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Выполнен анализ чувствительности моделирования гемодинамики в области аневризмы брюшной аор-

ты к входным граничным условиям. Для трех пациент-специфичных конфигураций с аневризмой была рассчи-

тана гемодинамика с различными пространственными и временными профилями скорости на входе и проведе-

на оценка их влияния на гемодинамические характеристики. В общей сложности было оценено три простран-

ственных (равномерный, параболический и параболический с наложением вторичного потока) и три времен-

ных профиля скорости, что привело к девяти случаям для каждой из трех геометрий. Результаты исследования 

показывают, что влиянием пространственного профиля скорости на входе, в том числе неаксиальными компо-

нентами вектора скорости, можно пренебречь. При этом величина обратного диастолического потока наиболее 

сильно отражается на решении. Тем не менее, в области аневризмы брюшной аорты не выявлено существен-

ных различий в результатах моделирования для усредненных по сердечному циклу величин напряжения сдви-

га стенки и скорости. Для распределения колебательного индекса сдвига максимальное отклонение от базового 

решения достигает ~ 10 %, что также является приемлемым для клинических применений. 
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Введение 

В настоящее время наблюдается рост числа больных с аневризмами аорты, а наи-

более частой локализацией является ее брюшной отдел [1]. Аневризма брюшной аорты 
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(АБА) — это патологическое выпячивание просвета брюшной аорты по сравнению 

с нормальным диаметром на 50 % или более. Прогрессирование аневризматического 

расширения сопровождается увеличением нефизиологической нагрузки на ее стенку. 

Если напряжение становится достаточно большим, аневризма разрывается, что приводит 

к смерти почти в 90 % случаев. Основным критерием для оценки риска разрыва ане-

вризмы в клинической практике остается максимальный диаметр АБА, однако недавние 

исследования [2, 3] показали, что существует сильная корреляция между динамикой 

кровотока и ростом аневризмы. Таким образом, гемодинамические параметры потока 

в области аневризмы, полученные с помощью методов вычислительной гидродинамики 

(CFD, computational fluid dynamics), являются перспективными для построения предик-

тивных моделей роста аневризмы и риска ее разрыва [4]. 

В последнее время персонализированное CFD-моделирование широко применяется 

в сердечно-сосудистых исследованиях для анализа динамики кровотока и оценки гемо-

динамических характеристик, точное измерение которых экспериментальными метода-

ми недоступно [5, 6]. В случае аневризматического поражения аорты такие параметры, 

как напряжение сдвига стенки (WSS, wall shear stress), усредненное по сердечному циклу 

WSS (TAWSS, time-average wall shear stress), колебательный индекс сдвига (OSI, 

oscillatory shear index), являются важными маркерами деградации стенки сосуда [7] 

и роста внутрисосудистого тромба (ILT, intraluminal thrombus) [8], биомеханическая роль 

которого в росте и разрыве  аневризмы остается неясной [9]. В работе [4] было выделено 

три типа структуры течения в области АБА и на основании данной классификации пока-

зано, что тип кровотока со спиральным основным каналом и спиральными вихрями ас-

социируется с высоким риском разрыва. 

Постановка граничных условий (ГУ) играет решающую роль для пациент-специ-

фичного моделирования и получения количественных оценок гемодинамических ха-

рактеристик. Методы 4D FLOW МРТ (4D PC-MRI) [10] и ультразвуковой допплерогра-

фии [11] могут использоваться для измерения скорости кровотока в крупных артериях. 

Однако прямое применение этих методов для задания входных граничных условий мо-

жет оказаться некорректным: клинические данные УЗИ позволяют приближенно изме-

рять временной профиль скорости потока, а измерения 4D FLOW МРТ подвержены вы-

сокой зашумленности, имеют низкое пространственное разрешение и требуют коррект-

ного отображения поперечного профиля скорости на соответствующее сечение рекон-

струированной геометрии [6]. К тому же, из-за практических трудностей физиологичес-

кие измерения скорости и давления [12] на входах и выходах аорты далеко не всегда 

доступны, поэтому наиболее распространенным подходом в моделировании гидродина-

мики сердечно-сосудистой системы по-прежнему является постановка более простых 

(неперсонализированных) граничных условий. Следовательно, для оценки предсказа-

тельной способности CFD-расчетов гемодинамики  необходим тщательный анализ чув-

ствительности результатов моделирования к граничным условиям (неопределенностям 

граничных условий). 

Существует большое количество работ, посвященных проблеме выходных гранич-

ных условий [13 – 15]. Для задания ГУ на выходных границах используется несколько 

постановок: постоянное или изменяющееся во времени давление, измеренное внутрисо-

судистым датчиком; условие разделения потока; модели Виндкесселя [16] или одномерные 

модели [17], описывающие циркуляцию крови ниже по потоку. Анализ литературы [17 – 19] 

показывает, что наиболее распространенными выходными граничными условиями 

являются нулевое давление и соотношение расхода выходных потоков, основанное на за-

коне Мюррея [17, 19] или на данных, измеренных in vivo. В работе [20] было показано, 
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что для моделирования гемодинамики аорты влияние различных выходных ГУ значи-

тельно только вблизи выходных сечений, а на расстоянии пяти характерных диаметров 

аорты от выходных границ уже является несущественным.  

Оптимальный выбор граничных условий на входе важен с точки зрения стандарти-

зации протокола для персонализированного моделирования гемодинамики аневризмы 

брюшной аорты. Однако в литературе практически отсутствуют систематизированные 

результаты анализа чувствительности гемодинамических CFD-расчетов к неопределен-

ностям входных ГУ. Авторы [21] сравнили результаты расчетов для полностью развито-

го ламинарного (с нулевым градиентом скорости по нормали к поперечному сечению) 

и спирального входных потоков в области бифуркации сонной артерии. Они обнаружи-

ли незначительную разницу в рассчитанных полях скорости, давления и WSS в этой об-

ласти для двух рассмотренных случаев. В работе [22] была обнаружена незначительная 

разница между результатами моделирования гемодинамики внутричерепной аневризмы 

при задании пространственного профиля Уомерсли и равномерного профиля. В некото-

рых работах [23, 24] использовалось предположение об осевом потоке с продлением 

геометрии на несколько диаметров перед истинным входом, чтобы поток мог полностью 

развиться. Однако поток в аорте на уровне почечных артерий может быть не полностью 

развит  или аксиален [25].  

В работе [26] было показано, что для оценки WSS в области аневризмы брюшной 

аорты достаточно одномерных профилей скорости на входе, но для оценки особенностей 

спирального течения необходимо использовать трехмерные профили, измеренные с по-

мощью 4D FLOW МРТ. В работе [27] проводился стохастический анализ чувствитель-

ности расчетов гемодинамики грудной аорты к форме входного сигнала скорости с ис-

пользованием двух параметров — ударного объема и периода сердечного цикла. Было 

показано, что TAWSS в области нисходящей аорты очень чувствительны к этим пара-

метрам.  

Существует ряд исследований [27 – 29], выпролненных с помощью метода числен-

ного моделирования уравнений Навье – Стокса в стационарной и нестационарной поста-

новках, подтверждающих значительную чувствительность распределений давления 

и гемодинамических характеристик (WSS, TAWSS, OSI, относительное время пребыва-

ния (RRT, relative residence time)) в грудной аорте к временным и пространственным 

изменениям граничных условий на входе. В то же время, результаты моделирования 

гемодинамики грудной аорты с различными пространственными профилями на входе, 

представленные в работе [24], свидетельствуют о незначительном влиянии этих измене-

ний на расстоянии более 1,75 входных диаметров от входного сечения.  

Таким образом, по приведенным в публикациях данным невозможно сделать одно-

значный вывод о том, как влияют пространственно-временные изменения входных ГУ 

на гемодинамические характеристики АБА. В настоящей работе предпринята попытка 

сосредоточиться на анализе чувствительности моделирования гемодинамики аневризмы 

брюшной аорты к входным граничным условиям и выполнить оценку их влияния на ге-

модинамические характеристики. 

1. Моделирование гемодинамики аневризмы брюшной аорты: 

    математическая постановка задачи 

Уравнения Навье – Стокса, описывающие трехмерное течение крови в недеформи-

руемой области, численно решаются в приближении ньютоновской, несжимаемой и изо-

термической жидкости. Для моделирования кровотока в области аневризмы брюшной 
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аорты это приближение выполняется с хорошей точностью. Неньютоновские эффекты 

при расчете гемодинамики AБА незначительны, кроме областей, где эритроциты задер-

живаются в режиме малых скоростей сдвига [30]. 

Вычислительная область (см. рис. 1) задается трехмерной геометрией просвета анев-

ризмы, реконструированной по КТ-изображениям. Начальное условие для поля скорости 

внутри области ставится следующим образом: 

0
0.

t
ν  

На жестких стенках просвета задается условие прилипания, на входной границе A —

условие типа Дирихле: 

in ( , ) ( , ),t tν r ν r  

где  (r, t) — заданный  пространственно-временной профиль скорости в поперечном 

сечении. 

В качестве выходных граничных условий задается нулевое редуцированное давле-

ние (относительно референсного) для всех анализируемых геометрий. Для скорости ста-

вится вычислительное граничное условие inletOutlet [31], реализованное в пакете Open-

FOAM, которое задает нулевой нормальный градиент и нулевую скорость на участках 

обратного потока. Иногда выпускные ветви аорты удлиняют с целью исключить риск 

возникновения обратного потока на границе выпуска. Использование упрощенных вы-

ходных ГУ (B, C на рис. 1) может быть оправдано, когда масштаб длины (L) в направле-

нии потока намного больше, чем в поперечной плоскости (l).  

2. Описание методики 

Для анализа чувствительности результатов персонализированного CFD-моделиро-

вания к неопределенностям входных граничных условий рассматривались конфигура-

ции АБА трех пациентов с различной длиной проксимальной шеи аорты (рис. 2а – 2c), 

для двух из которых были получены временные профили скорости, измеренные методом 

ультразвуковой допплерографии. Проксимальная шея аорты определяется как нормальный 

B C

A: 
( , ) = ( , )v r v rin t t ;

: B

C: 

out
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Рис. 1. Область моделирования и граничные условия. 

A — входное сечение, B — выходное сечение левой подвздошной 

артерии, C — выходное сечение правой подвздошной артерии; 

справа — увеличенное изображение вычислительной сетки 

для пациент-специфичной геометрии. 
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сегмент аорты между нижней почечной артерией и началом расширения аневризмы. 

Для каждого из трех пациентов была рассчитана гемодинамика с различными простран-

ственными и временными профилями скорости на входе и проведена оценка их влияния 

на гемодинамические характеристики. В качестве пространственных профилей исполь-

зовались: равномерный, параболический и параболический с наложением вторичного 

потока. Расчеты кровотока в области аневризмы и постобработка результатов были вы-

полнены с помощью разработанного комплекса программ (ААА) для автоматизации 

персонализированного моделирования гемодинамики АБА (рис. 3).  

Комплекс AAA состоит из четырех основных модулей: сегментации КТ-снимков, 

трехмерной реконструкции поверхностной сетки, построения вычислительной сетки 

D D

a b c

 
 

Рис. 2. Конфигурации АБА трех пациентов с различной длиной проксимальной шеи аорты. 

2,5D (а), 5D (b), 6,5D (c), где D — диаметр входного сечения;  

область проксимальной шеи выделена штриховым контуром. 

Сегментация

КТ-снимки

Временной
профиль
расхода

Постобработка
результатов

моделирования

OSI TAWSS

CFD-моделирование

1. Задание ГУ
2. Расчет полей
    скоростей и
    давлений

Генерация сетки

Трехмерная реконструкция

Поверхностная
сетка

 
 

Рис. 3. Структура комплекса программ ААА. 
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и CFD-расчетов. На вход подаются КТ-снимки с контрастированием, на выходе рассчи-

тываются поля скорости и давления, а также гемодинамические характеристики. Ком-

плекс программ реализован на языке Python с использованием вычислительного кода 

OpenFOAM (С++) для дискретизации вычислительной области и CFD-расчетов.  

2.1. Комплекс программ ААА 

2.1.1. Подготовка пациент-специфичной геометрии 

Модуль сегментации контрастированных КТ-изображений построен на основе 

нейронной сети с архитектурой 3D UNet, обученной на 30-ти КТ-снимках пациентов 

с аневризмой брюшной аорты [32]. Для обучения нейросети использовался набор дан-

ных с независимой экспертной разметкой трех классов: просвета аорты, тромботических 

масс и кальцинатов (рис. 4). Сегментированные изображения поступают в модуль трех-

мерной реконструкции геометрии просвета АБА. Автоматическая реконструкция про-

света состоит из выполнения нескольких этапов: продление геометрии ветвей аорты 

(в случае, если длина ветви менее 4 средних диаметров ветви), построение грубой по-

верхности просвета с помощью алгоритма марширующих кубов, сглаживание с помо-

щью фильтра Таубина и явное изотропное перестраивание поверхностной сетки, а также 

замыкание реконструированной поверхности граничными плоскостями [33]. При реали-

зации модуля трехмерной реконструкции использовался инструментарий библиотек 

с открытыми исходными кодами — VTK [34] и VMTK [35]. 

2.1.2. Моделирование трехмерной гемодинамики 

В основе модулей построения расчетной сетки и CFD-расчетов лежит открытый 

код OpenFOAM и его модификации (С++), а также оболочка Python для автоматизации 

всей процедуры моделирования. Для построения вычислительной сетки использовался 

скрипт генерации параметров вычислительной сетки по трехмерной модели, полученной 

из модуля реконструкции, и код утилит blockMesh и snappyHexMesh [36]. Для построе-

ния сетки область с аневризмой разделялась на шестигранные ячейки с помощью утили-

ты blockMesh, а приближение сетки к поверхности аневризмы и уточнение ее присте-

ночных слоев выполнялось с помощью утилиты snappyHexMesh. Анализ сеточной схо-

димости приводится в разделе «Результаты».  

Гемодинамика рассчитывалась в прибли-

жении жестких стенок. Плотность крови и ди-

намическая вязкость составляли ρ = 1040 кг/м3 

и μ = 0,0035 кг/(м с). Уравнения решались ме-

тодом конечных объемов. Для дискретизации 

уравнений по времени использовалась неяв-

ная схема Эйлера первого порядка точности, 

а для пространственных производных применя-

лись схемы второго порядка точности: Gauss 

Linear, Gauss Upwind, Gauss Linear Orthogonal. 

Тромботические 
массы

Кальцинаты

 
 

 

Рис. 4. Классы сегментации: просвет аорты, 

тромботические массы, кальцинаты. 
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Для решения систем линейных алгебраических уравнений использовался алгоритм 

с расщеплением по процессам PIMPLE, который является комбинацией неявных алго-

ритмов PISO [37] и SIMPLE [38]. Для установления решения рассчитывалось пять сер-

дечных циклов с адаптивным шагом по времени. Для обеспечения устойчивости реше-

ния шаг по времени на каждой итерации выбирался таким образом, чтобы в каждой 

ячейке сетки число Куранта не превышало величины 0,5. На стенке просвета задавалось 

условие прилипания. Для задания входного профиля могут применяться как встроенные 

классы OpenFOAM, так и собственные классы граничных условий. По умолчанию ис-

пользовалось адаптивное к контуру входного сечения распределение Пуазейля (приво-

дится далее на рис. 5b), зависящее от времени: 

2

0( , ) ( ) 1 ,
( )

u t u t
R 

  
   
   

r
r  

где R(φ) — зависимость радиуса контура сечения от углового положения φ относительно 

геометрического центра сечения; зависимость от времени u0(t) задается либо экспери-

ментально (данные ультразвуковой допплерографии, 4D FLOW МРТ), либо по эталон-

ному профилю из литературы. Расчеты проводились на вычислительном кластере ИТ 

СО РАН. 

2.2. Исследование чувствительности к входным граничным условиям 

В качестве входных ГУ использовались комбинации трех пространственных и трех 

временных профилей скорости, что привело к девяти вариантам для каждой из трех па-

циент-специфичных конфигураций. На рис. 5 показаны исследованные  пространствен-

ные распределения скорости на входе: равномерный профиль, адаптивное к контуру 

входного сечения распределение Пуазейля, а также параболический профиль с наложе-

нием вторичного потока (secondary flow). Вторичный поток описывается следующими 

уравнениями [39]: 

b c

 
 

Рис. 5. Пространственные распределения скорости на входе. 

а — равномерный профиль, b — адаптивное к контуру входного сечения 

распределение Пуазейля, c — параболический профиль 

с наложением вторичного потока. 
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   2 2
0
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8
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   2 2
0
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, , 3 cos ,

8

k t
w r t r r    

где v и w — нормальные и тангенциальные компоненты поперечного вектора скорости ν, 

r0 — средний радиус сечения, k(t) — зависимость от времени. Усредненная по времени 

и по входному сечению скорость вторичного (неаксиального) потока  составляла 15 % [28] 

от средней скорости основного (аксиального) в течение систолических периодов. 

Несмотря на то, что используемый вторичный поток неточно представлял неосевые 

компоненты потока в брюшной аорте in vivo, он помог оценить важность учета трех-

компонентного профиля скорости для задания входных граничных условий.  

Временные профили расхода кровотока (область под почечными артериями) пока-

заны на рис. 6. Для двух конфигураций АБА с длиной шеи 2,5D и 5D (см. рис. 2) были 

доступны данные ультразвуковой допплерографии (пациент-специфичные профили 1 и 2). 

Зависимость, представленная в работе [40], была получена путем одномерного модели-

рования кровотока здорового пациента. Зависимость, описанная в работе [41], является 

результатом измерения с помощью 4D FLOW МРТ у пациента с АБА. Сравниваемые 

временные профили для каждой из геометрий были оцифрованы, сглажены и масштаби-

рованы по расходу и периоду сердечного цикла в соответствии с параметрами, пред-

ставленными в табл. 1. Характерное число Рейнольдса, построенное по входному гид-

равлическому диаметру < D г > ~ 2 см и максимальной в течение сердечного цикла вход-

ной скорости (~ 0,3 м/с), составило Re ≈ 1783. 

2
3
4

8∙10–5

6∙10–5

4∙10–5

2∙10–5

0

2∙10–5

4∙10–5

6∙10–5

Q t( ) м, /c3

0 0,2 0,4 0,6 0,8 t, c  
 

Рис. 6. Временные зависимости объемного расхода кровотока 

за сердечный цикл. 

Данные работ [40] (1), [41] (2) и результаты, полученные 

для пациент-специфичных профилей 1 (3) и 2 (4). 
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Влияние входных ГУ оценивалось по распределениям осредненной за сердечный 

цикл скорости <U>, TAWSS и OSI. Осредненные за сердечный цикл пристеночные ка-

сательные напряжения TAWSS определяются следующим образом: 

0

1
TAWSS WSS .

T

dt
T

   

Распределение индекса колебаний касательных напряжений OSI представляет собой 

скалярное поле, которое показывает изменение направления пристеночных касательных 

напряжений во время сердечного цикла: 

T

0 0

OSI 0,5 1 WSS d WSS d .

T

t t
  
   

    
   

Его значение изменяется от 0 до 0,5, где 0 соответствует однонаправленному течению, 

а 0,5 — полностью осциллирующему потоку. 

3. Результаты 

3.1. Сеточная сходимость 

Для оценки сеточной сходимости были проведены расчеты типичной конфигура-

ции аневризмы брюшной аорты с использованием набора из четырех последовательно 

сгущающихся сеток, которые строились в несколько этапов: построение грубой струк-

турированной сетки, сгущение ячеек вблизи стенки аорты, привязка грубой сетки к по-

верхности и добавление уточняющих призматических слоев, прилегающих к поверх-

ности стенки аорты. При этом варьировалось число шестигранных ячеек грубой сетки, 

а также число призматических слоев в пристенных областях сетки № 3 (см. табл. 1). 

Сетки аорты состояли из 1, 2,6, 5,4, 12,3 млн ячеек соответственно. В табл. 2 приведены 

величины усредненной по всем ячейкам сетки скорости <U>, полученные при различ-

ном сеточном разрешении. Вычисленные средние скорости различались примерно 

на 2,5 % между сетками № 1 (грубая) и № 2 и на 0,1 % — между сетками № 3 и № 4. 

На рис. 7 представлены продольные срезы полей скорости <U>, усредненной по сердеч-

ному циклу. Видно, что линии тока полностью совпадают, начиная с разрешения сетки 

5,4 млн ячеек (№ 3), при этом решения для сеток № 2 и № 3 мало отличаются. 

Т аб ли ца  1  

Параметры масштабирования по расходу и периоду 

для рассмотренных конфигураций АБА 

Конфигурация АБА Период сердечного цикла T, c Объемный расход Q, л/мин 

2,5D 0,84 0,8 

5D 0,92 0,9 

6,5D 1 1,14 

 

Т аб ли ца  2  

Средние скорости <U> для различного разрешения сеток 

Сетка Количество ячеек Усредненная по пространству величина <U>,  м/с 

№ 1 1 млн ячеек 0,05189 

№ 2 2,6 млн ячеек 0,05324 

№ 3 5,4 млн ячеек 0,05351 

№ 4 12,3 млн ячеек 0,05359 
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Для определения необходимого числа слоев в пристенных областях дополнительно 

строились сетки, содержащие 3,5 (№ 5) и 3,8 (№ 6) млн ячеек с тремя и четырьмя слоями 

уточнения вблизи стенки просвета соответственно. Для сопоставления результатов рас-

считанные на сетке с 3,8 млн ячеек поля были интерполированы на сетку с 3,5 млн ячеек. 

На рис. 8 и 9 приведены для сравнения распределения TAWSS и OSI для сеток с 3,5 млн 

ячеек (рис. 8а, 9а) и с 3,8 млн ячеек (рис. 8b, 9b), а также абсолютная разность соответ-

ствующих распределений, нормированная на их полусумму (рис. 8с, 9c). Среднее откло-

нение для полей TAWSS и OSI полученных численных решений составляет около 5 %. 

Таким образом, трех слоев уточнения достаточно для расчета распределений усреднен-

ных пристеночных напряжений и индекса колебаний сдвига. Оптимальное число ячеек 

для типичной конфигурации, необходимое для сеточной сходимости, составляет порядка 

5 миллионов. 

3.2. Влияние входных граничных условий 

Характерная структура кровотока в аневризме брюшной аорты для различных 

входных граничных условий представлена на рис. 10 (конфигурация с длиной шеи 6,5D). 

Поскольку персонализированные измерения для данного случая были недоступны,  

использовались временные профили из работ [40, 41], а также пациент-специфичный 

профиль 1, которые были масштабированы с периодом сердечного цикла T = 1 c 

и объемным расходом кровотока Q = 1,14 л/мин. На рис. 10 представлены для сравнения 

c

bа

0,240

0,200

0,160

0,100

0,060

0

< > /  U , м с

 
 

Рис. 7. Продольный срез поля < U > для сеток 

с разрешением 1 млн ячеек (а),  2,6 млн ячеек (b), 

5,4 млн ячеек (c),  12,3 млн ячеек (d). 
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усредненные по сердечному циклу линии тока для расчетов с различными простран-

ственно-временными распределениями на входе, видно, что структура кровотока пол-

ностью идентична на расстоянии более трех входных диаметров (D) от входного сече-

ния. Структура течения в области расширения представляет собой ускоренный основной 

поток и зону рециркуляции жидкости. На распределение скорости в области аневризмы 

брюшной аорты наибольшее влияние оказывают различные временные профили расхода 

кровотока. Поскольку расход и период в ходе расчетов оставались фиксированными, 

можно заключить, что решение чувствительно к величине диастолического обратного 

потока. Диастолический обратный поток представляет собой обратный поток крови, со-

ответствующий фазе расслабления сердечной мышцы. 
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Рис. 8. Распределение TAWSS для сеток № 5 (3 слоя) (а),  № 6 (4 слоя) (b) 

и их абсолютная разность в относительных единицах для соответствующих сеток (с). 
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Рис. 9. Распределение OSI для сеток № 5 (3 слоя) (а) и № 6 (4 слоя) (b) 

и их абсолютная разность в относительных единицах для соответствующих сеток (с). 
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Зоны с пониженными значениями TAWSS и высокими значениями OSI ассоции-

руются с высоким риском разрыва  аневризмы [2, 3]. На рис. 11 приведены для сравнения 

поля TAWSS_dif для восьми комбинаций граничных условий. TAWSS_dif представляют 

собой абсолютную разность (в отн. ед.) распределений TAWSS, нормированную на их 

полусумму, для каждого из восьми расчетов и базового варианта решения с параболичес-

ким пространственным распределением и пациент-специфичной зависимостью от вре-

мени 1. Величина TAWSS имеет низкую чувствительность к входным граничным усло-

виям, ее максимальное отклонение относительно базового решения не превышает 0,009 % 

для всех комбинаций граничных условий. При этом влияние временного профиля является 

    
 

d

g

e

h

f

i

cbа

0 0,05 0,10 0,15 0,20 0,25 0,30 < >, /U м с  
 

Рис. 10. Усредненные по сердечному циклу поля скорости, полученные 

в исследованиях [41] (a – c), [40] (d – f), а также пациент-специфичный профиль 1 (g – i). 

Графики слева (сверху вниз соответственно) — временные профили из работ [41], [40], 

а также пациент-специфичный профиль 1. 
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более существенным по сравнению с пространственным распределением скорости на вход-

ном сечении. Аналогичным образом на рис. 12 представлены поля OSI в различных про-

екциях. Пространственный профиль входной скорости оказывает влияние на распреде-

ление OSI лишь на расстоянии менее 3D от входного сечения аорты, при этом числен-

ные решения с параболическим профилем и с наложением вторичного потока менее 

отличаются друг от друга по сравнению с равномерным профилем при фиксированной 
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Рис. 11. Распределения TAWSS: разность  полей (b – i) относительно расчета 

с параболическим профилем и пациент-специфичным профилем 1 (а). 

Графики слева (сверху вниз соответственно) — временные профили из работ [41], [40], 

а также пациент-специфичный профиль 1; 

b – d, e – g — соответственно данные работ [41] и [40], h, i — пациент-специфичный профиль 1. 
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временной зависимости расхода. В области аневризмы существенное влияние на OSI 

оказывает только форма временного профиля. 

Для того, чтобы проанализировать чувствительность  результатов моделирования 

к входным ГУ для различных геометрий, дополнительно были рассчитаны две конфигу-

рации с персонализированными измерениями временного профиля скорости. Временные 

зависимости для каждой из двух конфигураций были масштабированы по периоду 

и объемному расходу в соответствии с данными ультразвуковой допплерографии. 

На рис. 13 представлено распределение среднеквадратичного отклонения относительно 
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Рис. 12. Распределения OSI для различных проекций. 

Графики слева (сверху вниз соответственно) — временные профили из работ [41], [40], 

а также пациент-специфичный профиль 1; 

a – c, d – f — соответственно данные работ [41] и [40], g – i — пациент-специфичный профиль 1. 
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базового решения полей <U>, TAWSS, OSI от различных комбинаций входных ГУ 

для трех пациент-специфичных геометрий c различной длиной шеи аорты. Среднеквад-

ратичное отклонение RSS относительно базового решения для поля F в относительных 

единицах определяется как 

 

2

RSS ,
0,5

i i i

i ii

F F S

F F S

 
     
  

где ,i iF F  — рассчитанное поле F в i-й ячейке для базового и сравниваемого вариантов 

решения, Si — мера i-й ячейки, S — площадь/объем всей вычислительной области. 

В качестве базового варианта решения для каждой из конфигураций был принят 

расчет с параболическим профилем и соответствующей ей пациент-специфичной вре-

менной зависимостью. Как видно из графиков, форма временного профиля (а именно, 

величина диастолического обратного потока) вносит наибольший вклад в разброс от-

клонения для полей <U>, TAWSS, OSI. Максимальный разброс отклонения от базового 

решения для аорты с длиной шеи 2,5D составляет ~ 1, ~ 0,01 и ~ 10 % для <U>, TAWSS 

и OSI соответственно. С увеличением длины шеи аорты (2,5D, 5D и 6,5D, рис. 13) мак-

симальный разброс отклонения относительно базового решения для каждого из полей <U>, 

TAWSS, OSI значительно уменьшается, и для длины шеи аорты 6,5D выбор входных ГУ 
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Граничные условия:

временной профиль:

– [40],
– пациент специфичный профиль 2,

– [41],

– пациент специфичный профиль 1;

пространственный профиль:
 – равномерный.

– параболический,

– параболический с наложением вторичного потока
 

 

Рис. 13. Среднее квадратичное отклонение относительно базового решения  полей < U >, TAWSS, 

OSI в относительных единицах (нормировка на полусумму сравниваемых распределений) 

для конфигураций с различной длиной шеи аорты. 
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играет второстепенную роль. Влиянием пространственного профиля, в том числе неосе-

выми компонентами вектора скорости на входе, можно пренебречь. Наименее чувстви-

тельными к входным ГУ оказались распределения TAWSS, в то время как величина OSI 

является наиболее чувствительным  параметром к пространственному и временному 

профилям входных ГУ, разброс отклонения относительно базового решения для прост-

ранственного профиля скорости (фиксированная временная зависимость) составляет 

около ~  1 %, а разброс отклонения относительно базового решения для различных рас-

ходов (фиксированный пространственный профиль) может достигать ~10 %. 

Заключение 

В настоящей работе проведена оценка влияния пространственно-временного про-

филя скорости на входе на расчетные величины <U>, TAWSS, OSI для конфигураций 

аневризмы брюшной аорты с различными длинами проксимальной шеи. Как показало 

проведенное исследование, влиянием пространственного профиля на входе, в том числе 

неаксиальными компонентами вектора скорости, можно пренебречь, причем чувстви-

тельность решения быстро уменьшается с ростом длины проксимальной шеи аорты. 

Величина обратного диастолического потока имеет наиболее значимое влияние на ре-

шение. Тем не менее, в области АБА не выявлено существенных различий в результатах 

моделирования для величин TAWSS и <U>. Для распределения OSI максимальное от-

клонение относительно базового решения достигает ~ 10 %, что также является прием-

лемым для клинических применений, хотя при наличии правильнее использовать персо-

нализированные профили расхода. Таким образом, установлено, что различные про-

странственно-временные распределения  входного потока существенно не влияют на ус-

редненные гемодинамические характеристики и могут быть использованы для даль-

нейших расчетов при условии, что длина проксимальной шеи аорты превышает 2,5D. 
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