте приводятся результаты тестовых расчетов по предлагаемому алгоритму. По результатам расчетов, приведенных в таблице, можно сделать некоторую оценку работы алгоритма.

1. Описание точек касания

Рассмотрим два случая: вектор g является собственным вектором матрицы Q; вектор g не является собственным вектором.

1.1. Вектор g — собственный вектор матрицы Q. Пусть $Qg = h_pg$. Не умаляя общности, будем считать, что $|g_1| \ge |g_i|$ для i > 1.

Введем ряд обозначений: $c = g/||g||, c^{\top} = (c_1, \bar{c}^{\top}),$ где $\bar{c}^{\top} = (c_2, c_3, \dots, c_n), \rho = -(1 \pm c_1)/(1 - c_1^2),$ $V = \begin{bmatrix} \pm \bar{c}^{\top} \\ I_{n-1} + \rho \bar{c} \bar{c}^{\top} \end{bmatrix}.$

V — матрица размером $n \times (n-1)$, I_{n-1} — единичная матрица размером $(n-1) \times (n-1)$. Далее размер единичной матрицы не будем указывать, если это будет понятно из контекста.

Пропустив промежуточные вычисления, которые можно найти в [7], получим: $VV^{\top} = I - cc^{\top}, V^{\top}V = I, c^{\top}V = 0$. Если добавить слева к матрице V столбец c, то получим ортогональную матрицу W:

$$W^{\top}W = \begin{bmatrix} c^{\top} \\ V^{\top} \end{bmatrix} [c|V] = \begin{bmatrix} 1 & 0 \\ 0 & I \end{bmatrix}.$$

Тогда матрица A, равная $W^{\top}QW$, имеет вид $\begin{bmatrix} h_p & 0\\ 0 & B \end{bmatrix}$, где

$$B = V^{\top} Q V \tag{6}$$

есть матрица размером $(n-1) \times (n-1)$.

Пусть $x = W^{\top}s$, тогда

$$f(s) = \frac{1}{2}x^{\top}W^{\top}QWx + g^{\top}Wx$$

Однако $g^{\top}W = \|g\|c^{\top}[c|V] = \|g\|e_1$, где e_1 — единичный орт из R^n . Обозначив через F(x) функцию f(Wx), получим

$$F(x) = \frac{1}{2}h_p x_1^2 + \frac{1}{2}\bar{x}^\top B\bar{x} + ||g||x_1,$$
(7)

где $\bar{x}^{\top} = (x_2, x_3, \dots, x_n).$

Неравенство $||s||^2 \leq \delta^2$ эквивалентно неравенству $||x||^2 \leq \delta^2$. Поэтому исходная задача (1) эквивалентна задаче минимизации функции F на шаре S. Ограничения (3), (4) можно переписать в виде: $\nabla F(x) = \mu x$, $||x|| = \delta$. Равенство $\nabla F(x) = \mu x$ соответствует равенствам:

$$h_p x_1 + \|g\| = \mu x_1, \tag{8}$$

$$B\bar{x} = \mu\bar{x}.\tag{9}$$

Найдем все точки, удовлетворяющие ограничениям (8), (9) и $||x|| = \delta$. Из равенств (8), (9) видно, что все точки касания можно разбить на два подмножества. Первое подмножество — совокупность точек, у которых $\bar{x} = 0$, а ко второму подмножеству отнесем точки с $\bar{x} \neq 0$.

Сначала рассмотрим точки, у которых $\bar{x} = 0$. Тогда из равенства $||x|| = \delta$ следует, что $x_1 = \pm \delta$, а из предположения $||g|| \neq 0$ следует $\mu \neq h_p$. Это значит, что при $\bar{x} = 0$ существует две точки касания:

$$x' = \delta e_1$$
 при $\mu_1 = h_p + \frac{\|g\|}{\delta}; \qquad x'' = -\delta e_1$ при $\mu_2 = h_p - \frac{\|g\|}{\delta},$ (10)

причем, согласно (7),

$$F(x') = \frac{1}{2}h_p\delta^2 + \|g\|\delta, \qquad F(x'') = \frac{1}{2}h_p\delta^2 - \|g\|\delta,$$

т.е. F(x'') < F(x').

В исходной системе координат точками касания будут являться точки:

$$s' = Wx' = \delta c = \frac{\delta}{\|g\|}g$$
 и $s'' = -\frac{\delta}{\|g\|}g.$

Далее рассмотрим все точки касания, которым соответствует $\bar{x} \neq 0$. В этом случае, согласно (9), вектор \bar{x} должен быть одним из собственных векторов \bar{x}^k матрицы B, а μ — собственным числом h_k . Из (8) следует, что μ не может быть равным h_p , так как $\|g\| \neq 0$. Тогда, если $\mu = h_k$ для некоторого $k \neq p$, то

$$x_1 = \frac{\|g\|}{h_k - h_p}$$
 if $-\delta < \frac{\|g\|}{h_k - h_p} < \delta.$

Из последнего двухстороннего неравенства следует: если $h_k > h_p$, то должно быть $h_k > h_p + ||g||/\delta$; если $h_k < h_p$, то $h_k < h_p - ||g||/\delta$. Следовательно, точками касания могут быть только те точки $\begin{pmatrix} k \\ k \end{pmatrix}^{\top} \begin{pmatrix} ||g|| & (-k)^{\top} \end{pmatrix}$ (11)

$$(x^k)^{\top} = \left(\frac{\|g\|}{h_k - h_p}, \ (\bar{x}^k)^{\top}\right),\tag{11}$$

для которых $h_k < h_p - \|g\|/\delta$ или $h_k > h_p + \|g\|/\delta$, и при этом $\mu_k = h_k$ и $\|x^k\| = \delta$. Тогда $\|\bar{x}^k\| = \sqrt{\delta^2 - \|g\|^2/(h_k - h_p)^2}$. В исходной системе координат точка касания s^k равна:

$$s^{k} = Wx^{k} = \frac{\|g\|}{h_{k} - h_{p}}c + V\bar{x}^{k} = \frac{1}{h_{k} - h_{p}}g + z_{k}\sqrt{\delta^{2} - \frac{\|g\|^{2}}{(h_{k} - h_{p})^{2}}},$$

так как c = g/||g|| и $V\bar{x}^k$ есть собственный вектор матрицы Q. Достоверность последнего утверждения можно подтвердить следующим образом. Равенство $B\bar{x} = h\bar{x}$ соответствует равенству $V^{\top}QV\bar{x} = h\bar{x}$. Умножив слева на матрицу V обе части последнего равенства, получим $(I - cc^{\top})QV\bar{x} = hV\bar{x}$. Однако $c^{\top}QV = h_pc^{\top}V = 0$, тогда $QV\bar{x} = hV\bar{x}$.

Здесь z_k — собственный вектор матрицы Q, соответствующий собственному числу h_k и $||z_k|| = 1$.

Заметим, что если весь спектр матрицы Q лежит в отрезке $[h_p - ||g||/\delta, h_p + ||g||/\delta]$, то точками касания является только две точки: $\pm \delta e_1$, и точка глобального минимума есть точка x'' при $\mu = \mu_2$ из (10), а точка x' является, в свою очередь, точкой глобального максимума.

Значение функции F из (7) в точке x^k , определенной в (11), равно

$$F(x^{k}) = \frac{1}{2}h_{p}\frac{\|g\|^{2}}{(h_{k} - h_{p})^{2}} + \frac{1}{2}(\bar{x}^{k})^{\top}B\bar{x}^{k} + \frac{\|g\|^{2}}{h_{k} - h_{p}}$$

но

$$(\bar{x}^k)^\top B\bar{x}^k = h_k \|\bar{x}^k\|^2 = h_k \left(\delta^2 - \frac{\|g\|^2}{(h_k - h_p)^2}\right).$$

Тогда

$$F(x^k) = \frac{1}{2} \left(\frac{\|g\|^2}{h_k - h_p} + h_k \delta^2 \right).$$

Если в выражении для $F(x^k)$ заменить дискретную величину h_k на непрерывную переменную h, то получим функцию, которую обозначим через $\eta(h)$:

$$\eta(h) = \frac{1}{2} \left(\frac{\|g\|^2}{h - h_p} + h\delta^2 \right),$$

$$\eta'(h) = \frac{1}{2} \left(\delta^2 - \frac{\|g\|^2}{(h - h_p)^2} \right), \qquad \eta''(h) = \frac{\|g\|^2}{(h - h_p)^3}$$

Стало быть, при $h < h_p$ функция η вогнута, а при $h > h_p$ выпукла; точки $h_1^* = h_p - \|g\|/\delta$ и $h_2^* = h_p + \|g\|/\delta$ являются точками, в которых $\eta'(h)$ равна нулю. Это значит, что при $h < h_1^*$ и $h > h_2^*$ функция η возрастает. Следовательно, если $h_n < h_p - \|g\|/\delta$, то $\eta(h_n) < \eta(h)$ для всех h, удовлетворяющих условиям $h_n < h \le h_1^*$ и $h \ge h_2^*$. Поэтому $(x^n)^\top = (\|g\|/(h_n - h_p), (\bar{x}^n)^\top)$ является точкой глобального минимума функции F на шаре S при $\mu^* = h_n$. Если $h_n \ge h_p - \|g\|/\delta$, то точкой глобального минимума является точка $-\delta e_1$.

Следовательно, если (h_p, g) — собственная пара матрицы Q и $h_n < h_p$ — $\|g\|/\delta$, то решением задачи (2) является точка $s^* = Wx^n$ при $\mu^* = h_n$.

График функции η , изображенный на рис. 1, хорошо иллюстрирует сказанное выше.

На этом рисунке приведен вариант, когда $h_n < h_1^*$, то точке глобального минимума соответствует $\mu^* = h_n$; и когда $h_1 < h_2^*$, то точке глобального максимума соответствует $\mu^* = h_2^*$.

Рис. 1. График функции η

1.2. Вектор *g* не является собственным вектором матрицы *Q*. Пусть WHW^{\top} – ее спектральное разложение $H = \text{diag}(h_1, h_2, \ldots, h_n), W$ – ортогональная матрица. Как и прежде, будем считать, что $h_1 \ge h_2 \ge \cdots \ge h_n$.

Обозначим через x
иdсоответственно векторы $W^{\top}s, W^{\top}g$ и определим функцию

$$F(x) = f(Wx) = \frac{1}{2}x^{\top}Hx + d^{\top}x.$$
 (12)

Нетрудно проверить, что если точка *s* удовлетворяет условиям (3), (4), то точка x = Ws удовлетворяет условиям: $\nabla F(x) = \mu x$, $||x|| = \delta$ при том же значении μ и наоборот.

Разобъем множество индексов $\{1, 2, ..., n\}$ на два подмножества: $I_1 = \{i : d_i \neq 0\}, I_2 = \{i : d_i = 0\}$. В соответствии с этим разбиением представим матрицу H и векторы d, x в виде:

$$H = \begin{bmatrix} H_1 & 0 \\ 0 & H_2 \end{bmatrix}, \qquad d = \begin{bmatrix} \bar{d} \\ 0 \end{bmatrix}, \qquad x = \begin{bmatrix} u \\ v \end{bmatrix},$$

где $H_1 = \text{diag}(h_i), i \in I_1; H_2 = \text{diag}(h_i), i \in I_2; \bar{d}_i = d_i, i \in I_1; u_i = x_i, i \in I_1; v_i = x_i, i \in I_2$. Тогда ограничение $\nabla F(x) = \mu x$ распадается на два ограничения:

$$H_1 u + \bar{d} = \mu u, \qquad H_2 v = \mu v. \tag{13}$$

Из последних равенств видно, что все точки касания можно разбить на два подмножества. К первому подмножеству отнесем точки, у которых v = 0, а ко второму — точки с $v \neq 0$.

Рассмотрим все точки касания, которым соответствует v = 0. В этом случае первое из ограничений (13) можно записать в виде $h_i u_i + d_i = \mu u_i$, $i \in I_1$, из которого следует, что $\mu \neq h_i$ для всех $i \in I_1$ и $u_i = d_i/(\mu - h_i)$. Тогда значение μ можно найти из уравнения

$$\sum_{i \in I_1} \frac{d_i^2}{(\mu - h_i)^2} = \delta^2,$$
(14)

которое означает, что $||u||^2 = \delta^2$.

Определим функцию

$$\varphi(\mu) = \sum_{i \in I_1} \frac{d_i^2}{(\mu - h_i)^2}.$$
(15)

Пусть μ_k , k = 1, 2, ..., m, — все решения уравнения (14): $\mu_1 < \mu_2 < \cdots < \mu_m$. Тогда точка $x^k = \begin{bmatrix} u^k \\ 0 \end{bmatrix}$, где $u_i^k = d_i/(\mu_k - h_i)$, $i \in I_1$, удовлетворяет ограничениям (13) и $\|x^k\| = \delta$, а это значит, что x^k — точка касания в новой системе координат. В старой системе координат ей будет соответствовать точка $s^k = Wx^k$.

Вычислим значение функции F из (12) в точке $x^k, k = 1, 2, ..., m$:

$$F(x^k) = \frac{1}{2} \sum_{i \in I_1} \frac{h_i d_i^2}{(\mu_k - h_i)^2} + \sum_{i \in I_1} \frac{d_i^2}{\mu_k - h_i} = \frac{1}{2} \left(\mu_k \delta^2 + \sum_{i \in I_1} \frac{d_i^2}{\mu_k - h_i} \right).$$

Определим функцию

$$\psi(\mu) = \mu \delta^2 + \sum_{i \in I_1} \frac{d_i^2}{\mu - h_i}.$$
(16)

Тогда $2F(x^k) = \psi(\mu_k).$

Далее рассмотрим точки касания, которым соответствует $v \neq 0$. Ограничение $H_2v = \mu v$ означает, что v — один из собственных векторов v^k матрицы H_2 , $k \in I_2$, а μ — соответствующее собственное число h_k . Ограничение $H_1u + \bar{d} = h_k u$ можно записать в виде $h_i u_i + d_i = h_k u_i$, $i \in I_1$, из которого видно, что вектор v^k должен быть выбран таким образом, чтобы $h_k \neq h_i$ для всех $i \in I_1$. Для выбранного вектора v^k определим точку $x^k = \begin{bmatrix} u^k \\ u^k \end{bmatrix}$, где $u_i^k = d_i/(h_k - h_i)$, $i \in I_1$. Чтобы быть точкой касания с $\mu = h_k$, точка x^k , кроме ограничений (13), должна удовлетворять условию $\|x^k\|^2 = \delta^2$ или $\|u^k\|^2 + \|v^k\|^2 = \delta^2$. Очевидно, что $\|u^k\|^2 = \varphi(h_k)$, где функция φ определена в (15).

Итак, точка $x^k = \begin{bmatrix} u^k \\ v^k \end{bmatrix}$, $k \in I_2$, есть точка касания с $\mu = h_k$, если: во-первых, $(h_k, v^k) -$ собственная пара матрицы H_2 ; во-вторых, $h_k \neq h_i$ для всех $i \in I_1$; в-третьих, $\varphi(h_k) < \delta^2$. Пусть \overline{I}_2 — множество индексов точек касания этого типа.

Вычислим значение функции F, определенной в (12), в точке касания $x^k, k \in \overline{I}_2$:

168

$$F(x^{k}) = \frac{1}{2} (u^{k})^{\top} H_{1} u^{k} + \frac{1}{2} (v^{k})^{\top} H_{2} v^{k} + \bar{d}^{\top} u^{k}$$

$$= \frac{1}{2} \sum_{i \in I_{1}} \frac{h_{i} d_{i}^{2}}{(h_{k} - h_{i})^{2}} + \frac{1}{2} h_{k} \left(\delta^{2} - \sum_{i \in I_{1}} \frac{d_{i}^{2}}{(h_{k} - h_{i})^{2}} \right) + \sum_{i \in I_{1}} \frac{d_{i}^{2}}{h_{k} - h_{i}}$$

$$= \frac{1}{2} \left(\delta^{2} h_{k} + \sum_{i \in I_{1}} \frac{d_{i}^{2}}{h_{k} - h_{i}} \right),$$

т.е. $2F(x^k) = \psi(h_k)$, где ψ — функция, определенная в (16).

Таким образом, если g не является собственным вектором матрицы Q, то множества точек касания T можно разбить на подмножества двух типов точек. Первый тип точек, который обозначим через T_1 , — это точки $x^k = \begin{bmatrix} u^k \\ 0 \end{bmatrix}$, где $u_i^k = d_i/(\mu_k - h_i)$, $i \in I_1$, а μ_k — решения уравнения (14), $k = 1, 2, \ldots, m$; второй тип точек, который обозначим через T_2 , — это точки $x^k = \begin{bmatrix} u^k \\ v^k \end{bmatrix}$, где v^k — собственный вектор матрицы H_2 , $\mu_k = h_k$ — соответствующее собственное число, $k \in \bar{I}_2$. При этом для любой точки касания $x^k \in T$ верно равенство $2F(x^k) = \psi(\mu_k)$. Это значит, что каждой точке касания x^k можно поставить в соответствие число μ_k .

Обозначим множества: $M = \{\mu_k : 2F(x^k) = \psi(\mu_k), x^k \in T\}, M_1 = \{\mu_k : 2F(x^k) = \psi(\mu_k), x^k \in T_1\}, M_2 = \{\mu_k : \mu_k = h_k, x^k \in T_2\}.$ Тогда $\varphi(\mu) = \delta^2$ при $\mu \in M_1, \varphi(\mu) < \delta^2$ при $\mu \in M_2$. Определим числа:

$$a = \min_{i \in I_1} h_i, \qquad b = \max_{i \in I_1} h_i, \tag{17}$$

на отрезках $(-\infty, a), (b, +\infty)$ рассмотрим поведение функции $\varphi: \varphi(\mu) \to 0$ при $\mu \to -\infty;$ $\varphi(\mu) \to +\infty$ при $\mu \to a-; \varphi(\mu) \to +\infty$ при $\mu \to b+; \varphi(\mu) \to 0$ при $\mu \to +\infty$. Производная функции φ равна $-2\sum_{i\in I_1} \frac{d_i^2}{(\mu-h_i)^3}$, т.е. положительна при $\mu < a$ и отрицательна при $\mu > b$. Следовательно, уравнение $\varphi(\mu) = \delta^2$ имеет по одному решению в каждом отрезке $(-\infty, a), (b, +\infty): \mu_1 \in (-\infty, a), \mu_m \in (b, +\infty)$ соответственно, при этом с увеличением δ увеличивается значение $|\mu_1|$ и уменьшается значение μ_m .

Лемма 1. Функция ψ является строго возрастающей функцией на множествах $(-\infty, \mu_1], [\mu_m, +\infty).$

Доказательство. Очевидно, что $\psi'(\mu) = \delta^2 - \varphi(\mu), \ \psi''(\mu) = 2 \sum_{i \in I_1} \frac{d_i^2}{(\mu - h_i)^3}$. Тогда при $\mu < a$ имеем $\psi''(\mu) < 0$, т. е. ψ — строго вогнутая функция; при $\mu > b$ имеем $\psi''(\mu) > 0$, т. е. ψ — строго выпуклая. При этом $\psi'(\mu_1) = \psi'(\mu_m) = 0$. Стало быть, ψ — строго возрастающая функция на множествах $(-\infty, \mu_1], \ [\mu_m, +\infty)$.

Лемма 2. Если μ удовлетворяет условиям $\mu > \mu_1$ и $\varphi(\mu) \leq \delta^2$, то верно неравенство $\psi(\mu_1) < \psi(\mu)$.

Доказательство. Вычислим

$$\psi(\mu_1) - \psi(\mu) = (\mu_1 - \mu) \left(\delta^2 - \sum_{i \in I_1} \frac{d_i^2}{(\mu_1 - h_i)(\mu - h_i)} \right)$$

и обозначим через r разность:

$$r = \delta^2 - \sum_{i \in I_1} \frac{d_i^2}{(\mu_1 - h_i)(\mu - h_i)}.$$

Тогда из условия $\delta^2 \geq \varphi(\mu)$ следует, что

$$r \ge \sum_{i \in I_1} d_i^2 \frac{\mu_1 - \mu}{(\mu - h_i)^2 (\mu_1 - h_i)}, \quad \text{a} \quad \sum_{i \in I_1} d_i^2 \frac{\mu_1 - \mu}{(\mu - h_i)^2 (\mu_1 - h_i)} > 0,$$

так как $\mu_1 < \mu$ и $\mu_1 - h_i < 0$ для всех $i \in I_1$. Следовательно, $\psi(\mu_1) - \psi(\mu) = (\mu_1 - \mu)r < 0$. \Box

Приведем пример функций φ и ψ при n = 6. Пусть значения $h_i, d_i, i = 1, 2, ..., 6$, заданы так, что график функции φ имеет вид, изображенный на рис. 2.

Рис. 2. График функции φ

Здесь $I_1 = \{2, 4, 6\}, I_2 = \{1, 3, 5\}, \bar{I}_2\{1, 3\}, M_1 = \{\mu_1, \mu_2, \mu_3, \mu_4\}, M_2 = \{h_1, h_3\}, a = h_6, b = h_2$. Как видно из рис. 2, при малом значении δ возможны только два решения уравнения (14), а если к тому же $\delta^2 < \varphi(h_1)$, то множество \bar{I}_2 пусто; при большом значении δ возможно шесть решений уравнения (14), а при $\varphi(h_5) < \delta^2$ будем иметь $\bar{I}_2 = I_2$.

График функции ψ изображен на рис. 3.

Рис. 3. График функции ψ

Теорема 1. Если вектор g не является собственным вектором матрицы Q, то $\mu^* = \arg\min_{\mu \in M} \psi(\mu)$ удовлетворяет условию $\mu^* \leq h_n$.

Доказательство. Пусть, как и прежде, $\mu_1 = \arg\min_{i \in I_1} \mu_i$, $n = \arg\min_i h_i$, $a = \min_{i \in I_1} h_i$. Рассмотрим два случая: первый, когда $n \in I_1$, и второй, когда $n \in I_2$.

Пусть $n \in I_1$, т. е. $a = h_n$ и $\mu_1 < h_n$. Тогда, во-первых, $\mu_1 < h_i$ для всех i = 1, 2, ..., nи $\varphi(h_i) < \delta^2$, $i \in \bar{I}_2$; во-вторых, $\mu_1 \leq \mu_i$, $i \in I_1$, и $\varphi(\mu_1) = \delta^2$. Это значит, что h_i , $i \in \bar{I}_2$, и μ_i , $i \in I_1$, удовлетворяют условию леммы 2, т. е. $\psi(\mu_1) < \psi(h_i)$, $i \in \bar{I}_2$, $\psi(\mu_1) < \psi(\mu_i)$, $i \in I_1$, $i \neq 1$. Стало быть, $\mu^* = \mu_1$ и $\mu^* < h_n$.

Пусть $n \in I_2$. Тогда $\mu_1 < a, h_n < a$ и $\varphi(\mu_1) = \delta^2$.

Если $n \in \overline{I}_2$, то $\varphi(h_n) < \delta^2$. При $\mu \leq \mu_1$ функция φ строго возрастает, поэтому $h_n < \mu_1$ и, согласно лемме 1, $\psi(h_n) < \psi(\mu_1)$. Однако $\psi(\mu_1) < \psi(\mu)$ для всех $\mu \in M_1$, $\mu \neq \mu_1$ (лемма 2). Следовательно, $\mu^* = h_n$.

Пусть $n \in I_2 \setminus \overline{I}_2$. Тогда $\varphi(h_n) > \delta^2$, и в силу строгого возрастания функции φ на $(-\infty, a)$ будем иметь $\mu_1 < h_n$ и $\psi(\mu_1) < \psi(\mu), \mu \in M, \mu \neq \mu_1$, т. е. $\mu^* < h_n$. \Box

Итак, в условии (3), которое можно записать в виде $(Q - \mu^* I)s^* = -g$, точке глобального минимума s^* соответствует число μ^* , не превосходящее h_n . Равенство $\mu^* = h_n$ возможно в двух случаях: во-первых, если (h_p, g) — собственная пара матрицы Q и $h_n < h_p - ||g||/\delta$; во-вторых, если g не является собственным вектором матрицы Q, $g^{\top} z_n = 0$. Во всех остальных случаях $\mu^* < h_n$ и, следовательно, матрица $Q - \mu^* I$ положительно определена.

Для нахождения точки глобального минимума предлагается последовательный алгоритм, на каждом шаге которого находятся точка локального минимума s^k и число $\mu_k < 0$, причем от шага к шагу значение μ_k уменьшается. Процесс продолжается до тех пор, пока значение μ_k не станет меньше h_n .

2. Алгоритм

Задачу (2) можно представить в виде последовательности задач минимизации на шаре S выпуклых квадратичных мажорант функции f. Для построения мажоранты на текущем шаге последовательности используются: а) представление функции f в виде разности двух выпуклых квадратичных функций; б) результат решения задачи на предыдущем шаге. Представление целевой функции в виде разности выпуклых квадратичных функций базируется на процедуре модифицированной факторизации Холесского симметричной знакопеременной матрицы [8].

Процедура модифицированной факторизации Холесского (МФХ) представляет собой численно устойчивый алгоритм, который строит LDL^{\top} — разложение положительно определенной матрицы G, отличающейся от исходной матрицы Q только диагональными элементами $Q = LDL^{\top} - U$, где $U = \text{diag}(U_1, U_2, \ldots, U_n), U_i \ge 0, i = 1, 2, \ldots, n$, а $G = LDL^{\top}$. Для уменьшения нормы матрицы U можно использовать в процессе факторизации симметричные перестановки строк и столбцов матрицы Q. Процедуру МФХ можно считать индикатором определенности матрицы Q: если U = 0, то Q — положительно определенная; если $\max_i U_i \le \beta$, где β — заданная малая величина, то Q — положительно полуопределенная; если $\max_i U_i > \beta$, то Q — знакопеременная матрица.

Имея представление Q = G - U, можно записать функцию f в виде

$$f(s) = \frac{1}{2}s^{\top}Gs + g^{\top}s - \frac{1}{2}s^{\top}Us.$$

Функция $\gamma(s) = s^{\top}Us$ выпукла, поэтому в любой точке $u \in R^n$ выполняется неравенство $\gamma(s) \geq \gamma(u) + \nabla \gamma(u)^{\top}(s-u)$ или $s^{\top}Us \geq u^{\top}Uu + 2u^{\top}U(s-u)$. Тогда $f(s) \leq \frac{1}{2}s^{\top}Gs + (g-Uu)^{\top}s + \frac{1}{2}u^{\top}Uu$, т. е. в любой фиксированной точке u выпуклая квадратичная функция

$$\Phi(u,s) = \frac{1}{2}s^{\top}Gs + (g - Uu)^{\top}s + \frac{1}{2}u^{\top}Uu$$

является мажорантой функции f:

$$\Phi(u,s) - f(s) = \frac{1}{2}(u-s)^{\top}U(u-s) \ge 0, \qquad \Phi(u,u) = f(u).$$

Для решения задачи (2) с помощью мажорант Ф построим двухуровневый итерационный процесс. На *j*-й итерации первого уровня определяется матрица $Q_{j+1} = Q_j - \mu_j I$, $\mu_j < 0$, и с помощью процедуры МФХ вычисляется разность $Q_{j+1} = G_{j+1} - U_{j+1}$ ($Q_0 = Q$, $\mu_0 = 0$). На *k*-й итерации второго уровня (при фиксированном *j*) находится локальный минимум s_j с $\mu_j < 0$ задачи (2) с целевой функцией $f_j(s) = \frac{1}{2}s^{\top}Q_js + g^{\top}s$.

Заметим, что точка глобального минимума s^* лежит в полупространстве $\{s:g^\top s\leq 0\},$ так как $f(s^*)-f(-s^*)=2g^\top s^*<0.$

Пошаговое описание алгоритма выглядит следующим образом.

- Шаг 0. Положим $Q_0 = Q$ и j = 0.
- Шаг 1. С помощью процедуры МФХ вычислим матрицы G_j, U_j и $Q_j = G_j U_j$.

Если $||U_j|| \leq \varepsilon$, где ε — некоторое заданное положительное число, то считаем, что Q_j — положительно полуопределенная матрица. Перейдем на шаг 4. Если $||U_j|| > \varepsilon$, то считается, что Q_j — знакопеременная матрица. Положим k = 0 и определим начальное приближение s_j^0 на *j*-м шаге. Известно, что модифицированная факторизация Холесского позволяет определить направление *p* отрицательной кривизны ($p^{\top}Q_jp < 0$). Это можно сделать следующим образом [7]. Если $t = \arg\min_i c_{ii}$, где c_{ii} — вычисленные на *i*-м шаге факторизации диагональные элементы, то вектор *p* есть решение уравнения $L^{\top}p = e_t$, где $e_t - t$ -й орт в R^n . Ориентацию вектора *p* выбираем из условия $g^{\top}p < 0$. Тогда в качестве начального приближения s_i^0 возьмем вектор ($\delta/||p||$)*p*.

Шаг 2. В точке s_j^k построим мажоранту $\Phi(s_j^k, s) = \frac{1}{2}s^\top G_j s + (g - U_j s_j^k)^\top s + \frac{1}{2}(s_j^k)^\top U_j s_j^k$ и найдем $s_j^{k+1} = \arg\min_{s \in S} \Phi(s_j^k, s)$. Для решения этой задачи можно использовать алгоритм, описанный в [9]. Тогда

$$f_j(s_j^{k+1}) \le \Phi(s_j^k, s_j^{k+1}) \le \Phi(s_j^k, s_j^k) = f_j(s_j^k)$$
(18)

и, согласно [9], $\nabla \Phi(s_j^k, s_j^{k+1}) = \mu_{k+1} s_j^{k+1}$, $\mu_{k+1} < 0$. Последнее равенство можно записать в виде

$$G_j s_j^{k+1} + g - U_j s_j^k = \mu_{k+1} s_j^{k+1}.$$
(19)

Если в (18) $\Phi(s_j^k, s_j^{k+1}) < \Phi(s_j^k, s_j^k)$, то k = k + 1, и переходим на шаг 2.

Шаг 3. Равенство $\Phi(s_j^k, s_j^{k+1}) = \Phi(s_j^k, s_j^k)$ означает, что $s_j^k = \arg\min_{s \in S} \Phi(s_j^k, s)$. Тогда соотношение (19) можно представить в виде $Q_j s_j^k + g = \mu_{k+1} s_j^k$ или $(Q_j - \mu_{k+1}I)s_j^k = -g$ и $\mu_{k+1} < 0$. Пусть $\mu_j^* = \mu_{k+1}$, тогда $Q_j - \mu_{k+1}I = Q - \left(\sum_{i=0}^j \mu_i^*\right)I$ и $\sum_{i=0}^j \mu_i^* < 0$. Это значит, что s_j^k — точка локального минимума функции

f на S и, стало быть, можно начинать поиск следующей точки локального минимума. Для этого определим матрицу $Q_{j+1} = Q_j - \mu_{k+1}I$, j = j + 1, и переходим на шаг 1.

Шаг 4. Решаем задачу выпуклого программирования: найти $\min_{s \in S} f_j(s)$. Решение этой задачи s_j^* удовлетворяет условиям: $\|s_j^*\| = \delta$, $\nabla f_j(s_j^*) = \mu_j^* s_j^*$, где $\mu_j^* \leq 0$. Тогда $(Q_j - \mu_j^* I) s_j^* = -g$ или $(Q - (\sum_{i=0}^j \mu_i^*) I) s_j^* = -g$. Матрица $Q - (\sum_{i=0}^j \mu_i^*) I$ положительно полуопределена, поэтому s_j^* — точка глобального минимума функции f на шаре S. Задача (2) решена.

Покажем, что двухуровневый процесс, описанный в схеме, сходится. Очевидно, что число итераций первого уровня конечно, так как конечно число локальных точек минимума. Поэтому достаточно показать сходимость процесса поиска локального минимума при произвольном фиксированном j. Чтобы упростить изложение, индекс j далее не будем указывать.

Итак, имеем последовательность точек $\{s^k\}$ $(s^k = \arg\min_{s \in S} \Phi(s^{k-1}, s))$, для которой $\Phi(s^k, s^{k+1}) < \Phi(s^k, s^k)$ для конечного k. Тогда верна следующая теорема.

Теорема 2. В сделанных выше обозначениях последовательность точек $\{s^k\}$ сходится при $k \to \infty$ к точке локального минимума функции f на шаре S.

Доказательство. Рассмотрим числовую последовательность $\{f(s^k)\}$. Она, согласно (18), является строго убывающей последовательностью и при этом ограничена снизу на шаре *S*. Следовательно, она сходится к некоторому пределу f^* при $k \to \infty$. Из неравенства (18) следует, что числовая последовательность $\{\Phi(s^k, s^{k+1})\}$ также сходится к f^* при $k \to \infty$.

Покажем справедливость неравенства

$$\Phi(s^k, s^k) - \Phi(s^k, s^{k+1}) \ge \frac{l}{2} \|s^k - s^{k+1}\|^2,$$
(20)

где *l* — минимальное собственное число матрицы *G*.

Поскольку $\Phi(s^k, s)$ — квадратичная функция, то $\Phi(s^k, s^k) - \Phi(s^k, s^{k+1}) = \nabla \Phi(s^k, s^{k+1})^\top \times (s^k - s^{k+1}) + \frac{1}{2}(s^k - s^{k+1})^\top G(s^k - s^{k+1}).$

Вместе с тем $\nabla \Phi(s^k, s^{k+1})^{\top}(s^k - s^{k+1}) = \mu_{k+1}(s^{k+1})^{\top}(s^k - s^{k+1}) \ge 0$, так как, вопервых, $\nabla \Phi(s^k, s^{k+1}) = \mu_{k+1}s^{k+1}$, $\mu_{k+1} < 0$; во-вторых, из равенств $\|s^k\| = \|s^{k+1}\| = \delta$ следует неравенство $(s^{k+1})^{\top}(s^k - s^{k+1}) \le 0$.

Очевидно, что $(s^{k} - s^{k+1})^{\top} G(s^k - s^{k+1}) \ge l ||s^k - s^{k+1}||^2$.

Следовательно, неравенство (20) верно.

Из неравенства (20) следует, что последовательность $\{s^k\}$ сходится к некоторому пределу s^* такому, что $||s^*|| = \delta$. В силу непрерывности функции f, имеем $f(s^k) \to f(s^*)$ при $k \to \infty$ и, стало быть, $f^* = f(s^*)$.

Тогда точка s^* — точка локального минимума функции f на шаре S, так как в противном случае существует точка $s_1 = \arg\min_{s \in S} \Phi(s^*, s), s_1 \neq s^*$ и $f(s_1) \leq \Phi(s^*, s_1) < \Phi(s^*, s^*) = f(s^*) = f^*$, т.е. f^* не является нижней границей последовательности $\{f(s^k)\}$.

Оценить работу алгоритма предлагается по результатам решения ряда задач минимизации невыпуклой квадратичной функции на шаре.

3. Численные эксперименты

Во всех решаемых задачах минимизировалась одна и та же квадратичная функция на шарах с разными значениями радиусов.

Матрица Q целевой функции генерировалась по собственным значениям h_i , i = 1, 2, ..., n, которые задавались следующим образом: для i = 1, 2, ..., n вычислялись величины $u_i = (n - \lfloor \frac{3}{4}n \rfloor - i + 1)/10$, а затем определялись $h_i = u_i \min(1, |u_i|)$. Здесь $\lfloor \frac{3}{4}n \rfloor -$ целая часть числа $\frac{3}{4}n$. Тогда минимальное собственное значение равняется -74.9, максимальное -25.0; при этом имеем 250 положительных собственных значений, одно нулевое и 749 отрицательных.

Компоненты g_i вектора g линейного слагаемого целевой функции задавались равными $(-1)^{i+1}, i = 1, 2, \ldots, n$.

Размерность *п* всех задач равна 1000.

В результате роста ошибок округления на итерациях алгоритма может возникнуть ситуация, когда найденная точка s_j^k в шаге 3 или точка s_j^* в шаге 4 не являются точками минимума, хотя и локализованы в их окрестностях. Для контроля роста ошибок предлагается в шаге 3 (шаге 4) проверять на коллинеарность векторы $\bar{s} = s_j^k$, $\bar{g} = \nabla f(s_j^k)$ $(\bar{s} = s_j^*, \bar{g} = \nabla f(s_j^*)).$

Пусть α — угол между векторами \bar{s} и \bar{g} , т. е. $\cos \alpha = (\bar{g}^{\top}\bar{s})/(\|\bar{g}\|\delta)$. Будем считать, что векторы \bar{s} и \bar{g} не коллинеарны, если $\cos \alpha > -c$, где c — заданная величина: 0 < c < 1 и (1-c) — малая величина.

В случае нарушения коллинеарности предлагается сделать несколько уточнений решения. Пошаговый алгоритм процедуры уточнений выглядит следующим образом.

- Шаг 0. Положить $k = 0, v_0 = \bar{s}$; определить значение c.
- Шаг 1. Вычислить $g_k = \nabla f(v_k)$.
- Шаг 2. Проверить, если $\cos(v_k, g_k) \leq -c$, то перейти на шаг 4.
- Шаг 3. Вычислить $v_{k+1} = -(\delta/||g_k||)g_k$; положить k = k+1; перейти на шаг 1.
- Шаг 4. Задача решена: положить $s^* = v_k$; вычислить $f^* = f(s^*), \ \mu^* = g_k^\top v_k$. Остановиться.

Задавать значение параметра c для шага 3 можно более грубо, т. е. более удалено от единицы, чем для шага 4.

В расчетах, приведенных в данном пункте, проверка на коллинеарность в шаге 3 вообще не производилась, а в шаге 4 c = 0.99999999. Тогда условие $\cos \alpha > -c$ будет соответствовать тому, что $\alpha < \pi - 1.38 \cdot 10^{-6}$ или $\alpha > \pi + 1.38 \cdot 10^{-6}$.

В таблице приведены результаты расчетов 20 задач. Расчеты проводились на кластере НКС–30Т Сибирского суперкомпьютерного центра с процессором E5450 (Harpertown) с тактовой частотой 3 ГГц.

Обозначения в таблице:

N — номер задачи;

 δ — радиус шара;

J — число итераций первого уровня;

 $K_m = \max_i K_i$, где K_i —число итераций второго уровня для каждого j;

cs— значение $\cos\alpha$ до уточнений;

 K_y — количество уточнений;

 $f_1^*(f_2^*)$ — значение целевой функции до (после) уточнений;

 $\mu_1^*(\mu_2^*)$ — значение коэффициентов коллинеарности до (после) уточнений;

t — время решения в секундах.

Таблица										
N	δ	J	K_m	cs	K_y	f_1^*	f_2^*	μ_1^*	μ_2^*	t
1	0.1	2	4	_	0	-3.54	_	-390.93	_	1.55
2	1	2	15	—	0	-68.99	_	-106.37	-	2.63
3	2	2	23	—	0	-212.75	_	-90.58	_	9.51
4	3	2	30	—	0	-431.30	—	-85.32	-	2.78
5	4	2	37	—	0	-724.67	—	-82.69	-	5.03
6	5	2	43	—	0	-1092.85	—	-81.12	-	5.56
$\overline{7}$	6	2	48	—	0	-1535.87	—	-80.07	-	4.75
8	7	2	53	—	0	-2053.71	—	-79.32	-	4.38
9	8	2	58	—	0	-2646.39	—	-78.76	-	4.98
10	9	2	63	—	0	-3313.92	—	-78.33	-	5.35
11	10	2	67	—	0	-4056.28	—	-77.98	-	6.92
12	20	1	104	-0.999977	4	-15596.44	-15596.97	-76.41	-76.42	10.29
13	30	1	130	-0.999950	4	-34621.64	-34624.20	-75.88	-75.90	13.90
14	40	1	152	-0.999937	5	-61133.22	-61138.92	-75.63	-75.65	10.47
15	50	1	170	-0.999913	5	-95129.39	-95141.70	-75.47	-75.49	8.48
16	60	1	185	-0.999873	5	-136607.09	-136632.92	-75.37	-75.39	9.58
17	70	1	198	-0.999859	5	-185573.69	-185612.84	-75.29	-75.32	10.36
18	80	1	210	-0.999817	5	-242015.49	-242081.69	-75.24	-75.27	11.02
19	90	1	221	-0.999822	5	-305958.19	-306039.60	-75.19	-75.23	15.12
20	100	1	230	-0.999785	6	-377365.05	-377486.67	-75.16	-75.19	19.15

Если до уточнений полученное значение $\cos \alpha$ находится в пределах заданной нормы, то в колонках cs, f_2^* , μ_2^* таблицы стоят прочерки.

По результатам, представленным в таблице, следует сделать два замечания.

 Из таблицы видно, что с увеличением радиуса шара падает точность решения задач, что можно объяснить следующим образом. В программной реализации алгоритма используются ряд допусков на ошибки округления в арифметических операциях и параметров управления вычислительным процессом. Например, параметр εf определяет степень близости значений Φ_j(s^k_j, s^k_j) и Φ_j(s^k_j, s^{k+1}) в шаге 2 основного алгоритма. Если

$$\Phi_j(s_j^k, s_j^k) - \Phi_j(s_j^k, s_j^{k+1}) \le \varepsilon f \max\left(1, \left|\Phi_j(s_j^k, s_j^k)\right|\right),$$

то считается, что s_j^{k+1} — точка локального минимума, найденного на *j*-й итерации первого уровня. В нашем случае во всех решаемых задачах каждый допуск и параметр управления имеют постоянное значение, в частности $\varepsilon f = 10^{-8}$. Уменьшив значения некоторых допусков и параметров управления, можно получить более точное решение, хотя это и добавляет число итераций.

2. Второе замечание касается изменения значения коэффициента коллинеарности μ^* с увеличением радиуса δ . Во всех задачах $\mu^* < h_n = -74.9$, а это означает, что $\mu^* = \mu_1$, где μ_1 — минимальное решение уравнения (14). Анализ функции φ показывает, а рис. 2 это подтверждает, что с увеличением δ точка μ_1 монотонно приближается слева к точке h_n . Этим объясняется то, что в таблице с увеличением радиуса шара растет значение μ^* .

Заключение

В начале статьи делается анализ поведения поверхностей S_{δ} и P_{α} при различных значениях δ и α . На основе этого анализа показывается достоверность неравенства $\mu^* \leq h_n$, приводятся условия равенства $\mu^* = h_n$.

Во второй части статьи предлагается оригинальный алгоритм решения задачи минимизации невыпуклой квадратичной функции на шаре, представленный в виде последовательности алгоритмов решения более простых задач — задач минимизации на шаре выпуклых квадратичных мажорант целевой функции. Для построения мажоранты целевая функция представляется в виде разности двух выпуклых квадратичных функций на основе модифицированной процедуры разложения Холесского.

В заключительной части работы проведено тестирование алгоритма, по результатам которого можно делать некоторые оценки эффективности предложенной методики.

Литература

- 1. Дэннис Дж., Шнабель Р. Численные методы безусловной оптимизации и решения нелинейных уравнений. — М.: Мир, 1988. (Dennis Dzh., SHnabel' R. CHislennye metody bezuslovnoj optimizatsii i resheniya nelinejnykh uravnenij. — М.: Mir, 1988.)
- 2. Нечаева М.С., Хамисов О.В. Метод ветвей и границ для задачи минимизации квадратичной функции при выпуклых квадратичных ограничениях // Дискретный анализ и исследование операций. Серия 2. – 2000. – Т. 7, № 2. – С. 74–88. (Nechaeva M.S., KHamisov O.V. Metod vetvej i granits dlya zadachi minimizatsii kvadratichnoj funktsii pri vypuklykh kvadratichnykh ogranicheniyakh // Diskretnyj analiz i issledovanie operatsij. Seriya 2. – 2000. – Т. 7, № 2. – S. 74–88.)
- Gay D.M. Computing optimal locally constrained steps // SIAM J. SCI. Comput. 1981. Vol. 2, № 2. P. 186–197.
- 4. Ye Y. On affine scaling algorithms for nonconvex quadratic programming // Math. Programming. 1992. Vol. 56, № 3. P. 285-300.
- Hager W.W. Minimizing a quadratic over a sphere // SIAM J. OPTIM. 2001. Vol. 12, № 1. -P. 188-208.
- 6. Поляк Б.Т. Введение в оптимизацию. М.: Наука, 1983. (Polyak B.T. Vvedenie v optimizatsiyu. М.: Nauka, 1983.)
- Котельников Е.А. Об одном способе исчерпывания для симметричных матриц. Новосибирск, 1997. — (Препринт / РАН. Сиб. отд-ние. ВЦ; 1083). (Kotel'nikov E.A. Ob odnom sposobe ischerpyvaniya dlya simmetrichnykh matrits. — Novosibirsk, 1997. — (Preprint / RAN. Sib. otd-nie. VTS; 1083).)
- Гилл Ф., Мюррей У., Райт М. Практическая оптимизация. М.: Мир, 1985. (Gill F., Myurrej U., Rajt M. Prakticheskaya optimizatsiya. — М.: Mir, 1985.)
- 9. Котельников Е.А. Минимизация квадратичной функции на mape // Сиб. журн. вычисл. математики / РАН. Сиб. отд-ние. Новосибирск, 2014. Т. 17, № 4. С. 329–338. (Kotel'nikov E.A. Minimizatsiya kvadratichnoj funktsii na share // Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. Novosibirsk, 2014. Т. 17, № 4. S. 329–338.)

Поступила в редакцию 23 июня 2014 г., в окончательном варианте 25 июля 2014 г.