2011. Том 52, № 4

Июль – август

C. 806 – 822

ОБЗОРЫ

УДК 541.16

МОДЕЛИРОВАНИЕ ЭЛЕКТРОННОГО СТРОЕНИЯ, ХИМИЧЕСКОЙ СВЯЗИ И СВОЙСТВ ТРОЙНОГО СИЛИКОКАРБИДА Ті₃SiC₂

© 2011 Н.И. Медведева, А.Н. Еняшин, А.Л. Ивановский*

Учреждение Российской академии наук Институт химии твердого тела УрО РАН, Екатеринбург

Статья поступила 19 августа 2010 г.

С доработки — 26 ноября 2010 г.

Слоистые тройные карбиды и нитриды d- и p-элементов проявляют уникальное сочетание свойств, характерных как для металлов, так и для керамики. Это определяет их высокий технологический потенциал для использования в качестве высокотемпературной керамики, защитных покрытий, материалов для датчиков, электрических контактов, а также привлекает внимание к детальному исследованию природы их свойств. Наряду со значительными достижениями в области синтеза, изучения функциональных характеристик и решения проблем материаловедения большие успехи в описании и прогнозе фундаментальных физико-химических свойств в последние годы достигнуты с использованием первопринципных (*ab initio*) методов. На примере силикокарбида титана Ti_3SiC_2 — прототипа семейства МАХ фаз — рассмотрены возможности современных *ab initio* методов для анализа и прогноза структурных, когезионных, механических свойств, эффектов нестехиометрии и допирования, описания электронных характеристик и особенностей химической связи в наноламинатах. Обобщены сведения по квантово-химическим исследованиям поверхностных состояний Ti_3SiC_2 , а также его гипотетическим нанотубулярным формам.

Ключевые слова: электронная структура, квантово-химическое моделирование, тройные слоистые соединения $M_{n+1}AX_n$, силикокарбид титана.

введение

МАХ фазы представляют собой семейство тройных слоистых соединений формальной стехиометрии $M_{n+1}AX_n$ (n = 1, 2, 3, ...), где M — переходный *d*-металл; A — *p*-элемент (например, Si, Ge, Al, S, Sn и др.); X — углерод или азот. Первые сообщения о синтезе МАХ фаз содержатся в работах Новотного и др. [1—5], выполненных в 60-х годах прошлого века. В числе прочих, в 1967 г. был синтезирован [6] тройной силикокарбид Ti_3SiC_2 — фаза, ставшая в последующем прототипом всего семейства и наиболее изученная к настоящему времени. Особое внимание на МАХ фазы и, в частности, на Ti_3SiC_2 , было обращено после открытия, что силикокарбид титана является аномально мягким материалом в сравнении с TiC, а его твердость характеризуется сильной анизотропией [7—9].

Начатые в середине 1990 г. интенсивные работы по исследованию физико-химических свойств МАХ фаз привели к выводу, что они являются уникальным классом слоистых материалов, сочетающих химические, физические, электрические и механические свойства, присущие как металлам, так и керамике [10]. Так, подобно металлам, МАХ фазы имеют хорошую теплои электропроводность и при этом, подобно керамике, являются тугоплавкими, имеют малую плотность, стойки к окислению и коррозии. В настоящее время МАХ фазы привлекают повышенный интерес как перспективные материалы полифункциональной высокотемпературной керамики, защитных покрытий, датчиков, электрических контактов для катализа и так далее.

^{*} E-mail: ivanovskii@ihim.uran.ru

MAX															
Be											В	С	Ν	0	F
Mg											Al	Si	Р	S	C1
Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Са	Ge	As	Se	Br
Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι
Ва	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Ро	At

Рис. 1. Периодическая таблица элементов, образующих наноламинаты общего состава $M_{n+1}AX_n$ (n = 1, 2, 3, ...), где М — переходный *d*-металл; А — *p*-элемент (Si, Ge, Al, S, Sn и др.); Х — углерод или азот

Текущий этап экспериментальных исследований МАХ фаз отмечен развитием методов синтеза этих соединений, в том числе в пленочном и нанокристаллическом состояниях, а также открытием новых фаз [11—13]. Например, относительно недавно методом магнетронного напыления синтезированы (в пленочном состоянии) [14, 15] новые фазы Ti_4SiC_3 и Ti_4GeC_3 , а также ряд других [13]. Отметим, что в настоящее время семейство насчитывает более 60 соединений [13], включающих в качестве компонентов многие *d*- и *p*-элементы (рис. 1). Кроме того, сейчас продолжаются детальные исследования функциональных свойств МАХ фаз (в частности, эффектов допирования, нестехиометрии, полиморфизма, трибологических, механических, недавно открытых [16, 17] сверхпроводящих свойств и т.д.), а также дальнейшие поиски перспективных областей технологического использования данных материалов [13].

Важной составной частью общих исследований МАХ фаз, непосредственно связанной с экспериментальными задачами, являются работы по моделированию свойств и прогнозу новых соединений современными *ab initio* методами. Например, теоретическое предсказание [18] возможности существования новой фазы Ti_4SiC_3 привлекло большое внимание исследователей и увенчалось успешным синтезом этого материала. И наоборот, экспериментальное обнаружение сверхпроводящего перехода в ряде МАХ фаз [16, 17] определило постановку серии теоретических работ по выяснению фундаментальной природы этого явления [19—23]. Теоретические исследования электронной структуры и свойств Ti_3SiC_2 и родственных материалов с привлечением *ab initio* методов были начаты авторами [24—29] в середине 90-х годов и интенсивно продолжаются в настоящее время.

В настоящем обзоре на примере силикокарбида титана Ti_3SiC_2 , имеющего уникальные механические свойства (высокую прочность на сжатие, ультранизкий коэффициент трения, устойчивость к разрушению) и являющимся типичным и наиболее изученным представителем семейства МАХ фаз, продемонстрированы возможности современных *ab initio* методов для анализа и прогноза структурных, когезионных, механических свойств, эффектов нестехиометрии и допирования, описания электронных характеристик и особенностей химической связи. Обобщены сведения по квантово-химическим исследованиям поверхностных состояний Ti_3SiC_2 , а также его гипотетическим нанотубулярным формам. Отметим, что подавляющее большинство обсуждаемых далее результатов получено с использованием современных *ab initio* методов FLAPW, VASP и CASTEP, формализм которых изложен в [30—34].

ЭЛЕКТРОННАЯ СТРУКТУРА, ХИМИЧЕСКАЯ СВЯЗЬ И СВОЙСТВА $\rm Ti_3SiC_2$ И РОДСТВЕННЫХ МАХ ФАЗ

Слоистый силикокарбид титана Ti_3SiC_2 имеет гексагональную структуру (пространственная группа *P63/mmc*, *Z* = 2), которая составлена из чередующихся блоков карбида титана [TiC] и плоских сеток атомов кремния ...Si/[TiC]/Si/[TiC]/Si... (рис. 2). В свою очередь, блоки [TiC] содержат два слоя соединенных ребрами Ti_6C октаэдров, соседствующих с атомарными сетками атомов Si, и структуру Ti_3SiC_2 часто описывают [6, 10, 11—13] так же как периодическую укладку (вдоль оси *z*) гексагональных слоев Si—Ti2—C—Ti1—C—Ti2. В структуре Ti_3SiC_2

Рис. 2. Кристаллические структуры наноламинатов $Ti_{n+1}SiC_n$ ($n = 1, 2, 3 \times 4$) [35]. Для α-Ti₃SiC₂ обозначены кристаллографические позиции атомов, а также позиции неэквивалентных атомов титана (Ті1 и Ті2, см. текст)

присутствует два неэквивалентных типа атомов Ті (обозначаемых обычно как Ті1 и Ті2), которые занимают кристаллографические позиции 2a и 4f соответственно (табл. 1). Атомы Til окружены углеродными атомами, в то время как в окружении атомов Ti2 присутствуют атомы как углерода, так и кремния. Структура Ti₃SiC₂ характеризуется параметрами решетки *а* и *с* и внутренними координатами z_{Ti} и z_C. Экспериментально определенные параметры решетки Ti₃SiC₂ составляют a = 3,068 и c = 17,669 Å, внутренние координаты $z_{\text{Ti}} = 0,135$ и $z_{\text{C}} = 0,567$ [11—13]. Ряд других основных физико-химических параметров Ti₃SiC₂ представлен в табл. 2.

Для расчета электронных свойств основного состояния Ti₃SiC₂ на первом этапе определяют устойчивую атомную конфигурацию кристалла. В многочисленных теоретических работах [36—41] равновесную структуру определяли оптимизацией параметров кристаллической решетки с одновременной релаксацией внутренних координат (табл. 3). Сравнение с эксперимен-

Таблица 1

Кристаллографические позиции

и атомные координаты для

Атом

Ti1

Ti2

Si

С

Таблица 2

TiC

4,91

240-390

186

410-510

0,191

28-35

614 21 $7.4 \cdot 10^{-6}$ 33,8

			m · 0			
гек	сагональн (пр. гр. Р	ого 0 P63/m	(-11_3S)	$^{51}C_2$	Параметр	Ti ₃ SiC ₂
Координата		ата	Плотность, г/см ³	4,4—4,5		
ОМ	позиция	x	y	Ζ	Модуль сжатия В, ГПа	Ті ₃ SiC ₂ 4,4—4,5 185—206 139—142 333—339 0,20 4,0 670 37 асширения, <i>К</i> ⁻¹ 9,2 · 10 ⁻⁶ 110
					Модуль сдвига G, ГПа	139—142
i1	2a	0	0	0	Модуль Юнга Ү, ГПа	333—339
i2	4f	1/3	3/2	z_{Ti}	Отношение Пуассона	0,20
Si	2b	0	0	1/4	Микротвердость по Виккерсу, ГПа	4,0
2	4f	1/3	2/3	$Z_{\rm C}$	Температура Дебая Θ, К	670
					Теплопроводность, Вт/м · К	37
					Коэффициент термического расширения, K^{-1}	$9,2 \cdot 10^{-6}$
					Теплоемкость, Дж/(моль·К)	110

Некоторые физико-химические	свойства наноламината	Ti ₃ SiC ₂ [11]
в сравнении с бинарныл	и карбидом титана TiC [43]	

Таблица З

а	С	c/a	z_{Ti}	$z_{\rm C}$	В	Ссылка	а	С	c/a	z_{Ti}	$z_{\rm C}$	В	Ссылка
3.0563	17.6604	5.78	0.1366	0.5728	195	[36]	3.0705	17.6707	5.77	0.1370	0.5741	202	[40]
3,0615	17,6094	5,75			184	[37]	3,076	17,713	5,76			_	[41]
		5,77	0,135	0,572	225	[38]	3,0705	17,699	5,76	0,1370	0,5742		[6]
3,0603	17,6707	5,77	0,1342	0,5720	—	[39]	3,0665	17,671	5,78	—	—		[10]

Рассчитанные параметры решетки (а и с, Å), внутренние координаты (z_{Ti}, z_C) и объемные модули упругости (B, ГПа) для Ti₃SiC₂ в сравнении с экспериментальными данными

* Расчеты методами CASTEP [36, 37, 40], FLMTO [38], FLAPW-GGA [39] в сравнении с экспериментом [6, 10].

Таблица 4

Константы упругости С_і, ГПа, коэффициенты упругой анизотропии А, модули упругости В, ГПа, модули сдвига G, ГПа, и модули Юнга Y, ГПа, для полиморфных α и β модификаций Ti₃SiC₂ [37]

Полиморф	C_{11}	C_{12}	C_{13}	C ₃₃	C_{44}	C_{66}	A	В	G	Y
α	355	96	103	347	160	130	1,26	184	140	300—311
β	375	85	74	361	121	145	0,83	175	136	337—345

тальными данными (см. табл. 3) показывает, что неэмпирические методы воспроизводят параметры решетки и координаты атомов с высокой точностью.

Расчеты зависимости полной энергии от объема E(V) позволяют также найти модуль всестороннего сжатия *B*. Из данных табл. 2 видно, что модуль сжатия Ti₃SiC₂ невелик (*B* ~ 190— 220 ГПа) и много меньше, чем для бинарного TiC (~ 410—510 ГПа) [43]. Причины этого можно понять с учетом анизотропии (сосуществование сильных связей Ti—C и слабых Ti—Si) межатомных взаимодействий в кристалле Ti₃SiC₂, см. также ниже. С другой стороны, расчеты величины *B* для серии изоструктурных соединений M₃SiC₂ и соответствующих бинарных карбидов MC [44] демонстрируют (рис. 3) их прямую зависимость, из анализа которой следует, что изменение модулей упругости в ряду M₃SiC₂ определяется карбидными блоками [MC].

Другим способом теоретических оценок модуля всестороннего сжатия B (как и ряда других макроскопических параметров, характеризующих упругое поведение) является их расчет с использованием констант упругости C_{ij} . Как известно [45], константы C_{ij} описывают сопротивление кристалла внешнему напряжению, а их расчет проводят [46, 47] разложением в ряд Тейлора полной энергии кристалла $E(V, \alpha)$ по малой величине деформации α . Для гексагональных кристаллов [48] число компонентов тензора констант упругости уменьшается до пяти: C_{11} , C_{12} , C_{13} , C_{33} и C_{44} , величины которых, согласно расчетам [37], приводятся в табл. 4. Видно, что

для Ti₃SiC₂ все константы C_{ij} положительные и удовлетворяют известным [49] критериям механически стабильных гексагональных кристаллов: $C_{11} > 0$; $C_{44} > 0$; C_{11} — $C_{12} > 0$; $(C_{11} + 2C_{12}) \cdot C_{33} - 2C_{13}^2 > 0$.

Величины C_{ij} позволяют вычислить модули сжатия В и сдвига G. Обычно такие расчеты проводят с исполь-

Рис. 3. Корреляция между модулями всестороннего сжатия *В* наноламинатов M₃SiC₂ и соответствующих бинарных карбидов MC [44]

зованием приближений Войгта [50] и (или) Реусса [51]. Для оценок упругих модулей поликристаллических материалов, представляющих собой агрегированную смесь микрокристаллитов со случайной взаимной ориентацией, используют процедуру усреднения величин, получаемых по схемам Войгта и Реусса. Для этой цели часто применяют аппроксимацию Войгта— Реусса—Хилла [52] (VRH), модули Юнга (*Y*) и отношение Пуассона (*v*), которые определяются как Y = 9BG/(3B + G) и $v = (3B - 2G)/{2(3B + G)}$.

Рассчитанные величины модулей, приведенные в табл. 4, позволяют сделать следующие выводы. Поскольку для $Ti_3SiC_2 B > G$, то фактором, лимитирующим механическую устойчивость данного кристалла, будет являться модуль сдвига. В соответствии с известным полуэмпирическим критерием [52, 53], материал относится к пластичным, если отношение G/B < 0.5, в противном случае материал будет хрупким. Согласно расчетам [37], для $Ti_3SiC_2 G/B = 0.76$, следовательно, эта фаза должна быть хрупким материалом, см. также далее.

Другим важным материаловедческим параметром является упругая анизотропия кристаллов, которая может быть ответственна за развитие микротрещин в материале [54, 55]. Предложен ряд способов оценки упругой анизотропии, в частности с использованием упомянутых констант C_{ij} . Так, упругую анизотропию сдвига гексагональных кристаллов описывают [56, 57] фактором $A = C_{44}/C_{66}$, который для идеально изотропного кристалла равен единице. Согласно расчетам [37], для Ti₃SiC₂ A = 1,23, т.е. эта фаза является упругоанизотропным материалом. Еще одним параметром анизотропии, который может быть оценен с использованием констант C_{ij} , является отношение между величинами линейного сжатия гексагонального кристалла по осям c и a: $k_c/k_a = (C_{11} + C_{12} - 2C_{13})/(C_{33} - C_{13})$ [58]. Из данных табл. 4 следует, что $k_c/k_a \sim 1,004$, т.е. сжатие кристалла по оси c несколько больше, чем по оси a. Ряд других важных механических характеристик наноламината Ti₃SiC₂, связанных с процессами разрушения и пластической деформации, будет рассмотрен в следующем разделе. Отметим, что рассчитанные модули упругости (см. табл. 4) находятся в хорошем соответствии с экспериментальными значениями (см. табл. 2).

Обсудим электронные свойства Ti_3SiC_2 . На рис. 4 приводятся энергетические зоны Ti_3SiC_2 вдоль наиболее симметричных направлений зоны Бриллюэна (ЗБ) гексагональной решетки [39, 59]. На рис. 5 представлены полная и парциальные плотности состояний Ti_3SiC_2 . Видно, что зоны валентных состояний образуют две основные группы. Низкоэнергетические зоны со-

Рис. 4. Энергетические зоны Ti₃SiC₂ [59] (*a*) и энергетические зоны вблизи уровня Ферми [39] (*б*)

- *Рис.* 5 (слева). Полная (вверху) и парциальные плотности состояний Ti₃SiC₂ [59]
- Рис. 6 (справа). Зона Бриллюэна и поверхность Ферми Ti₃SiC₂ [39]

ставлены в основном *s*-состояниями углерода и кремния с небольшой примесью Ti3*d*-состояний. Эти зоны отделены от верхней заполненной группы зон непрямой запрещенной щелью. Потолок валентной полосы составлен гибридизованными Ti3*d*-, Si3*p*- и C2*p*-состояниями (см. рис. 5).

Энергетические зоны пересекают уровень Ферми (E_F , вдоль направлений К—Г и Г—М, см. рис. 4), обеспечивая ненулевую ПС на уровне Ферми ($N(E_F) \sim 4,8$ —4,9 состояний/зВ на элементарную ячейку [37, 39]), т.е. металлоподобный тип проводимости. Энергетические зоны вблизи E_F существенно анизотропны [36] (часть из них имеют очень малые дисперсии k-векторов вдоль направлений Г—А, Н—К, М—L и L—H, см. рис. 4). Это позволяет сделать вывод, что проводимость в монокристалле Ti₃SiC₂ также должна быть анизотропной. Зона Бриллюэна и поверхность Ферми для Ti₃SiC₂ [39] приведены на рис. 6. Поверхность Ферми состоит из электронных и дырочных карманов цилиндрической и призматической топологии, направленных вдоль оси *с* и расположенных в центре 3Б (около Г точки), а также в углах 3Б. Рассчитанная электронная структура вблизи уровня Ферми убедительно показывает, что проводимость в Ti₃SiC₂ обусловлена двумя типами носителей — электронами и дырками, которые дают существенный вклад в $N(E_F)$. Следует отметить, что рассчитанное значение $N(E_F)$ находится в хорошем соответствии с экспериментальными оценками на основе измерений электропроводности и низкотемпературной теплоемкости [10].

Описание межатомных взаимодействий в Ti₃SiC₂ можно начать с простой картины для ионного кристалла, где рассматриваются стандартные степени окисления атомов Ti⁴⁺, C⁴⁻ и Si⁴⁻. Согласно этой модели, кристалл Ti₃SiC₂ можно представить состоящим из положительно заряженных карбидных блоков [TiC]⁴⁺, разделенных отрицательно заряженными атомными сетками Si⁴⁻. Однако численные расчеты эффективных зарядов атомов [59] свидетельствуют, что эти величины весьма незначительны, а основные эффекты межатомного связывания обусловлены ковалентными связями за счет гибридизации *d*-состояний Ti и *p*-состояний металлоидов. Действительно, распределения ПС (см. рис. 4) демонстрируют эффекты сильной гибридизации для Ti3*d*-, Si3*p*- и C2*p*-состояний, т.е. образование ковалентных связей Ti—C и Ti—Si. В результате межатомное взаимодействие в карбидных блоках [TiC], составленных Ti₆C октаэдрами, имеет смешанный ковалентно-ионно-металлический тип — за счет гибридизации C2*p*- и Ti3*d*-состояний, частичному переносу заряда от атомов Ti1, Ti2 к атомам C и Si (оценочные значения атомных эффективных зарядов Ti1 = +0,641e, Ti2 = +0,614e, Si = -0,304e и C = -0,384e) и *dd*— π -перекрыванию делокализованных состояний Ti [37, 38, 59—69]. Подчеркнем, что хи-

Рис. 7. Распределение зарядовой плотности валентных состояний для α (1) и β (2) полиморфов Ti₃SiC₂ [37]

мическая связь в Ti₃SiC₂ оказывается сильно анизотропной (рис. 7), отчетливо видны различия в распределении зарядовой плотности в слоях атомов Ti1 и Ti2 и их различная роль в химическом связывании. В цепи Ti2—C—Ti1—C—Ti2—Si межатомное расстояние между Ti1, Ti2 и C равно 2,13 Å, а между Ti2 и Si — 2,67 Å. Связь между Ti1 и углеродом сильнее, чем между Ti2 и кремнием. Анализ химической связи может быть выполнен также с привлечением величин заселенностей перекрывания кристаллических орбиталей (ЗПКО) (рис. 8). ЗПКО является функцией, принимающей положительные значения для связывающих состояний и отрицательные — для антисвязывающих. Степень ковалентного связывания определяется площадью под кривой ЗПКО [62]. Из рис. 8 видно, что связи Ti3*d*—C2*p* в целом значительно сильнее, чем связи Ti3*d*—Si3*p*, в свою очередь, связи Ti2—C сильнее, чем связи Ti1—C.

Отметим, что электронные спектры для Ti₃SiC₂ были также исследованы методами рентгеновской фотоэлектронной спектроскопии и рентгеновской эмиссионной спектроскопии [59, 62, 63], полученные результаты хорошо согласуются с расчетными данными.

В последнее время было уделено внимание теоретическим исследованиям фазовой стабильности и полиморфизма Ti₃SiC₂ при высоких давлениях [37, 62—67]. Рис. 9 демонстрирует

Рис. 8. Заселенности перекрывания кристаллических орбиталей для парных связей в Ti₃SiC₂ [62]

Рис. 9. Зависимость от внешнего давления параметров решетки (*a*, *c*, Å) и отношения c/a(1) и парных связей в кристалле Ti₃SiC₂ (2) [67]

изменение параметров решетки и отношения c/a в зависимости от внешнего давления P [67]. Видно, что параметр a с ростом P уменьшается почти линейно — в отличие от параметра c, который демонстрирует квадратичный тип зависимости. При приложении давления отношение c/a сначала уменьшается (до P < 43 ГПа) и становится меньше, чем равновесное значение, а при дальнейшем росте P монотонно возрастает. Изменение длин отдельных связей под давлением оказывается различным для различных типов связи (см. рис. 9). Эти данные указывают, что связь Ti2—Si является наиболее легко сжимаемой связью [66]. Параметры электронной структуры Ti₃SiC₂ также меняются в зависимости от P. В частности, значение $N(E_F)$ быстро уменьшается с ростом давления от нуля до $P \sim 50$ ГПа, затем остается практически постоянным. Следовательно, электропроводность наноламината при его барической обработке будет уменьшаться, что и зафиксировано в экспериментах [36, 66].

Фазовая устойчивость Ti₃SiC₂ при высоком давлении и фазовый переход из α - в β -фазу (в которой атомы Si размещаются в кристаллографических позициях 2d (2/3, 1/3, 1/4), см. рис. 2) также изучались *ab initio* методами [37, 64, 66]. Оценки показали, что переход $\alpha \rightarrow \beta$ будет проходить при $P \sim 380$ —400 ГПа. Этот фазовый переход сопровождается увеличением объема элементарной ячейки и отношения c/a. Полная энергия α -фазы в пересчете на ячейку ниже, чем для β -фазы, на 0,663 эВ, свидетельствуя о гораздо более высокой стабильности α -Ti₃SiC₂ относительно β -Ti₃SiC₂. Распределение зарядовой плотности для α -Ti₃SiC₂ в сравнении с β -Ti₃SiC₂ (см. рис. 7) свидетельствует, что прочность ковалентной связи Ti2—Si для β -модификации уменьшается. Обе модификации проявляют типично металлический характер; ПС на уровне Ферми соответствует локальному максимуму, однако в последовательности α -Ti₃SiC₂ эначение $N(E_F)$ уменьшается на 25—33 % [37, 66]. Модули упругости и сдвига для β -Ti₃SiC₂ оказываются меньше, чем для α -Ti₃SiC₂, а модуль Юнга возрастает на 10 % [37].

Силикокарбид Ti₃SiC₂, который содержит карбидные блоки [TiC], чередующиеся с моноатомными слоями кремния, принадлежит гомологическому ряду Ti_{n+1}SiC_n, n = 1, 2, 3, ..., где с ростом *n* толщина карбидных блоков растет (см. рис. 2). Проведены исследования стабильности и электронных свойств гомологов Ti_{n+1}SiC_n [35, 69]. Показано, что энергия когезии $E_{\rm coh}$ гомологов определяется значением *n*. Очевидно, что с ростом *n* фазы Ti_{n+1}SiC_n становятся более подобными карбиду титана TiC, поскольку число кремниевых сеток, приходящихся на слой TiC, уменьшается. Дополнительная энергия, требуемая на "вставку" кремниевого слоя, уменьшается практически линейно с уменьшением числа слоев Si, приходящихся на слой атомов Ti (рис. 10) [69]. Сравнительная устойчивость гомологов Ti_{n+1}SiC_n (n = 1, 2, 3 и 4) исследована на основании расчетов их полных энергий [31, 32]. Найдено, что фаза α -Ti₃SiC₂ является наибо-

813

Рис. 10. Разница энергий когезии между гомологами Ti_{n+1}SiC_n и карбидом TiC как функция числа слоев атомов Si к числу слоев атомов титана [68]

лее стабильной среди всех других гомологов $Ti_{n+1}SiC_n$; согласно этим же оценкам, Ti_5SiC_4 — наименее устойчив. Результаты [31] показывают также, что Ti_2SiC может существовать как метастабильная фаза.

Интенсивные экспериментальные (см. [11—13]) и теоретические исследования проведены для установления возможности образования различных твердых растворов на основе Ti₃SiC₂ (таких как Ti₃Si_{1-x}Al_xC₂,

 $Ti_3Si_{1-x}Ge_xC_2$, $Ti_3SiC_{2-x}N_x$ и др.). Например, изучены структурные и электронные свойства, а также химическая связь для гипотетических твердых растворов Ti_3SiCN и Ti_3SiCO , где атомы углерода частично замещаются на азот или кислород [59]. Рост электронной концентрации в ряду $Ti_3SiC_2 \rightarrow Ti_3SiC_{2-x}N_x \rightarrow Ti_3SiC_{2-x}O_x$ сопровождается увеличением заполнения прифермиевской Ti t_{2g} полосы и $N(E_F)$. Образование карбонитридных твердых растворов $Ti_3SiC_{2-x}N_x$ может привести к улучшению когезионных свойств, благодаря образованию более сильных ковалентных связей N—Ti2—C. Противоположная ситуация может иметь место при окислении Ti_3SiC_2 , где частичное замещение углерода кислородом может дестабилизировать гексагональную решетку Ti_3SiC_2 .

Частичное замещение кремния в плоских слоях на Al или Ge также обсуждалось теоретически [64, 65, 69, 70]. Результаты [70] показывают, что с ростом содержания Al все связи в TP Ti₃Si_{1-x}Al_xC₂ ослабляются, что ведет к образованию нестабильной структуры. Кроме того, увеличение содержания алюминия понижает температуру плавления, твердость по Виккерсу, модуль Юнга и прочность на растяжение для Ti₃Si_{1-x}Al_xC₂. Величина $N(E_F)$ свидетельствует об уменьшении электронной проводимости для малого содержания Al и о ее росте с увеличением содержания Al при x > 0,67 [70]. Для твердых растворов Ti₃Si_{0,75}Al_{0,25}C₂ предсказано [65] повышение стойкости к окислению в сравнении с Ti₃SiC₂. Частичное замещение кремния на германий приводит к стабилизации α -фазы, а фазовый переход $\alpha \rightarrow \beta$ для твердых растворов Ti₃Si_{1-x}Ge_xC₂ соответствует более высокому давлению (~412 ГПа), чем для "чистых" Ti₃SiC₂ (~397 ГПа) или Ti₃GeC₂ (~400 ГПа) [64].

Одной из наиболее примечательных особенностей кубического монокарбида TiC является [43] широкая область гомогенности, обусловленная присутствием вакансий в углеродной подрешетке — вплоть до 50 %. Отклонение TiC от стехиометрии в широком диапазоне составов Ti/C существенно меняет свойства карбида. Исследование влияния углеродной нестехиометрии на электронные и когезионные свойства Ti₃SiC₂ [59] показывает, что возникновение углеродной структуре и изменяет преимущественно распределение ПС атомов Ti, расположенных вблизи вакансии. В результате следует ожидать "металлизации" системы: $N(E_F)$ возрастает с 4,8 (Ti₃SiC₂) до 6,8 состояний/эВ на элементарную ячейку для нестехиометрического Ti₃SiC_{2-x}. В то же время вакансии по углероду существенно уменьшают энергию когезии, что приводит к дестабилизации гексагональной структуры Ti₃SiC₂ и качественно объясняет отсутствие широкой области гомогенности для этого соединения [59].

Поскольку Ti_3SiC_2 и родственные соединения широко используются в качестве тонких пленок, твердых покрытий и создания композитных материалов [11—13], исследования их поверхностных свойств, коррозии, окисления и эпитаксиального роста на поверхности имеют большое значение для развития прикладного материаловедения. В последнее время с привлечением *ab initio* методов получены интересные результаты по структурным и электронным свойствам поверхности Ti_3SiC_2 (рис. 11, 12) [71]. Рассматривая изменение длин связей на поверхности и в приповерхностных слоях, вызванное релаксацией, было обнаружено, что за ис-

Рис. 11. Атомные модели Ti₃SiC₂: кристалл (*слева*) и (001) поверхности с разными внешними монослоями: 1 — Ti1, 2 — C(Ti2), 3 — Ti2(Si), 4 — C(Ti1), 5 — Ti2(C) и 6 — Si(Ti2) [71]

ключением Si(Ti2) (001) грани (где длины связей увеличиваются на ~3,3 %) все остальные межатомные связи вблизи поверхности укорачиваются. Например, изменение длин связей для граней C(Ti1) и C(Ti2) увеличивается более чем на 7,3 %, в то время как для других граней менее чем на 4,5 %. Согласно вычисленным поверхностным энергиям, грани с внешними монослоями C(Ti1) и C(Ti2) нестабильны, тогда как грани Ti2(C), Ti1(C), Ti2(Si) и Si(Ti2) могут быть устойчивы при определенных условиях [71]. Расчеты электронной структуры показывают, что плотность состояний и зарядовое распределение вблизи поверхностей Ti₃SiC₂ значительно отличается от таковых для кристалла (см. рис. 12).

Недавно *ab initio* расчеты проведены для изучения структурных, электронных и адгезионных свойств интерфейса SiC/Ti₃SiC₂, причем выполнен анализ для 96 возможных геометрий этого интерфейса [41]. Установлено, что вне зависимости от типа геометрии интерфейса, наилучшее сцепление SiC/Ti₃SiC₂ достигается при контакте углеродных слоев SiC и Ti₃SiC₂.

Кроме упомянутых, теоретически исследовались некоторые другие свойства Ti_3SiC_2 . Например, на основе *ab initio* расчетов определены диэлектрические функции и проанализированы оптические спектры [64]. Рассчитан термоэлектрический тензор и обсуждена природа коэффициента Зеебека, который для Ti_3SiC_2 отрицателен вдоль направления *z* и положителен в базальной плоскости [39, 72].

Поскольку одной из наиболее важных областей применения Ti_3SiC_2 является его использование для создания современных керамических материалов, работающих, в том числе, в условиях экстремальных внешних нагрузок, далее рассмотрим возможности *ab initio* методов для описания деформационного поведения этой фазы.

ДЕФОРМАЦИОННОЕ ПОВЕДЕНИЕ Ті₃SiC₂: ТЕОРЕТИЧЕСКИЕ МОДЕЛИ

Необычные механические свойства Ti_3SiC_2 обусловлены сложным механизмом деформации, где скольжение и ламинатный разрыв являются доминирующими. Ti_3SiC_2 относится к классу кристаллов, пластичность которых очень анизотропна, и важную роль играет образование дислокационных петель [10—13, 73—75]. Как и большинство ке-

рамик, Ti₃SiC₂ претерпевает хрупкое разрушение вплоть довысоких температур (хрупко-пластичный переход наблюдается приблизительно при 1100 °C), а значительная пластичность без разрушения наблюдается выше 1200 °C [10, 34, 76, 77]. Расслаивание снижает вязкость разрушения и играет важную роль в пластическом поведении Ti_3SiC_2 при высокой температуре [77, 78]. Характер разрушения и механизм пластической деформации связаны с особенностями химической связи, поэтому теоретическое моделирование деформационного поведения является весьма информативным и важным для понимания механических свойств.

Предложенные деформационные модели [80—82] были успешно использованы для изучения хрупких свойств металлов и интерметаллидов [83—86]. Тип разрушения анализируется в рамках критерия Райса—Томпсона путем сравнения двух конкурирующих процессов: раскрытие трещины (хрупкое разрушение) и испускание дислокации вблизи вершины трещины (пластическая деформация), которые моделируются энергией разрыва $G_{\rm C} = 2\gamma_s$, где γ_s — энергия образования поверхности, и энергией нестабильного дефекта упаковки $\gamma_{\rm us}$ [80—82]. Сопоставление этих энергетических параметров позволяет предсказать характер разрушения (хрупкий или вязкий) и объяснить микроскопический механизм разрушения. В модели Райса и Томпсона [81, 82] предполагается, что материалы с малым значением $\gamma_s/\gamma_{\rm us}$ ($D = 0.3\gamma_s/\gamma_{\rm us} < 1$) являются хрупкими, а при обратном соотношении разрушение будет сопровождаться пластической деформацией. С использованием *ab initio* подхода моделирование хрупкого разрушения в Ti₃SiC₂ проведено в работах [44, 71, 87], а другого типа деформации — скольжения — в работе [88].

Микроскопический механизм хрупкого разрушения в Ti_3SiC_2 изучался путем сравнения идеальной энергии разрыва G_C для различных плоскостей [44, 71, 87]. Известно, что идеальные характеристики — энергия разрыва и критическое напряжение разрыва — переоценивают наблюдаемые значения, тем не менее они позволяют предсказать их верхние пределы. Кроме того, *ab initio* подходы позволяют связать процесс разрыва с особенностями электронной структуры и химической связи и выявить микроскопические причины хрупкого разрушения.

Расчеты [44, 71, 87] приводят к аналогичным результатам для энергий разрыва в Ti₃SiC₂, несмотря на различные модели и использованные методы: расчеты проведены методами SIESTA [47], VASP [71] и FLAPW [87]. Рассчитав энергии разрыва как $G_{\rm C} = (E_{\rm broken} - E_{\rm bulk})/2$, где Ebroken — полная энергия кристалла с разорванными связями; Ebulk — энергия идеального кристалла, получено, что энергии разрыва между плоскостями Ti1-C, Ti2-C и Si-Ti2 равны 6,16, 7,16 и 3,16 Дж/м² соответственно [44]. Эти результаты показывают, что связи Ті-С вдвое сильнее связей Ti-Si. В рамках простой модели, основанной на сопоставлении координационных чисел и модулей упругости для Ti₃SiC₂ и TiC, силовые константы K₁ для связей Ті—С и K_2 для связей Ті—Si могут быть выражены как $K_1 = 4K_2$, а зависимость энергии деформации от величины деформации $S - 9 K_1 S^2$ [44]. Это означает, что упругий отклик системы сильнее, чем можно было бы предположить на основе рассчитанных энергий разрыва. Рассчитывая энергии разрыва между плоскостями X и Y как $G_{\rm C} = (E_{\rm slab}^X + E_{\rm slab}^Y - nE_{\rm bulk})/2S_0$, где $E_{\rm slab}^X$ и E_{slab}^{Y} — энергии симметричных частей разорванного кристалла; *n* — число элементарных ячеек в рассматриваемой суперъячейке; S₀ — площадь, были получены значения энергий разрыва 5,07, 6,33 и 2,88 Дж/м² для плоскостей Ti1—C, Ti2—C и Si—Ti2 соответственно [71]. Эти значения оказались несколько ниже, чем результаты, полученные в [44], что, по-видимому, обусловлено учетом атомной релаксации в работе [71].

Авторы [87] моделировали процесс разрыва, меняя расстояние d между двумя частями кристалла. Энергия разделения двух половин кристалла и напряжения разрыва в зависимости от расстояния между слоями Ti1—C, Ti2—C и Si—Ti2 приведены на рис. 13. Рассчитанные энергии были аппроксимированы универсальным соотношением $E_{CL} = G_C[1 - (1 + x)\exp(-x)]$, $x = d/\lambda$, где асимптотическое значение определяет энергию G_C (энергия, необходимая для расщепления бесконечного кристалла на две полубесконечные части), а λ является характерной длиной, соответствующей критическому напряжению разрыва σ_{max} (максимум производной).

Таблица

Энергии разрыва $G_C = 2\gamma_s$ (Дж/м²), энергии нестабильной упаковки γ_{us} , отношение γ_s/γ_{us} и $D = 0.3\gamma_s/\gamma_{us}$ для Ti₃SiC₂

Плоскость (0001)	G_{C}	$\gamma_{us} \ [\overline{12} \ \overline{10}]$	γ_s/γ_{us}	D	
Ti1—C	4,680	4,206	0,56	0,17	
Ti2—C	5,761	4,849	0,59	0,18	
Ti2—Si	2,677	0,944	1,42	0,43	

Рассчитанные характеристики разрыва (табл. 5) показывают ту же тенденцию для химической связи между слоями Ti1—C, Ti2—C и Si—Ti2, и, таким образом, все *ab initio* расчеты [44, 71, 87] предсказывают, что трещина в кристалле Ti_3SiC_2 образуется преимущественно между слоями Ti2 и Si, где энергия разрыва в 2 раза ниже, чем между другими атомными

Рис. 13. Энергия и напряжение разрыва Ti₃SiC₂ как функция расстояния *d* между слоями Ti1 — C, Ti2 — C и Ti2 — Si в Ti₃SiC₂ (*d* = 0 соответствует равновесному расстоянию между слоями) [87]

слоями. Наибольшее значение $G_{\rm C}$ получено для разрыва между соседними слоями титана и углерода, что соответствует сильным ковалентным связям Ti—C, т.е. расслаивание в слоях Ti2—C—Ti1—C—Ti2 карбидных блоков является маловероятным. Расчеты [87] предсказывают идеальную прочность на разрыв между слоями Ti2 и Si ~12,6 ГПа и максимальную деформацию — 21 %. Эти значения на 25 % превышают экспериментальные данные [10, 76]. Следует отметить, что идеальные значения обычно переоценивают реальные характеристики, которые определяются меньшим числом оборванных связей, а также зависят от дефектов и типа деформации.

Модельными параметрами, характеризующими процесс пластичности, являются энергия нестабильной упаковки γ_{us} и напряжение сдвига. Экстремальные значения энергий дефектов упаковки являются ключевыми параметрами, которые определяют структуру и подвижность дислокаций [80]. Рассчитанные [88] γ_{us} для направления [1210] в базисных плоскостях Ti2—Si, Ti1—C и Ti2—C, приведены в табл. 5. Наименьшее значение γ_{us} соответствует скольжению в плоскости кремния в направлении [1210], что согласуется с экспериментально наблюдаемым типом дислокаций [10]. Энергетический барьер для сдвигов в этом же направлении в базисных плоскостях Ti1—C и Ti2—C и Ti2—C в 5 раз выше, что коррелирует с характером химической связи — сильными ковалентными (направленными) связями Ti3d—C2р и слабыми связями Ti—Si [40, 59]. Таким образом, существует сильная анизотропия не только для сдвига в доль осей *a* и *c* из-за *c/a* >> 1, но и для сдвига в различных базисных плоскостях. Основываясь на этих результатах, сделан вывод, что карбидный блок [TiC], состоящий из атомных слоев Ti2—C—Ti1—C—Ti2, представляет собой часть кристалла, где сдвиги маловероятны. Это объясняет, почему в отличие от металлов легкие примеси не влияют на дислокации в Ti₃SiC₂.

Таким образом, теоретическое моделирование предсказывает, что базисная плоскость Ti2—Si является предпочтительной как для легкого скола, так и для скольжения. Согласно критерию Райса—Томпсона, материал является пластичным, если $D = 0.3\gamma_s/\gamma_{us} > 1$ [81, 89], в противном случае его разрушение будет хрупким. Как следует из табл. 5, значение D даже для плоскости Si (0001) меньше единицы, т.е. Ti₃SiC₂ характеризуется хрупким разрушением. Тем не менее, этот силицид должен быть более пластичным, чем, например, силициды молибдена, у которых D = 0.04 - 0.1 [90].

МОДЕЛИ НАНОТРУБОК ФАЗ МАХ

В данном разделе рассмотрены первые теоретические модели гипотетических тубулярных форм на основе Ti₃SiC₂ и родственных силикокарбидов титана [91, 92]. Наноразмерные квази-

Рис. 14. Атомные структуры кристаллических (вверху) и тубулярных (внизу) (20,20) $Ti_{n+1}SiC_n$ (n = 1, 2, 3) наноламинатов. В качестве примера приведены поперечные сечения (20,20) нанотрубок $Ti_{n+1}SiC_n$ (20,20) [92]

одномерные (1D) структуры, такие как наностержни, нанонити и нанотрубки, привлекают большое внимание благодаря их уникальным электронным, оптическим и механическим свойствам, которые могут резко отличаться от свойств соответствующих кристаллических фаз. Эти 1D структуры в настоящее время относятся к наиболее перспективным наноматериалам с широким потенциалом технологических приложений [93—95]. Новые свойства таких наноструктур связаны с эффектами комбинации их размеров, размерности и морфологии. Сейчас хорошо известно, что слоистые соединения являются наиболее перспективными системами для образования упомянутых 1D наноразмерных структур. Таким образом, можно полагать, что слоистый Ti_3SiC_2 (как и родственные $Ti_{n+1}SiC_n$ фазы: Ti_2SiC и Ti_4SiC_3) могут при определенных условиях образовывать нанотубулярные формы.

Недавно предложены [91] первые атомные модели нанотрубок (HT) на основе Ti_3SiC_2 и исследованы их электронные свойства. Атомные структуры бесконечно протяженных нанотрубок Ti_3SiC_2 построены [91] по известной схеме, развитой для описания атомной структуры однослойных углеродных нанотрубок (см, например, [96]) — "сверткой" фрагмента слоя (Si/Ti/C/Ti) в цилиндр, который при этом сохраняет стехиометрию кристаллической фазы. Подобно плоскому слою Ti_3SiC_2 , стенки этих нанотрубок могут быть описаны как 6 моноатомных коаксиальных цилиндров: трех Ti, двух C и одного внешнего цилиндра Si (рис. 14).

В зависимости от направления свертки (аналогично однослойным нанотрубкам углерода и НТ других неорганических соединений) были построены атомные модели для трех классов нанотрубок Ti₃SiC₂: *armchair* (*n*,*n*)-, *zigzag* (*n*,0)- и хиральные (*n*,*m*)-нанотрубки. В качестве примера на рис. 15 приведены структуры нехиральных *armchair* (20,20) НТ, оптимизированных методом функционала электронной плотности в приближении сильной связи [97]. Эти результаты указывают на возможность существования устойчивых тубулярных структур наноламинатов, которые сохраняют свою тубулярную морфологию после оптимизации геометрии. Аналогичным образом могут быть сконструированы НТ других гексагональных наноламинатов Ti_{*n*+1}SiC_{*n*}. Например, нанотрубки Ti₂SiC и Ti₄SiC₃ составлены из цилиндров (Si/Ti/C/Ti) и (Si/Ti/C/Ti/C/Ti) соответственно (см. рис. 14).

Расчеты электронной структуры [91, 92] показали, что все Ti_3SiC_2 НТ являются металлоподобными, как и кристаллический Ti_3SiC_2 , вне зависимости от их хиральности (*zigzag* или *armchair*) и диаметра. Однако электронная структура тубулярных наноламинатов Ti_3SiC_2 имеет некоторые важные особенности. На рис. 15 в качестве примера представлены полные и парциальные плотности состояний для (22,0) нанотрубки Ti_3SiC_2 . Нижняя полоса спектра (полоса *A*), расположенная между –10,5 и –9,0 эВ, составлена C2*s*-состояниями. Следующая полоса *B* в интервале между –7,2 и –5,5 эВ образована преимущественно Si3*s*-состояниями. Широкая при-

фермиевская полоса (от -4 эВ до $E_{\rm F}$) относится к гибридизованным состояниям Ti3d—C2p—Si3p, где состояния в интервале от -4 до -1,3 эВ (пик C) ответственны за связи Ti—C, а состояния между -1,3 эВ до $E_{\rm F}$ (пик D) являются несвязывающими. Главный вклад в $N(E_{\rm F})$ вносят атомы титана, причем Ti3d-состояния являются доминирующими

(69,6 %) по сравнению с Ti4*p*- (8,7 %) и Ti4*s*- (4,3 %) состояниями. Таким образом, ПС нанотрубок Ti₃SiC₂ имеет характерный металлический тип с ненулевой плотностью состояний на уровне Ферми $N(E_{\rm F})$. Тем не менее в случае тубулярного наноламината $E_{\rm F}$ расположен в области локального минимума ПС, в то время как у кристаллического Ti₃SiC₂ на уровне Ферми находится локальный максимум ПС, см. выше.

Электронные спектры нанотрубок Ti₂SiC и Ti₄SiC₃ были рассчитаны в рамках того же метода, однако без релаксации геометрии [92]. Было установлено, что эти HT сохраняют свой металлоподобный характер с существенной плотностью состояний на уровне Ферми, а также имеют ряд важных особенностей. По сравнению с соответствующими кристаллическими фазами наноламинатов для трубок Si3*p*-состояния смещаются в область более высоких энергий и вносят заметный вклад в ПС на уровне Ферми, что не наблюдалось в соответствующих кристаллах. Таким образом, в отличие от кристаллов, для нанотрубок Ti₂SiC и Ti₄SiC₃ в проводимости могут участвовать состояния атомов кремния. Кроме того, на профиле полных ПС для нанотрубок ясно наблюдается появление дополнительных пиков, которые вызваны аналогичными смещениями 3*d*-состояний атомов титана, находящихся на внутренней стороне трубок [92]. Дальнейшие изменения в ПС этих трубок могут вызываться эффектами атомной релаксации, хотя, как показано расчетами родственных нанотрубок на основе TiC и TiSi₂ [98, 99], их роль не должна быть значительной.

Вычисленные заселенности межатомных связей [92] для всех нанотрубок $Ti_{n+1}SiC_n$ указывают, что в сравнении с соответствующими кристаллами происходит общее ослабление ковалентных связей Ti—C, относительное упрочнение связей Ti—Si и принципиальное изменение в зарядовом состоянии поверхностных атомов кремния, которые приобретают отрицательные заряды в противоположность положительно заряженным атомам Si в соответствующих кристаллах. Эти особенности могут обусловливать существенные изменения в функциональных (например, механических, термических и электрофизических) характеристиках тубулярных форм наноламинатов $Ti_{n+1}SiC_n$ в сравнении с соответствующими кристаллами.

Оценки [91] энергий свертки E_{str} (т.е. разницы в энергиях нанотрубки и соответствующего плоского слоя) для Ti₃SiC₂ HT показывают, например, что E_{str} для (20,20) трубки близка к 0,07 эВ/атом, что является промежуточным значением между E_{str} для широко известных углеродных (~0,01 эВ/атом [93]) и синтезированных MoS₂ нанотрубок (~0,15 эВ/атом [96]) сравнимых диаметров. Этот результат может рассматриваться как дополнительный аргумент в пользу возможности существования предлагаемых тубулярных Ti₃SiC₂ материалов. Кроме этого, установлено, что *zigzag*-нанотрубки Ti₃SiC₂ энергетически более предпочтительны, чем трубки с *armchair* хиральностью [91].

Хотя энергии свертки нанотрубок Ti_3SiC_2 оказываются [91, 92] относительно низкими, такие материалы до сих пор не получены. Можно предположить, что предложенные нанотрубки (как и трубки на основе других подобных слоистых МАХ фаз) могут быть получены методом Принца [100] с использованием тонких эпитаксиальных пленок, которые направленно могут быть отделены от субстрата и свернуты в разнообразные цилиндрические микро- и нанотрубки. Более того, такие тонкие Ti₃SiC₂ уже успешно синтезированы [101, 102].

Другим возможным способом получения нанотубулярных форм MAX фаз может стать использование химического или физического метода темплатного синтеза [94, 95]. Несмотря на то, что указанные подходы для $Ti_{n+1}SiC_n$ до сих пор не использовались, они достаточно успешно реализованы для родственных соединений — карбидов и силицидов переходных металлов. Например, этот способ применялся для синтеза нанотрубок карбида титана TiC и силицида ванадия V₅Si₃. Было отмечено, что реакция между углеродными нанотрубками, использовавшимися одновременно в качестве темплатов и реагентов, и паров титана в течение 30 ч при 1300 °C дает на заключительном этапе массив из нанотрубок и нанопроволок TiC, а также наночастиц TiC, покрывающих непрореагировавшие углеродные нанотрубки [103]. Углеродные нанотрубки послужили темплатами и реагентами в ходе реакции при 650 °C с ниобием (выделяющимся при восстановлении натрием из NbCl₅) для производства нанотрубок карбида ниобия [104]. В качестве другой подложки может использоваться сапфир: такие силицидные структуры как гексагональные нанопровода и нанотрубки V₃Si₃ были выращены методом химического осаждения из паровой фазы на ванадиевой фольге, размещенной на порошке кремния, с использованием VCl₃ [105].

По-видимому, некоторые реакции в определенных условиях также могут привести к образованию наноламинатов тубулярной формы и без участия темплатов. Подобный подход был успешно реализован для приготовления нанотрубок таких соединений как карбид вольфрама WC и силицид кремния Mn_5Si_3 . Низкотемпературное разложение при 900 °C карбонила вольфрама W(CO)₆ в присутствии порошка Mg позволяет синтезировать нанотрубки WC [106]. Полые наночастицы и бамбуковидные нанотрубки Mn_5Si_3 были получены в ходе реакции $MnCl_2$ с Mg_2Si при 650 °C [107].

ЗАКЛЮЧЕНИЕ

В настоящем обзоре продемонстрированы возможности *ab initio* методов для исследования и прогноза свойств Ti_3SiC_2 — одного из перспективных соединений семейства тройных слоистых фаз МАХ. Изложенный материал позволяет отметить, что теоретические работы являются важной составной частью физико-химических и материаловедческих исследований этих фаз, которые непосредственно связаны с текущими экспериментальными и технологическими задачами, и позволяют как детально понять природу многих свойств (электронных, структурных, когезионных, механических характеристик), подробно проанализировать химическую связь для уже синтезированных наноламинатов, так и прогнозировать новые эффекты (например, нестехиометрии или допирования наноламинатов) или материалы (нанотрубки).

Важно подчеркнуть, что современные теоретические исследования на основе *ab initio* методов позволяют перейти к моделированию важных для развития материаловедения свойств, таких как параметры упругости, механизмы пластичности и хрупкого разрушения материалов. Безусловно, *ab initio* подходы, возможности которых продемонстрированы на примере силико-карбида титана Ti_3SiC_2 — прототипа семейства МАХ фаз, в ближайшем будущем найдут свое дальнейшее применение для детальных исследований других соединений этого перспективного класса материалов.

Работа выполнена при поддержке Российского фонда фундаментальных исследований, грант 10-03-96015-р_урал_а.

СПИСОК ЛИТЕРАТУРЫ

- 1. Jeitschko W., Nowotny H., Benesovsy F. // Monatsh. Chem. 1963. 94. P. 672.
- 2. Jeitschko W., Nowotny H., Benesovsy F. // Monatsh. Chem. 1963. 94. P. 844.
- 3. Jeitschko W., Nowotny H., Benesovsy F. // Monatsh. Chem. 1964. 94. P. 1198.
- 4. Jeitschko W., Nowotny H., Benesovsy F. // Monatsh. Chem. 1964. 95. P. 178.
- 5. Jeitschko W., Nowotny H., Benesovsy F. // Monatsh. Chem. 1964. 95. P. 1004.
- 6. Jeitschko W., Nowotny H. // Monatsh. Chem. 1967. 98. P. 329.
- 7. Nowotny H. // Prog. Solid State Chem. 1971. 5. P. 27.
- 8. Nickl J.J., Schweitzer K.K., Luxenberg P. // J. Less Common Met. 1972. 26. P. 283.

- 9. *Goto T., Hirai T.* // Mat. Res. Bull. 1987. 22. P. 1195.
- 10. Barsoum M.W. // Prog. Solid State Chem. 2000. 28. P. 201.
- 11. Zhang H.B., Bao Y.W., Zhou Y.C. // J. Mater Sci. Technol. 2009. 25. P. 1.
- 12. Wang J.Y., Zhou Y.C. // Annual Rev. Mater. Res. 2009. **39**. P. 415.
- 13. Eklund P., Beckers M., Jansson U. et al. // Thin Solid Films. 2010. 518. P. 1851.
- 14. Palmquist J.P., Li S., Persson P.O. et al. // Phys. Rev. 2004. B70. P. 165401.
- 15. Hogberg H., Eklund P., Emmerlich J. et al. // J. Mater. Res. 2005. 20. P. 779.
- 16. Lofland S.E., Hettinger J.D., Meehan T. et al. // Phys. Rev. 2006. B74. P. 174501.
- 17. Bortolozo A.D., Fisk Z., Sant'Anna O.H. et al. // Physica. 2009. C469. P. 256.
- 18. *Holm B., Ahuja R., Li S., Johansson B.* // J. Appl. Phys. 2002. **91**. P. 9874.
- 19. Halilov S.V., Singh D.J., Papaconstantopoulos D.A. // Phys. Rev. 2002. B65. P. 174519.
- 20. Shein I.R., Bamburov V.G., Ivanovskii A.L. // Dokl. Phys. Chem. 2006. 411. P. 317.
- 21. Kanoun M.B., Goumri-Said S., Reshak A.H. // Comput. Mater. Sci. 2009. 47. P. 491.
- 22. Medkour Y., Bouhemadou A., Roumili A. // Solid State Commun. 2008. 148. P. 459.
- 23. Shein I.R., Ivanovskii A.L. // Phys. Solid State. 2009. 51. P. 1608.
- 24. Ivanovsky A.L., Novikov D.L., Shveikin G.P. // Mendeleev Commun. 1995. N 3. P. 90.
- 25. Ivanovskii A.L., Medvedeva N.I. // Mendeleev Commun. 1999. N 1. P. 36.
- 26. Ivanovskii A.L., Medvedeva N.I. // Z. Neorgan. Khimii. 1998. 43. S. 462 428.
- 27. Medvedeva N.I., Novikov D.L., Ivanovsky A.L. et al. // Phys. Rev. 1998. B58. P. 16042.
- 28. Ивановский А.Л. // Успехи химии. 1995. **64**. С. 499.
- 29. Ивановский А.Л., Гусев А.И., Швейкин Г.П. Квантовая химия в материаловедении. Тройные карбиды и нитриды переходных металлов и элементов Шб, IV6 подгрупп. Екатеринбург: УрО РАН, 1996.
- 30. *Blaha P., Schwarz K., Madsen G.K.H. et al.* / WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. Vienna: Vienna University of Technology, 2001.
- 31. Kresse G., Furthmuller J. // Comput. Mater. Sci. 1996. 6. P. 15.
- 32. Kresse G., Furthmuller J. // Phys. Rev. 1996. B54. P. 11169.
- 33. *Kresse G., Joubert D.* // Phys. Rev. 1999. **B59**. P. 1758.
- 34. Segall M.D., Lindan P.J.D., Probert M.J. et al. // J. Phys. Condens. Matter. 2002. 14. P. 2717.
- 35. Keast V.J., Harris S., Smith D.K. // Phys. Rev. 2009. B80. P. 214113.
- 36. Wang J.Y., Zhou Y.C. // J. Phys. Condens. Matter. 2003. 15. P. 1983.
- 37. Wang J.Y., Zhou Y.C. // Phys. Rev. 2004. B69. P. 144108.
- 38. Ahuja R., Eriksson O., Wills J.M., Johansson B. // Appl. Phys. Lett. 2000. 76. P. 2226.
- 39. Chaput L., Hug G., Pecheur P., Scherrer H. // Phys. Rev. 2007. B75. P. 035107.
- 40. Zhou Y.C., Sun Z.M., Wang X.H., Chen S. J. // J. Phys. Cond. Matter. 2001. 13. P. 10001.
- 41. Wang Z.C., Tsukimoto S., Saito M., Ikuhara Y. // Phys. Rev. 2009. B79. P. 045318.
- 42. Murnaghan F.D. // Proc. Nat. Acad. Sci. USA. 1944. 30. P. 244.
- 43. *Pierson H.O.* Handbook of Refractory Carbides and Nitrides: Properties. Westwood, NJ.: Processing and Applications. Noyes Publ., 1996.
- 44. Fang C.M., Ahuja R., Eriksson O. et al. // Phys. Rev. 2006. B74. P. 054106.
- 45. Schreiber E., Anderson O.L., Soga N. Elastic Constants and their Measurements. New York: McGraw-Hill, 1973.
- 46. Mehl M.J. // Phys. Rev. 1993. B47. P. 2493.
- 47. Шеин И.Р., Кийко И.С., Макурин Ю.Н. и др. // Физика твердого тела. 2007. **49**. Р. 1015.
- 48. Китель Ч. Введение в физику твердого тела. М.: Наука, 1978.
- 49. Born M., Huang K. Dynamical Theory of Crystal Lattices. Oxford: Clarendon, 1956.
- 50. Voigt W. // Lehrburch der Kristallphysik. Leipzig: Teubner, 1928.
- 51. Reuss A., Angew Z. // Math. Mech. 1929. 9. P. 49.
- 52. Hill R. // Proc. Phys. Soc. London. 1952. 65. P. 350.
- 53. Pugh S.F. // Phil. Mag. 1954. 45. P. 823.
- 54. Ravindran P., Fast L., Korzhavyi P.A. et al. // J. Appl. Phys. 1998. 84. P. 4891.
- 55. Tvergaard V., Hutchinson J.W. // J. Amer. Chem. Soc. 1998. 71. P. 157.
- 56. Hao X., Xu Y., Wu Z. et al. // J. Alloys Comp. 2008. 453. P. 413 417.
- 57. Peng F., Peng W., Fu H., Yang X. // Physica. 2009. B404. P. 3363.
- 58. Wang J.Y., Zhou Y.C., Liao T., Lin Z.J. // Appl. Phys. Lett. 2006. 89. P. 021917.
- 59. Medvedeva N.I., Novikov D.L., Ivanovsky A.L. et al. // Phys. Rev. 1998. B58. P. 16042.
- 60. Sun Z.M., Zhou Y.C. // Phys. Rev. 1999. B60. P. 1441.
- 61. Zhou Y.C., Sun Z.M. // J. Phys. Cond. Matter. 2000. 12. P. L457 L462.
- 62. Magnuson M., Palmquist J.P., Mattesini M. et al. // Phys. Rev. 2005. B72. P. 245101.

- 63. Eklund P., Virojanadara C., Emmerlich J. et al. // Phys. Rev. 2006. B74. P. 045417.
- 64. Ahuja R., Sun Z., Luo W. // High Press. Res. 2006. 26. P. 127.
- 65. Orellana W., Gutierrez G., Menendez-Proupin E. et al. // J. Phys. Chem. Solids. 2006. 67. P. 2149 2153.
- 66. Lv M.Y., Chen Z.W., Liu R.P. // Mater. Lett. 2006. 60. P. 538.
- 67. Wang J.Y., Zhou Y.C. // J. Phys.: Condens. Matter. 2003. 15. P. 1983.
- 68. Palmquist J.P., Li S., Persson P.O. et al. // Phys. Rev. 2004. B70. P. 165401.
- 69. Wang J.Y., Zhou Y.C. // J. Phys. Condens. Matter. 2003. 15. P. 5959.
- 70. *Xu X., Wu E., Du X. et al.* // J. Phys. Chem. Solids. 2008. **69**. P. 1356.
- 71. Zhang H.Z., Wang S.Q. // Acta Mater. 2007. 55. P. 4645.
- 72. Chaput L., Hug G., Pecheur P., Scherrer H. // Phys. Rev. 2005. B71. P. 121104R.
- 73. Barsoum M.W., Farber L., El-Raghy T. // Metall. Mater. Trans. 1999. A34. P. 1727.
- 74. Barsoum M.W., Murugaiah A., Kalidindi S.R., Zhen T. // Phys. Rev. Lett. 2004. 92. P. 255508.
- 75. Zhen T., Barsoum M.W., Kalidindi S.R. et al. // Acta Mater. 2005. 53. P. 4963.
- 76. Sun Z.M., Zhang Z.F., Hashimoto H., Abe T. // Mater. Trans. 2002. 43. P. 432.
- 77. Zhang Z.F., Sun Z.M., Hashimoto H. // Mater. Lett. 2003. 57. P. 1295.
- 78. Zhang Z.F., Sun Z.M., Hashimoto H. // Advanced Eng. Mater. 2004. 6. P. 980.
- 79. Kooi B.J., Poppen R.J., Carvalho N.J. et al. // Acta Mater. 2003. 51. P. 2859.
- 80. Vitek V. // Cryst. Latt. Def. 1974. 5. P. 1.
- 81. *Rice J.R., Thompson R. //* Phil. Mag. 1973. **29**. P. 73.
- 82. Sun Y., Rice J.R., Trushinovsky L. // Mater. Res. Soc. Symp. Proc. 1991. 231. P. 243.
- 83. Kaxiras E., Duesbery M.S. // Phys. Rev. Lett. 1993. 70. P. 3752.
- 84. Yoo M.H., Fu C.L. // Mater. Sci. Eng. 1993. A153. P. 470.
- 85. Medvedeva N.I., Mryasov O.N., Gornostyrev Yu.N. et al. // Phys. Rev. 1996. B54. P. 13506.
- 86. Gornostyrev Yu.N., Katsnelson M.I., Medvedeva N.I. et al. // Phys. Rev. 2000. B62. P. 7802.
- 87. Medvedeva N.I., Freeman A.J. // Scripta Mater. 2008. 58. P. 671.
- 88. Медведева Н.И., Ивановский А.Л. // Деформация и разрушение материалов. 2008. 1, № 1. С. 1.
- 89. *Rice J.R.* // J. Mech. Phys. Solids. 1992. 40. P. 239.
- 90. Chan K.S. // Metall. Mater. Trans. 2003. 34A. P. 2315.
- 91. Enyashin A.N., Ivanovskii A.L. // Mater. Lett. 2008. 62. P. 663.
- 92. Enyashin A.N., Ivanovskii A.L. // Theor. Exp. Chem. 2009. 45. P. 98.
- 93. Ивановский А.Л. // Успехи химии. 1999. 68. С. 119.
- 94. Patzke G.R., Krumeich F., Nesper R. // Angew. Chem. Int. Ed. 2002. 41. P. 2446.
- 95. Tenne R., Seifert G. // Annu. Rev. Mater. 2009. 39. P. 387 413.
- 96. Tenne R., Remškar M., Enyashin A.N., Seifert G. // Top. Appl. Phys. 2008. 11. P. 631 671.
- 97. Seifert G. // J. Phys. Chem. 2007. A111. P. 5609 5613.
- 98. Enyashin A.N., Ivanovskii A.L. // Physica. 2005. E30. P. 164 168.
- 99. Enyashin A.N., Gemming S. // Phys. Stat. Sol. 2007. B244. P. 3593 3600.
- 100. Prinz V.Y. // Microelect. Engin. 2003. 69. P. 466 475.
- 101. Emmerlich J., Hogberg H., Sasvari S. et al. // J. Appl. Phys. 2004. 9. P. 4817 4826.
- 102. Hogberg H., Hultman L., Emmerlich J. et al. // Surf. Sci. 2008. 62. P. 663 665.
- 103. Taguchi T., Yamomoto H., Shamoto S. // J. Phys. Chem. 2007. C111. P. 18888 18891.
- 104. Shi L., Gu Y., Chen L. et al. // Carbon. 2005. 43. P. 195 213.
- 105. In J., Seo K., Lee S. et al. // J. Phys. Chem. 2009. C113. P. 12996 13001.
- 106. Pol S.W., Pol V.G., Gedanken A. // Adv. Mater. 2006. 18. P. 2023 2027.
- 107. Yang Z., Gu Y., Chen L. et al. // Solid State Comm. 2004. 130. P. 347.