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При исследовании процесса ударно-индуцированного пыления, особенно когда потоки частиц
движутся в газе или вызваны несколькими ударными волнами, необходимо получать экспери-
ментальные данные о динамике изменения плотности в этих потоках в различные моменты

времени начиная от выхода ударной волны на свободную поверхность образца. Для проведения
таких измерений был использован метод скоростной рентгенографии с помощью синхротронно-
го излучения. В экспериментах на свободную поверхность образцов из олова, имевших шерохо-
ватость Rz 5, 20 и 60, выходили одна или, последовательно, две ударные волны с давлением

≈40 ГПа. Разгрузка ударной волны происходила в вакуум или газовую среду (воздух, гелий,
азот) с начальными давлениями 1 ÷ 8 атм. В работе приведены постановки экспериментов и

полученные в экспериментах данные по динамике изменения плотности в пылевых потоках, об-
разовавшихся под действием одной и двух последовательных ударных волн после их выхода на

свободную поверхность образцов в вакууме и газовых средах.
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ВВЕДЕНИЕ

Явление выброса микрочастиц со свобод-
ной поверхности (СП) материалов при выхо-
де на них ударных волн (УВ), так называемое
ударно-индуцированное пыление, может суще-
ственно затруднять корректную интерпрета-
цию получаемых результатов при использова-
нии современных измерительных методик ис-
следования ударно-волновых процессов, а так-
же быть важным для некоторых технических

применений. В последние десятилетия этому

вопросу уделяется большое внимание [1–5].
Поток микрочастиц возникает из-за раз-

личного рода дефектов внутренней структу-
ры материала и поверхности. Его появле-
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ние можно объяснить частным случаем раз-
вития неустойчивости Рихтмайера — Меш-
кова. Обычно пыление связано с шероховато-
стью СП величиной от единиц до нескольких

десятков микрометров, образованной при меха-
нической обработке. Из неровностей под дей-
ствием УВ выбрасываются микрокумулятив-
ные струи, которые затем распадаются на от-
дельные частицы. Скорости фронтов пылевых
потоков зависят от соотношения амплитуды и

длины волны возмущений на поверхности (па-
раметров шероховатости) и обычно превыша-
ют примерно в 1.5–2 раза скорость СП. Мас-
са выброшенного вещества в потоках также

зависит от соотношения параметров началь-
ных возмущений СП и составляет от единиц

до нескольких десятков миллиграммов с од-
ного квадратного сантиметра поверхности. На
количество выброшенной массы частиц суще-
ственное влияние оказывает фазовое состоя-
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ние вещества. Значительное (по массе) ударно-
индуцированное пыление наблюдается в усло-
виях, когда вещество после ударно-волнового
нагружения находится в жидкой фазе.

Для исследования пыления применяют

следующие методы регистрации: импульсная
радиография, теневая макро- и микросъем-
ка, голография, лазер-гетеродинная методи-
ка (PDV), пьезодатчики, индикаторные фоль-
ги и др. Наиболее информативными с точ-
ки зрения определения распределения плотно-
сти и массы в потоке частиц являются мето-
ды импульсной радиографии [6]. Как прави-
ло, это импульсная рентгенография [7] и прото-
нография [8]. Импульсная рентгенография поз-
воляет получать изображения обычно в один-
два момента времени, а при малых длинах

потоков вдоль направления движения имеет

недостаточное пространственное разрешение.
Протонография (на ПРГК-100, г. Протвино)
лишена этих недостатков и позволяет полу-
чать несколько последовательных кадров, од-
нако возникают затруднения при регистрации

низкоплотной части потока в диапазоне 0.001÷
0.01 г/см3.

Для корректного определения механизмов

образования пылевых потоков и процессов, про-
исходящих при их торможении в газе, а так-
же при сложном ударно-волновом нагружении
требуются экспериментальные данные об эво-
люции пространственного распределения плот-
ностей в ударно-индуцированных пылевых по-
токах. Из-за ограничений по количеству кад-
ров получение таких данных с помощью им-
пульсной рентгенографии затруднительно. На-
против, использование синхротронного излуче-
ния (СИ) от циклических ускорителей позво-
ляет проводить многокадровую рентгеновскую

хронографию в широком временном интерва-
ле [9–11].

По сравнению с традиционными источни-
ками рентгеновского излучения, возникающе-
го при торможении ускоренных электрическим

полем электронов на аноде, для СИ характерны
более высокая интенсивность потока фотонов,
стабильность, малая угловая расходимость и
малое время экспозиции, а также высокая пе-
риодичность повторения, что позволяет про-
водить рентгеновскую хронографию взрывных

процессов высокого пространственного и вре-
менного разрешения. В отличие от протоно-
графии, СИ с мягким рентгеновским спектром
позволяет регистрировать низкоплотные объ-

екты при высоком соотношении сигнал/шум,
в частности ударно-индуцированные пылевые
потоки [9, 11, 12].

В работе приведены постановки и основ-
ные результаты исследования процессов зарож-
дения и развития пылевых потоков, образую-
щихся при выходе УВ на поверхность образцов

из олова, с использованием СИ. Эксперименты
проводили как в вакууме, так и в среде раз-
личных газов (воздух, гелий, азот) при одно-
и двукратном ударно-волновом нагружении об-
разцов с шероховатостью СП Rz 5, 20 и 60.

ПОСТАНОВКА ЭКСПЕРИМЕНТОВ

В представленных экспериментах исполь-
зовали СИ, возникавшее при работе ускорите-
ля ВЭПП-3: пучки СИ с энергией 10 ÷ 30 кэВ,
длительностью ≈1 нс, следующие с интерва-
лом 124 нс. Мягкое рентгеновское излучение
такого диапазона позволяет исследовать объ-
екты, имеющие радиографическую толщину

до 3 г/см2 [6]. Опыты проводили на станции

«Субмикросекундная диагностика».
Регистрацию интенсивности проходящего

через исследуемый объект СИ осуществляли

линейным детектором рентгеновского излуче-
ния DIMEX (разработка ИЯФ СО РАН) [13].
Детектор DIMEX работает при следовании

пучков СИ через 124 нс и имеет 512 чувстви-
тельных каналов шириной 0.1 мм.Апертура де-
тектора 51.2 × 2 мм. Можно регистрировать
до 100 кадров. Эффективность регистрации

квантов 50 % при энергии 30 кэВ. Парамет-
ры СИ и детектора, а также возможность про-
ведения дополнительных калибровок позволя-
ют измерять плотность пылевых потоков с точ-
ностью не менее 5 % [6].

В опытах плоскость луча СИ направля-
ли вдоль оси симметрии сборки, как показа-
но на рис. 1,а, и регистрировали интенсив-
ность СИ, проходившего через пылевые по-
токи, а затем с помощью зарегистрирован-
ных значений определяли распределение плот-
ности ρL(X) вдоль потока.

Для определения объемной плотности

ρ(X) необходимо разделить ρL(X) на толщи-
ну потока L(X) в предположении его однород-
ности по поперечному сечению. В опытах с

образцами, на которых шероховатость задава-
лась на полосе шириной 5 мм, деление прово-
дили на эту величину. В опытах с образцами,
поверхность которых имела однородную ше-
роховатость, толщину потока принимали рав-
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Рис. 1. Постановка измерений методом СИ (а) и конструкция экспериментальных сборок (б):
1 — электродетонатор, 2 — генератор плоской ударной волны, 3 — пластическое взрывчатое вещество

∅20 × 4 мм, 4 — заряд взрывчатого вещества ∅20 × 20 мм, 5 — образец, 6 — пьезодатчик, 7 —
коллиматоры PDV, 8 — корпус, 9 — окно, прикрытое лавсаном

ной 12 мм. Это значение было определено в
предварительных двумерных численных рас-
четах и подтверждено в специально проведен-
ном опыте, в котором плоскость луча СИ на-
правляли перпендикулярно к оси сборки (по-
тока). Над центрами образцов на расстояниях
28 ÷ 32 мм устанавливали пьезодатчики, при
помощи которых независимо измеряли время

подлета к ним потоков и распределение плот-
ности в потоках [14]. Во всех опытах с выхо-
дом одной УВ на СП образцов использовали

пьезодатчики с пьезокерамическими (ЦТС-21)
элементами диаметром 4 мм. В опытах с вы-
ходом двух УВ на СП использовали пьезодат-
чики с кварцевыми пьезоэлементами диамет-
ром 4 мм. В некоторых опытах устанавливали
также датчики PDV для фиксирования момен-
та выхода УВ из образца и измерения скорости

потока [6].
Синхронизацию регистрирующих методик

с моментом подрыва осуществляли следующим

образом. Детектор DIMEX запускали от элек-
троконтактов, установленных под электроде-
тонатором. При запуске DIMEX генерирует

сигнал, от которого отсчитывается время ре-
гистрируемых кадров, следующих с интерва-
лом 124 нс. Этот сигнал использовали для за-
пуска осциллографов и согласования их вре-
менных шкал. Начало движения поверхности
образца определяли по данным СИ и PDV.

Было проведено три серии экспериментов.
В первой серии образцы нагружали одной УВ,
сборки находились в вакууме (0.01 атм).

Во второй серии образцы также нагружали од-
ной УВ, но пылевые потоки вылетали в газо-
вую среду (воздух, гелий или азот) при дав-
лениях 1 ÷ 8 атм. В третьей серии образ-
цы нагружали двумя УВ, сборки находились
в вакууме (0.01 атм). Конструкции использо-
вавшихся экспериментальных сборок показаны

на рис. 1,б. В опытах с вакуумом или при дав-
лении воздуха 1 атм эксперименты проводили
со сборками без корпуса. В опытах с гелием ис-
пользовали сборки со стальным герметичным

корпусом. В корпусе имелись две сквозные ще-
ли шириной по 2 мм и длиной 20 мм, распо-
ложенные напротив друг друга, предназначен-
ные для ввода-вывода луча СИ. Щели изнут-
ри были прикрыты двумя слоями лавсана тол-
щиной 0.1 мм каждый. Опыты выполняли во

взрывозащитной камере.
Объектом исследований являлись образ-

цы из олова (марка О1, ГОСТ 860-75) толщи-
ной 3 мм с шероховатостью СП Rz 6 ÷ Rz 60,
нанесенной в результате токарной обработки.
В некоторых опытах на СП образцов оставля-
ли полосу шириной 5 мм с заданной шерохова-
тостью, остальную часть поверхности полиро-
вали. Параметры шероховатости контролиро-
вали оптическим профилометром.

Нагружение образцов осуществляли

зарядами взрывчатого вещества размером

∅20× 20 мм, инициируемыми плоской дето-
национной волной. При нагружении одной УВ
заряд контактировал с поверхностью образца,
при этом расчетное давление перед выхо-
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Рис. 2. Результаты нагружения одной удар-
ной волной при движении потоков в вакууме

(0.01 атм воздуха):

сплошные линии — данные СИ, пунктирные —
данные пьезодатчиков; а — луч СИ рядом с об-
разцом, б — луч СИ рядом с пьезодатчиком

дом УВ на СП металла составляло 44 ГПа,
спад давления за фронтом УВ 65 ГПа/см,
а скорость движения СП 2.72 км/с. При

нагружении двумя УВ заряд контактиро-
вал с медной пластиной толщиной 1.5 мм,
между медной пластиной и образцом уста-
навливался зазор 0.5 мм. При этом расчетное
давление составляло в первой УВ ≈33.5 ГПа,
во второй УВ — 54 ГПа, а интервал между
волнами 0.18 мкс.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ
И ИХ ОБСУЖДЕНИЕ

На рис. 2 представлены результаты, полу-
ченные методом СИ (сплошные линии) в опы-
тах с нагружением образцов одной УВ в ваку-
уме. Пунктирными линиями показаны распре-

деления плотности ρ(X) в потоке частиц в со-
ответствующие моменты времени, пересчитан-
ные из распределения ρ(t), измеренного пьезо-
датчиком, находившимся на расстоянии 28 мм
от начального положения СП, в предположе-
нии автомодельности движения потока [14, 15].
Шероховатость образцов — Rz 60 (2a0/λ =
60/260 мкм). Из рис. 2 видно, что данные пье-
зодатчика хорошо согласуются с данными СИ

после 4.588 мкс от выхода УВ на СП образ-
ца. На более ранних кадрах заметны различия
между данными, полученными методом СИ и с
использованием пьезодатчиков, для частей по-
токов, прилегавших к СП образца. Чем мень-
ше время (момент) регистрации, тем ближе к
фронту потока место, с которого проявляет-
ся отличие. Это свидетельствует о том, что
на ранних стадиях движение потока неавтомо-
дельно, что предположительно связано с про-
цессом формирования потока. В частях потока,
где заметны различия в данных пьезодатчиков

и СИ, происходит втекание вещества в струи,
развивающиеся на СП образцов при микроку-
муляции, на которое затрачивается определен-
ное время.

На рис. 3,а представлены результаты опы-
та в воздушной среде при давлении 1 атм

с образцом шероховатостью Rz 60 (2a0/λ =
60/220 мкм). Видно, что распределение ρ(X),
пересчитанное из данных пьезоизмерений, от-
стает от измеренного методом СИ, что свя-
зано с торможением потоков в газе, приводя-
щим к нарушению автомодельности движения

пылевого потока. На рис. 3,б показано рас-
пределение плотности в потоке в момент вре-
мени 4.712 мкс после выхода УВ на СП об-
разца и расчетное положение воздушной УВ

в этот же момент времени. В этом опыте

шероховатость СП образца составляла Rz 6
(2a0/λ = 6/60 мкм). Из рис. 3,б видно, что,
хотя расчетная плотность воздуха за фронтом

УВ 0.0098 г/см3 и превышает плотность перед-
ней части пылевого потока, на регистрацию по-
тока наличие сжатого воздуха не влияет. Это
связано с тем, что ослабление рентгеновско-
го излучения пылевым потоком олова значи-
тельно больше (>10 раз), чем ударно-сжатым
воздухом. Так, при 15 кэВ сечение ослабле-
ния составляет: для олова 46.6 см2/г, для азо-
та 1.2 см2/г, для кислорода 1.8 см2/г [16].

На рис. 4 приведены результаты опытов с
гелием при давлениях 1, 2 и 8 атм, шерохова-
тость образцов Rz 20 (2a0/λ = 18/110 мкм).
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Рис. 3. Распределение плотности в пылевых
потоках, двигавшихся в воздухе при началь-
ном давлении 1 атм:

а — образец с шероховатостью Rz 60, б — образец

с шероховатостью Rz 6

Во всех опытах с гелием фронт потока ча-
стиц, измеренный методом СИ (сплошные ли-
нии), опережает фронт потока, пересчитанный
из данных пьезоизмерений (пунктирные ли-
нии), подобно тому, как это было в опытах с
воздухом. При этом для распределений плот-
ности в более плотных частях потоков данные,
полученные обоими методами, хорошо согласу-
ются. На рис. 5 приведены распределения плот-
ности, зарегистрированные методом СИ в мо-
мент времени 3.1 мкс от выхода УВ на СП об-
разца во всех опытах с гелием при начальных

давлениях 1, 2 и 8 атм.
Из рис. 5 видно, что с ростом давления

газа положения фронтов потоков стремятся к

положению фронта УВ в гелии. Даже при на-
чальном давлении гелия 2 атм наблюдается за-
метное торможение фронта потока. С увели-
чением плотности газа торможение становится

Рис. 4. Распределение плотности в пылевых
потоках, двигавшихся в среде гелия при на-
чальных давлениях 1 атм (а), 2 атм (б),
8 атм (в), при нагружении одной ударной

волной (шероховатость свободной поверхно-
сти образцов Rz 20)
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Рис. 5. Распределение плотности пылевых по-
токов в момент времени 3.1 мкс от начала дви-
жения СП в опытах с гелием при разных на-
чальных давлениях:

сплошные линии — данные СИ, пунктирные —
данные пьезодатчиков

более выраженным. При этом за фронтом УВ
в гелии распределения плотности, зарегистри-
рованные методом СИ, практически одинаковы
для всех опытах. Эти данные показывают, что
при движении пылевых потоков в гелии интен-
сивно тормозятся частицы, которые опережа-
ют фронт УВ в газе, а на движение частиц,
движущихся медленнее УВ, наличие газа вли-
яет слабо.

На рис. 6 приведены результаты опытов с
образцами из олова с шероховатостью СП Rz 20
(2a0/λ = 18/110 мкм) при начальных давле-
ниях азота 2 и 4.5 атм. В этих опытах фрон-
ты пылевых потоков затормозились до массо-
вой скорости движения сжатого газа, равной
скорости поверхности образца, через ≈2.2 мкс
при 4.5 атм и через ≈3 мкс при 2 атм. После

Рис. 6. Распределение плотности пылевого по-
тока в разные моменты времени (с интервалом
0.496 мкс) начиная от момента движения СП
0.496 мкс:

шероховатость образца Rz 20, а — 2 атм, б —
4.5 атм азота, в — X–t-диаграмма движения

фронтов потоков, ударной волны в азоте и сво-
бодной поверхности образца

этого скорости фронтов заметно не менялись до

конца регистрации.
Представленные распределения плотности

в пылевых потоках, измеренные методом СИ,
показали, что на движение фронтов потоков в
неподвижном газе заметно влияет давление да-
же в 1 атм при разгрузке в гелии, в более плот-
ных газах фронт потока быстро тормозится до
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Рис. 7. Распределения плотности пылевого по-
тока в разные моменты времени (с интервалом
0.496 мкс) начиная от момента движения СП
0.496 мкс, полученные в опытах с двухволно-
вым нагружением образцов:

а — шероховатость образца Rz 5, б — Rz 20; дав-
ление воздуха 0.01 атм

скорости, равной или меньшей скорости фрон-
та УВ в газе. При движении в гелии газ мало
влияет на движение частиц потока при их ско-
рости ниже скорости УВ в газе. В более плот-
ном азоте уже при давлении 2 атм частицы в
потоке быстро тормозятся до скорости сжатого

ударной волной газа.
Результаты измерений методом СИ в опы-

тах с двухволновым нагружением в вакууме

показаны на рис. 7. На рис. 8 приведены рас-
пределения плотности, полученные по данным
пьезодатчиков, и распределения плотности в
момент времени 7.192 мкс, полученные мето-
дом СИ в опытах с образцами шероховатостью

Rz 5 и Rz 20. Передние части потоков по дан-
ным обоих методов совпадают, несмотря на
существенную разницу исходных шероховато-
стей поверхности образцов. При этом задние

части потоков существенно различаются и кор-
релируют с исходной шероховатостью. В такой
постановке было проведено по два опыта — с

образцами шероховатостью Rz 5 и Rz 20.

Рис. 8. Распределения плотности пылевого по-
тока, полученные по данным пьезодатчиков,
установленных на расстоянии 35 мм от СП

образца (а), и распределения плотности в мо-
мент времени 7.192 мкс, полученные методом
СИ (б), в опытах с образцами шероховатостью
Rz 5 (штриховые линии) и Rz 20 (сплошные
линии)

Следует отметить, что скорости распре-
деления плотностей и масс в пылевых потоках,
выбрасываемых под действием одиночных УВ,
существенно зависят от исходной шероховато-
сти СП. Развитая теория выброса потоков ча-
стиц, индуцированного одиночными УВ, осно-
вана на развитии микрокумулятивных выбро-
сов из неоднородностей поверхности. Модели-
рование, основанное на этой теории, хорошо
описывает экспериментальные результаты [1–
5, 7]. Совпадение распределений плотности в
передних частях потоков, выброшенных под

действием двух УВ, наблюдаемое в проведен-
ных опытах, указывает на то, что механизм
их образования не связан с микрокумуляцией

в неоднородностях свободной поверхности об-
разцов.
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ЗАКЛЮЧЕНИЕ

С использованием синхротронного излу-
чения и линейного детектора получены дан-
ные о динамике изменения плотности в ударно-
индуцированных одиночной ударной волной

пылевых потоках, движущихся в вакууме, воз-
духе, гелии и азоте при разных давлениях, а
также данные о движении пылевых потоков,
индуцированных двумя волнами, на основании
которых можно сделать следующие выводы.

1. Использование СИ позволяет ис-
следовать процесс формирования ударно-
индуцированных потоков частиц, движущихся
как в вакууме, так и в газах.

2. Наличие низкоплотного газа (гелия) в
случае образцов с шероховатостью СП Rz 20
приводит к торможению частиц, опережающих
фронт ударной волны в газе, а на более мед-
ленные частицы наличие газа влияет слабо. В
плотном газе (азот, воздух) при шероховато-
сти СП менее Rz 20 частицы в потоке относи-
тельно быстро тормозятся до массовой скоро-
сти сжатого ударной волной газа.

3. В опытах с нагружением образцов дву-
мя ударными волнами параметры передних ча-
стей потоков оказались одинаковыми, несмотря
на различие шероховатостей СП (Rz 5 и Rz 20),
что указывает на то, что механизм формирова-
ния этих потоков не связан с микрокумуляцией

из неоднородностей на СП, играющей опреде-
ляющую роль при формировании пылевых по-
токов под действием одиночной ударной волны.

Полученные данные могут быть использо-
ваны для уточнения физической модели образо-
вания ударно-индуцированных пылевых пото-
ков, а также для разработки физических и рас-
четных моделей взаимодействия потоков с газа-
ми и образования потоков при сложном ударно-
волновом воздействии.
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Hammerberg J. E., LaLone B. M.,
Pack C. L., Schauer M. M., Stevens G. D.,
Stone J. B., Turley W. D., Buttler W. T. Ex-
perimental observations on the links between sur-
face perturbation parameters and shook-induced
mass ejection // J. Appl. Phys. — 2014. —
V. 116. — 063504. — DOI: 10.1063/1.4891449.

4. Михайлов А. Л., Огородников В. А., Са-
сик В. С. и др. Экспериментально-расчетное
моделирование процесса выброса частиц с

ударно-нагруженной поверхности //ЖЭТФ. —
2014. — Т. 145, № 5. — С. 892–905. — EDN:
SNVCXR.

5. Огородников В. А., Михайлов А. Л., Еру-
нов С. В. и др. Выброс частиц со свободных
поверхностей ударно-нагруженных образцов из
свинца в вакуумированную и газовую среды //
ЖЭТФ. — 2017. — Т. 152, № 6. — С. 1156–
1164. — DOI: 10.7868/S004445101712001X. —
EDN: ZUQJEZ.

6. Невозмущающие методы диагностики быст-
ропротекающих процессов / под ред. А. Л. Ми-
хайлова. — Саров: РФЯЦ-ВНИИЭФ, 2015.

7. Панов К. Н., Антипов М. В., Георгиев-
ская А. Б. и др. Результаты исследований

процесса выброса частиц со свободной поверх-
ности металлов под действием ударной вол-
ны // Тр. конф. РФЯЦ-ВНИИЭФ. — 2016. —
№ 21, Ч. 2. — С. 112–123.

8. Аринин В. А., Картанов С. А., Куро-
паткин Ю. П., Лебедев А. И., Михай-
лов А. Л., Михайлюков К. Л., Огородни-
ков В. А., Орешков О. В., Панов К. Н.,
Сырунин М. А., Таценко М. В., Ткачен-
ко Б. И., Ткаченко И. А., Храмов И. В.,
Цой А. П. Новые возможности протонной ра-
диографии для регистрации быстропротекаю-
щих газодинамических процессов // Физика го-
рения и взрыва. — 2018. — Т. 54, № 5. —
С. 3–12. — DOI: 10.15372/FGV20180501. —
EDN: XXRRNR.



М. В. Антипов, А. Б. Георгиевская, В. А. Огородников и др. 57

9. Тен К. А., Прууэл Э. Р., Кашкаров А. О.,
Рубцов И. А., Антипов М. В., Георгиев-
ская А. Б.,Михайлов А. Л., Спирин И. А.,
Аульченко В. М., Шехтман Л. И., Жула-
нов В. В., Толочко Б. П. Регистрация вы-
броса частиц из ударно-нагруженных металлов
методами синхротронного излучения // Физи-
ка горения и взрыва. — 2018. — Т. 54, № 5. —
С. 103–111. — DOI: 10.15372/FGV20180514. —
EDN: UXZFSS.

10. Jensen B. J., Ramos K. J., Iverson A. J.,
Bernier J., Carlson C. A., Yeager J. D.,
Fezzaa K., Hooks D. E. Dynamic experi-
ment using IMPULSE at the Advanced Pho-
ton Source // J. Phys.: Conf. Ser. — 2014. —
V. 500. — 042001. — DOI: 10.1088/1742-
6596/500/4/042001.

11. Bober D. B., Mackay K. K., Akin M. C.,
Najjar F. M. Understanding the evolution of liq-
uid and solid microjets from grooved Sn and Cu
samples using radiography // J. Appl. Phys. —
2021. — V. 130, N 4. — 045901. — DOI:
10.1063/5.0056245.

12. Ten K. A., Pruuel E. R., Kashkarov A. O.,
Rubtsov I. A., Shechtman L. I., Zhu-
lanov V. V., Tolochko B. P., Ruko-
vanov G. N., Muzyrya A. K., Smirnov E. B.
Detection of microparticles in dynamic pro-
cesses // J. Phys.: Conf. Ser. — 2016. —
V. 774. — 012070. — DOI: 10.1088/1742-
6596/774/1/012070.

13. Aulchenko V. M., Evdokov O. V.,
Zhogin I. L., Zhulanov V. V., Pruuel E. R.,
Tolochko B. P., Ten K. A., Shekhtman L. I.
A detector for imaging of explosions on a
synchrotron radiation beam // Instrum. Exp.
Tech. — 2010. — V. 53, N 3. — P. 334–349. —
DOI: 10.1134/S0020441210030036.

14. Антипов М. В., Юртов И. В., Утен-
ков А. А., Блинов А. В., Садунов В. Д.,
Трищенко Т. В., Огородников В. А., Ми-
хайлов А. Л., Глушихин В. В., Вишне-
вецкий Е. Д. Применение пьезоэлектрическо-
го метода для измерения параметров ударно-
индуцированных пылевых потоков // Физика
горения и взрыва. — 2018. — Т. 54, № 5. —
C. 96–102. — DOI: 10.15372/FGV20180513. —
EDN: XXRRRJ.

15. Zellner M. B., Buttler W. T. Exploring
Richtmyer–Meshkov instability phenomena and
ejecta cloud physics // Appl. Phys. Lett. —
2008. — V. 93, N 11. — 114102. — DOI:
10.1063/1.2982421.

16. https://physics.nist.gov/PhysRefData/Xcom/
html/xcom1.html.

Поступила в редакцию 09.06.2023.
После доработки 20.07.2023.
Принята к публикации 23.08.2023.


