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Изучается многомерная начально-краевая задача для системы уравнений Кельвина —
Фойгта для вязкоупругой жидкости с нелинейным конвективным слагаемым и линей-
ным импульсным слагаемым — регулярным младшим членом, описывающим импульс-
ные явления. Импульсное слагаемое зависит от целого положительного параметра n и
при n → +∞ слабо сходится к выражению, включающему дельта-функцию Дирака, мо-
делирующую импульсные явления в начальный момент времени. Доказывается, что при
n → +∞ формируется ассоциированный с дельта-функцией Дирака инфинитезималь-
ный начальный слой и семейство регулярных слабых решений начально-краевой задачи
сходится к сильному решению двухмасштабной микро- и макроскопической модели.

Ключевые слова: импульсные уравнения в частных производных, жидкость Кельви-
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1. Постановка задачи. Изучается начально-краевая задача для системы уравне-
ний Кельвина — Фойгта динамики несжимаемой однородной вязкоупругой жидкости при

наличии импульсных явлений:

∂tvn + divx(vn ⊗ vn) = divx(µ∇xvn + κ∇x ∂tvn) + aϕnvn −∇xπn в QT ,

divx vn = 0 в QT ,
(1.1)

vn( · , 0) = v0 на Ω,

vn = 0 на ∂Ω× (0, T ).

Здесь Ω ⊂ Rd
x — ограниченная область с границей ∂Ω ∈ C2; d = 2; 3 — размерность

пространства положений материальных точек x; t — время; T = const > 0 — заданный

фиксированный момент времени; QT = Ω× (0, T ) — пространственно-временной цилиндр;
vn = vn(x, t) — искомое поле скоростей; πn = πn(x, t) — искомое распределение давления;
µ, κ — заданные положительные коэффициенты кинематической вязкости и ретардации

соответственно; a — коэффициент интенсивности импульса, который может быть как по-
ложительным, так и отрицательным. Начальное распределение поля скоростей v0 = v0(x)
и профиль импульсного воздействия ϕn = ϕn(t) также являются заданными и удовлетво-
ряют следующим условиям:

v0 ∈ W 2,2
0 (Ω)d, divx v0 = 0 на Ω, (1.2)
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функция ϕn = ϕn(t) определяется для каждого натурального n > n0 = [1/T ]+2 формулой

ϕn(t) = nΦ(nt), t ∈ [0, T ], (1.3)

где Φ = Φ(ϑ) — заданная неотрицательная гладкая функция с носителем на отрезке 0 6
ϑ 6 1 и средним значением, равным единице:

1∫
0

Φ(ϑ) dϑ = 1. (1.4)

Требования, наложенные на последовательность {ϕn}|n>n0 , означают, что она аппрок-
симирует сосредоточенную в начальный момент времени дельта-функцию Дирака δ|t=0 в

том смысле, что ϕn(t) −→
n→+∞

δ|t=0 слабо
∗ вM(0, T ). Здесь черезM(0, T ) обозначается про-

странство мер Радона, сопряженное с пространством C[0, T ]. Справедливы соотношения

t∫
0

ϕn(s) ds 6 1 ∀ t ∈ [0, T ],

T∫
0

ϕn(s) ds = 1. (1.5)

Примером функции Φ является классическое сглаживающее ядро Фридрихса — так назы-
ваемая функция-шапочка.

С математической точки зрения представляет интерес изучение поведения вязкоупру-
гой жидкости Кельвина — Фойгта при наличии линейного импульсного источника aϕnvn.
Влияние наличия импульсного источника можно показать на двух примерах задач для

обыкновенных дифференциальных уравнений.
1. Задача Коши для линейного неоднородного уравнения, в котором импульсное сла-

гаемое aϕn(t) не зависит от решения:

dgn(t)

dt
= aϕn(t), t > 0, gn(0) = g0. (1.6)

Здесь a 6= 0, g0 6= 0 — заданные постоянные; функция ϕn(t) (n = 1, 2, . . .) имеет вид (1.3).
Решением данной задачи является функция

gn(t) = g0 + a

t∫
0

ϕn(s) ds.

Переходя в последовательности {gn} к пределу при n → +∞, получаем

lim
n→+∞

gn(t) = g(t) = g0 + a, t > 0.

Очевидно, предельная функция g является решением задачи Коши

dg(t)

dt
= 0, t > 0, g(0) = g0 + a. (1.7)

Заметим, что наличие в правой части уравнения (1.6) функции ϕn в пределе при n → +∞
привело к возникновению в начальных данных дополнительного слагаемого (корректора),
равного a, т. е. равного интенсивности мгновенного импульса, соответствующего мере
aδ|t=0. Вводя обозначение g(0−) = g0, формально это замечание можно записать в виде
импульсного условия

g(0+) = g(0−) + a. (1.8)
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Заметим также, что предельную задачу (1.7) можно записать в эквивалентном (в смысле
теории распределений) виде

dg(t)

dt
= aδ

∣∣
t=0+

, t > 0, g(0−) = g0, (1.9)

т. е. предельная задача совпадает с задачей (1.6), в которой выполнена замена g на gn

и последовательность {ϕn} заменена на предельную меру δ|t=0+.
2. Задача Коши для линейного однородного уравнения, в правой части которого в ка-

честве множителя содержится само неизвестное решение:

dhn(t)

dt
= aϕn(t)hn(t), t > 0, hn(0) = h0 (1.10)

(a 6= 0, h0 6= 0 — заданные постоянные). Задача легко интегрируется, ее решение имеет
вид

hn(t) = h0 exp
(
a

t∫
0

ϕn(s) ds
)
. (1.11)

Проводя рассуждения, аналогичные использованным для первой задачи, выводим предель-
ное соотношение lim

n→+∞
hn(t) = h(t) = h0 ea (при t > 0) и затем импульсное условие

h(0+) = h(0−) + (ea − 1)h0. (1.12)

Заметим, что предельная функция h(t) служит решением задачи

dh(t)

dt
= (ea − 1)h0δ

∣∣
t=0+

, t > 0, h(0−) = h0, (1.13)

которую следует понимать в смысле теории распределений.
Следует отметить два существенных различия предельных постановок первой и вто-

рой задач: 1) вторая задача (задача (1.10)) не сводится к предельной задаче (1.13) путем
замены hn на h и ϕn(t) на δt=0+; 2) во второй задаче корректор (ea−1)h0 в импульсном

условии (1.12) зависит от интенсивности мгновенного импульса a нелинейно, несмотря на
то что в уравнение (1.10) интенсивность a входит линейно.

Таким образом, во второй задаче в случае, когда импульсный источник зависит от ре-
шения, корректная аппроксимация немгновенного импульсного эффекта мгновенным им-
пульсом не сводится к механической замене гладкой функции ϕn(t) на дельта-функцию
Дирака и линейная зависимость от интенсивности импульса a может порождать в пределе
при n → +∞ нелинейные эффекты.

Импульсный член aϕnvn в первом уравнении (1.1) связан с дилатантными и псевдо-
пластическими жидкостями [1–3]. Так как первые два уравнения системы (1.1) описывают
только несжимаемые жидкости, то дилатантные и псевдопластические жидкости являют-
ся жидкостями, у которых при импульсных нагрузках существенно меняются вязкость
и скорость. Ввиду этого в дилатантных жидкостях возникает абсорбция (гашение ско-
рости), что соответствует отрицательному значению коэффициента a. В свою очередь, в
псевдопластических жидкостях происходит резкое увеличение скорости, т. е. коэффици-
ент a положителен. Импульсная модель (первые два уравнения (1.1)) может быть при-
менена, например, к рыхлым средам, так как известно, что под действием импульсно-
го нагружения проявляются гидродинамические свойства рыхлой среды. Действительно,
при воздействии сейсмических ударных волн происходит разжижение некоторых грунтов,
что приводит к обрушению зданий. Наконец, заметим, что наряду с псевдопластически-
ми существуют дилатантные жидкости, вязкость которых возрастает при динамических
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нагрузках. К таким веществам относятся соединения на основе кевлара, которые исполь-
зуются, например, в бронежилетах и в сейсмостойких фундаментах [4]. Заметим, что урав-
нения Кельвина — Фойгта с нелинейным источником или абсорбцией, но без импульсного
множителя ϕn были рассмотрены в работах [5, 6].

В данной работе результаты асимптотического анализа импульсных псевдопарабо-
лических уравнений [7, 8] применяются при решении задачи для системы импульсных

уравнений Кельвина — Фойгта.
2. Разрешимость задачи (1.1) при фиксированных n. Решение задачи (1.1) по-

нимается в слабом обобщенном смысле. Для того чтобы сформулировать соответствующее
определение, введем следующие функциональные пространства, широко используемые в
математической теории жидкости:

1) V(Ω) = {v ∈ C∞0 (Ω)d: divx v = 0};
2) H(Ω) — замыкание V(Ω) по норме пространства L2(Ω)d;
3) V l(Ω) — замыкание V(Ω) по норме пространства W l,2(Ω)d, l = 1, 2.
Заметим, что условие (1.2) можно записать в эквивалентном виде v0 ∈ V2(Ω).
Для каждого n > n0 (n ∈ N) определяем слабое решение задачи (1.1) следующим

образом.
Определение 1. Вектор-функция vn = vn(x, t) называется регулярным слабым обоб-

щенным решением задачи (1.1), если выполняются следующие условия:
1) условия регулярности

vn ∈ L∞(0, T ;V2(Ω)), ∂tvn ∈ L2(0, T ;V1(Ω));

2) интегральное равенство∫
QT

(∂tvn · ϕ + divx(vn ⊗ vn) · ϕ + µ∇xvn : ∇xϕ + κ∇x ∂tvn : ∇xϕ) dx dt =

= a

T∫
0

ϕn(t)

∫
Ω

vn · ϕ dx dt (2.1)

для всех возможных пробных вектор-функций ϕ ∈ L∞(0, T ;V2(Ω)), удовлетворяющих
условию ∂tϕ ∈ L2(0, T ;V1(Ω));

3) начальное условие (третье уравнение (1.1)) в смысле сильного следа в H(Ω), т. е.

‖vn( · , t)− v0( · )‖H(Ω) −→
t→0+

0. (2.2)

В случае a = 0, т. е. без учета импульсных явлений, задача (1.1) ранее исследовалась
в работах [9–11]. Заметим, что полученный в [9] результат (однозначная глобальная (по
времени) разрешимость) обобщается при каждом фиксированном n > n0 (n ∈ N) на случай
a 6= 0. Сформулируем следующее предложение.
Предложение 1. При наложенных в п. 1 условиях на входные данные при каждом

фиксированном n задача (1.1) имеет единственное регулярное слабое решение vn в смысле

определения 1.
Следует отметить, что регулярное слабое решение в смысле определения 1 в работе [9]

называется сильным решением.
Доказательство существования решения проведено в [9] с помощью метода Галерки-

на. При этом построено множество энергетических оценок регулярного слабого решения
(см. [9]).



32 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2024. Т. 65, N-◦ 5

Предложение 2. Семейство {vn}|n=1,2,... регулярных слабых решений задачи (1.1)
удовлетворяет оценкам

‖vn‖L∞(0,T ;V2(Ω)) 6 C0; (2.3)

‖∂tvn‖L1(0,T ;H(Ω)) + ‖∇x∂tvn‖L1(0,T ;L2(Ω)d×d) 6 C1; (2.4)

‖∂tvn‖2
L2(0,T ;H(Ω))

+ ‖∇x∂tvn‖2
L2(0,T ;L2(Ω)d×d)

6 C2T + C3

T∫
0

ϕ2
n(t) dt, (2.5)

в которых постоянные C0, . . . , C3 не зависят от n.
Заметим, что оценки (2.3), (2.4) являются равномерными по n, а оценка (2.5) не явля-

ется, поскольку

T∫
0

ϕ2
n(t) dt −→

n→+∞
+∞ в силу (1.3), (1.4).

3. Результаты исследования. Основные результаты исследования получены при
предельном переходе n → +∞ в семействе регулярных слабых решений задачи (1.1) и
формулируются в виде следующей теоремы.

Теорема 1. Пусть выполнены начальные и граничные условия задачи (1.1) и
{vn}|n>n0 — семейство регулярных слабых решений задачи (1.1) в смысле определения 1.
Тогда справедливы следующие утверждения:

1. Семейство {vn}|n>n0 относительно компактно в L2(0, T ;V1(Ω)) и относительно
слабо∗ компактно в L∞(0, T ;V2(Ω)) при n → +∞: существуют подпоследовательность
из {vn}|n>n0, обозначаемая через n, и предельная вектор-функция v ∈ L∞(0, T ;V2(Ω)),
такие что

vn −→
n→+∞

v сильно в L2(0, T ;V1(Ω)) и слабо∗ в L∞(0, T ;V2(Ω)). (3.1)

2. Семейство ремасштабированных решений {v̄n}|n>n0, v̄n: Ω × [0, 1] 7→ Rd, опреде-
ляемых формулой

v̄n(x, ϑ)
def
= vn

(
x,

ϑ

n

)
, ϑ ∈ [0, 1], (3.2)

относительно компактно в L2(0, 1;V1(Ω)) и относительно слабо∗ компактно в
L∞(0, 1;V2(Ω)): существуют подпоследовательность из {v̄n}|n>n0, обозначаемая че-
рез n, и предельная функция v̄ ∈ L∞(0, 1;V2(Ω)), такие что

v̄n −→
n→+∞

v̄ сильно в L2(0, 1;V1(Ω)) и слабо∗ в L∞(0, 1;V2(Ω)). (3.3)

3. Существует пара скалярных функций π̄ и π, таких что пара предельных вектор-
функций v̄ и v наряду с π̄ и π является сильным решением двух следующих задач, реша-
емых последовательно.

3.1. Требуется найти пару функций (v̄, π̄), удовлетворяющих системе уравнений

∂ϑv̄ = κ ∆x∂ϑv̄ + aΦ(ϑ)v̄ −∇xπ̄ в Ω× (0, 1); (3.4)

divx v̄ = 0 в Ω× (0, 1); (3.5)

v̄( · , 0) = v0 в Ω; (3.6)

v̄ = 0 на ∂Ω× (0, 1). (3.7)
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3.2. Требуется найти пару функций (v, π), удовлетворяющих системе уравнений

∂tv + divx(v ⊗ v) = µ ∆xv + κ ∆x∂tv −∇xπ в QT ; (3.8)

divx v = 0 в QT ; (3.9)

v( · , 0) = v̄( · , 1) в Ω; (3.10)

v = 0 на ∂Ω× (0, T ), (3.11)

где начальная вектор-функция v( · , 0) определяется из решения системы (3.4)–(3.7) в
момент ϑ = 1.

Уравнения (3.4), (3.5) будем называть уравнениями инфинитезимального начального
слоя. Уравнение (3.4) содержит функцию Φ(ϑ) и поэтому включает полную информацию
о профиле мгновенного импульсного воздействия. В силу рескейлинга t = ϑ/n (см. (3.2))
независимую переменную ϑ можно считать быстрой переменной времени, а пару (v̄, π̄) —
решением микроскопического (инфинитезимального) начального слоя, в то время как t —
медленная переменная времени, а пара (v, π) — макроскопическое внешнее решение. Таким
образом, уравнения (3.4)–(3.11) представляют собой двухмасштабную микро- и макроско-
пическую задачу. При этом условие (3.10) справедливо интерпретировать как межфазное
условие для микроскопического начального слоя и макроскопического внешнего течения.

Следует отметить, что предельная постановка (3.4)–(3.11) имеет преимущество по
сравнению с исходной с точки зрения построения аналитических (точных) решений и про-
ведения численных экспериментов, а именно: уравнения (3.4), (3.8) имеют более простой
вид по сравнению с первым уравнением в (1.1), что позволяет применять известные ме-
тодики получения точных решений [12, 13]. В свою очередь, отсутствие в предельной
постановке малого начального слоя 0 < t < 1/n позволяет избежать в численных расче-
тах применения тонких сеток и существенно уменьшить вычислительные затраты (см.,
например, [14, 15]).

Сильное решение задачи (3.4)–(3.11) понимается в следующем смысле.
Определение 2. Совокупность функций (v̄, π̄,v, π) называется сильным решением

задачи (3.4)–(3.11), если:
1) пара функций (v̄, π̄) удовлетворяет следующим требованиям:
а) выполняются условия регулярности

v̄ ∈ C([0, 1];H(Ω)) ∩ L∞(0, 1;V2(Ω)),

∂ϑv̄, ∆x∂ϑv̄ ∈ L∞(0, 1;H(Ω)), ∇xπ̄ ∈ L2(Ω× (0, 1))d;

б) уравнения (3.4), (3.5) выполняются почти всюду в Ω× (0, 1);
в) начальное условие (3.6) выполняется в смысле сильного следа в H(Ω), т. е.

‖v̄( · , ϑ)− v0( · )‖H(Ω) −→
ϑ→0+

0;

2) пара функций (v, π) удовлетворяет следующим требованиям:
а) выполняются условия регулярности

v ∈ C([0, T ];H(Ω)) ∩ L∞(0, T ;V2(Ω)),

∂tv, ∆x∂tv ∈ L∞(0, T ;H(Ω)), ∇xπ ∈ L2(QT )d;
(3.12)

б) уравнения (3.8), (3.9) выполняются почти всюду в QT ;
в) начальное условие (3.10) выполняется в смысле сильного следа в H(Ω), т. е.

‖v( · , t)− v̄( · , 1)‖H(Ω) −→
t→0+

0.
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4. Доказательство предложения 2. Докажем приведенное выше предложение 2.
4.1. Приближения Галеркина. Следуя [9, 16], введем полную в V2(Ω) линейно незави-

симую систему {ψi}|i=1,2,..., ортонормированную в H(Ω) и состоящую из решений спек-
тральной задачи∫

Ω

∇xψi : ∇xΦ dx = λi

∫
Ω

ψi ·Φ dx ∀Φ ∈ V2(Ω), i = 1, 2, . . . . (4.1)

Регулярное слабое решение vn задачи (1.1) строится как предел последовательности
конечномерных приближений Галеркина

vn = lim
m→+∞

v
(m)
n ,

где

v
(m)
n ( · , t) =

m∑
i=1

vi,mn(t)ψi( · ), t ∈ [0, T ].

Неизвестные коэффициенты vi,mn(t) (i = 1, 2, . . . ,m) находятся как решения системы
Галеркина— задачи Коши для системы m нелинейных обыкновенных дифференциальных

уравнений:

(1 + κλi)
dvi,mn(t)

dt
= −

∫
Ω

divx(v
(m)
n ⊗ v(m)

n ) ·ψi dx−

−
∫
Ω

(µ∇xv
(m)
n : ∇xψi − aϕn(t)v

(m)
n ·ψi) dx, (4.2)

vi,mn(0) = v0,i, i = 1, 2, . . . ,m,

где постоянные v0,i — коэффициенты Фурье вектор-функции v0 по базису {ψi}|i=1,2,....
Имеем

v0,i =

∫
Ω

v0 ·ψi dx, v
(m)
0 =

m∑
i=1

v0,iψi −→
m→+∞

v0 сильно в V2(Ω).

Следует отметить, что коэффициенты v0,i и приближенная начальная вектор-

функция v
(m)
0 не зависят от n.

Так как 1 + κλi > 1 (i = 1, . . . ,m), то согласно теореме Пеано система (4.2) име-
ет решение (v1,mn(t), . . . , vm,mn(t)) для каждого m ∈ N на некотором интервале (0, Tmn).

Соответственно, приближенное решение v
(m)
n существует в пространственно-временном

цилиндре Ω× (0, Tmn).

4.2. Продолжение v(m)
n на весь интервал (0, T ). Энергетические оценки. Докажем

следующую лемму.
Лемма 1. Пусть выполнены наложенные в п. 1 условия на входные данные зада-

чи (1.1) и значение n > n0 (n ∈ N) фиксировано. Тогда каждая вектор-функция в по-

следовательности {v(m)
n }|m=1,2,... имеет продолжение с (0, Tmn) на весь интервал (0, T ]

и удовлетворяет первой энергетической оценке

sup
t∈[0,T ]

(
‖v(m)

n ( · , t)‖2
H(Ω) + κ ‖∇xv

(m)
n ( · , t)‖2

L2(Ω)d×d

)
+ µ ‖∇xv

(m)
n ‖2

L2(QT )d×d 6

6 M0

(
‖v0‖2

H(Ω) + κ‖∇xv0‖2
L2(Ω)d×d

)
, (4.3)

где M0 = 2 при a 6 0 и M0 = e2a при a > 0.
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Доказательство основано на умножении i-го уравнения в системе (4.2) на vi,mn c по-
следующим суммированием по i от 1 до m и учетом соотношений (1.5), (4.1) и проводится
аналогично выводу первой энергетической оценки и обоснованию продолжения решения [9].

Лемма 2. Пусть выполнены наложенные в п. 1 условия на входные данные зада-
чи (1.1) и значение n > n0 (n ∈ N) фиксировано. Тогда семейство приближений Галер-

кина {v(m)
n }|m=1,2,... удовлетворяет второй энергетической оценке

sup
t∈[0,T ]

(‖∇xv
(m)
n ( · , t)‖2

L2(Ω)d×d + ‖∆xv
(m)
n ( · , t)‖2

H(Ω)) 6

6 M1(‖v0‖2
H(Ω) + ‖∇xv0‖2

L2(Ω)d×d + ‖∆xv0‖2
H(Ω) + 1), (4.4)

где положительная постоянная M1 зависит от T , Ω, d, µ, κ, a и не зависит от m, n.
Доказательство. Умножая i-е уравнение в системе (4.2) на λivi,mn, проводя сум-

мирование по i от 1 до m, применяя формулу Грина по xj (1 6 j 6 d) и учитывая (4.1),
получаем равенство

1

2

d

dt
(‖∇xv

(m)
n ( · , t)‖2

L2(Ω)d×d + κ‖∆xv
(m)
n ( · , t)‖2

H(Ω)) + µ‖∆xv
(m)
n ( · , t)‖2

H(Ω) =

=

∫
Ω

divx(v
(m)
n (x, t)⊗ v(m)

n (x, t)) ·∆xv
(m)
n (x, t) dx+ aϕn(t)‖∇xv

(m)
n ( · , t)‖2

L2(Ω)d×d . (4.5)

Оценим сверху интеграл в правой части (4.5). Для этого используем два известных
неравенства вложения.Первое неравенство следует из неравенства Пуанкаре—Фридрихса

и теоремы вложения Соболева [17] и имеет вид

‖v(m)
n ( · , t)‖L4(Ω)d 6 M2(d, Ω)‖∇xv

(m)
n ( · , t)‖L2(Ω)d×d , (4.6)

где постояннаяM2(d, Ω) не зависит от n иm. Второе неравенство позволяет оценить норму
вектор-функции в V2(Ω) через норму ее лапласиана в H(Ω) [16] и имеет вид

‖v(m)
n ( · , t)‖V2(Ω) 6 M3(d, Ω)‖∆xv

(m)
n ( · , t)‖H(Ω), (4.7)

где постоянная M3(d, Ω) не зависит от n, m.
Применяя последовательно неравенство Коши, оценим неравенство Коши — Буняков-

ского, неравенства (4.6), (4.7) и первую энергетическую оценку (4.3):∫
Ω

divx(v
(m)
n (x, t)⊗ v(m)

n (x, t)) ·∆xv
(m)
n (x, t) dx 6

6
1

2
‖ divx(v

(m)
n ( · , t)⊗ v(m)

n ( · , t))‖2
H(Ω) +

1

2
‖∆xv

(m)
n ( · , t)‖2

H(Ω) 6

6
M4(d)

2
‖v(m)

n ( · , t)‖2
L4(Ω)d

‖∇xv
(m)
n ( · , t)‖2

L4(Ω)d×d +
1

2
‖∆xv

(m)
n ( · , t)‖2

H(Ω) 6

6
M2

2 (d, Ω)M2
3 (d, Ω)M4(d)

2
‖∇xv

(m)
n ( · , t)‖2

L2(Ω)d×d ‖∆xv
(m)
n ( · , t)‖2

H(Ω) +

+
1

2
‖∆xv

(m)
n ( · , t)‖2

H(Ω) 6
1

2
(M0M

2
2 (d, Ω)M2

3 (d, Ω)M4(d)(‖v0‖2
H(Ω) +

+ κ‖∇xv0‖2
L2(Ω)d×d) + 1)‖∆xv

(m)
n ( · , t)‖2

H(Ω). (4.8)
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Введем следующие обозначения:

Z(m)(t) = ‖∇xv
(m)
n ( · , t)‖2

L2(Ω)d×d + κ ‖∆xv
(m)
n ( · , t)‖2

H(Ω),

M5 =
1

2κ
(M0M

2
2 (d, Ω)M2

3 (d, Ω)M4(d)(‖v0‖2
H(Ω) + κ‖∇xv0‖2

L2(Ω)d×d) + 1).

С учетом этих обозначений, комбинируя (4.5) и (4.8) и добавляя в правую часть получен-
ного неравенства неотрицательные слагаемые, находим неравенство

1

2

dZ(m)(t)

dt
+ µ‖∆xv

(m)
n ( · , t)‖2

H(Ω) 6 (M5 + |a|ϕn(t))Z(m)(t), t ∈ [0, T ],

из которого следует вторая энергетическая оценка (4.4) в силу леммы Гронуолла и соот-
ношений (1.5).

Следствие 1. Имеет место равномерная по m и n оценка

‖v(m)
n ‖2

L∞(0,T ;V2(Ω))
6 M1M

2
3 (d, Ω)(‖v0‖2

H(Ω) + ‖∇xv0‖2
L2(Ω)d×d + ‖∆xv0‖2

H(Ω) + 1). (4.9)

Лемма 3. Пусть выполнены наложенные в п. 1 условия на входные данные зада-
чи (1.1) и значение n > n0 (n ∈ N) фиксировано. Тогда семейство приближений Галер-

кина {v(m)
n }|m=1,2,... удовлетворяет оценкам

‖∂tv
(m)
n ( · , t)‖2

H(Ω) + ‖∇x∂tv
(m)
n ( · , t)‖2

L2(Ω)d×d 6 M6 + M7 a2ϕ2
n(t) ∀t ∈ [0, T ]; (4.10)

‖∂tv
(m)
n ( · , t)‖H(Ω) + ‖∇x∂tv

(m)
n ( · , t)‖L2(Ω)d×d 6

√
2M6 +

√
2M7 |a|ϕn(t) ∀t ∈ [0, T ], (4.11)

где положительные постоянные M6, M7 не зависят от m, n.
Построение оценки (4.10) основано на умножении i-го уравнения системы (4.2) на

2 dvi,mn/dt c последующим суммированием по i от 1 до m и учетом соотношения (4.1) и
проводится аналогично выводу оценки (3.3) (в случае d = 3) и оценки (3.3′) (в случае
d = 2) в работе [9]. Оценка (4.11) следует из оценки (4.10) в силу неравенства A + B 6√

2(A2 + B2) ∀A, B ∈ R.
4.3. Предельный переход при m → +∞. В силу следствия 1 согласно теореме Алаоглу

семейство {v(m)
n }|m=1,2,... относительно слабо

∗ компактно в L∞(0, T ;V2(Ω)) (4.12)

при любом фиксированном n > n0 (n ∈ N). В силу леммы 3 согласно теореме Алаоглу

семейство {∂tv
(m)
n }|m=1,2,... относительно слабо

∗ компактно в L∞(0, T ;V1(Ω)) (4.13)

при любом фиксированном n > n0 (n ∈ N).
Переходя к пределу при m → +∞ в оценках (4.9)–(4.11) с учетом свойств компакт-

ности (4.12), (4.13) и известного свойства слабой полунепрерывности снизу для норм [18]
и дополнительно интегрируя оценки для ∂tvn и ∇x∂tvn по t на (0, T ), получаем оценки
(2.3)–(2.5), в которых

C2
0 = M1M

2
3 (d, Ω)(‖v0‖2

H(Ω) + ‖∇xv0‖2
L2(Ω)d×d + ‖∆xv0‖2

H(Ω) + 1),

C1 =
√

2M6 + |a|
√

2M7, C2 = M6, C3 = M7a
2.

Предложение 2 доказано.
5. Доказательство теоремы 1. Ниже приводится доказательство теоремы 1.
5.1. Предельный переход при n → +∞ в последовательности {vn}. Доказательство

утверждения 1 теоремы 1. В силу равномерных по n оценок в предложении 2 утвержде-
ние 1 теоремы 1 следует из леммы Обена — Лионса — Симона о компактности [19] и
теоремы Алаоглу.
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5.2. Рескейлинг и сдвиг в последовательности {vn}. Ниже выполняется предельный
переход при n → +∞ в интегральном равенстве (2.1).

Полагая, что пробная вектор-функция ϕ в интегральном равенстве (2.1) обращается в
нуль в окрестности сечения t = T , проинтегрируем первое и четвертое слагаемые в левой
части (2.1) по t по частям, применим формулу Грина по x в интеграле, содержащем кон-
вективное слагаемое, и запишем результирующее равенство в развернутом виде, отделив
интегралы по сегментам (0, 1/n) и (1/n, T ) друг от друга. В результате получаем

1/n∫
0

∫
Ω

(−vn ·∂tϕ−(vn⊗vn) : ∇xϕ+µ∇xvn : ∇xϕ−κ∇xvn : ∇x∂tϕ−anΦ(nt)vn ·ϕ) dx dt−

−
∫
Ω

v0(x) · ϕ(x, 0) dx− κ
∫
Ω

∇xv0(x) : ∇xϕ(x, 0) dx+

+

T∫
1/n

∫
Ω

(−vn · ∂tϕ− (vn ⊗ vn) : ∇xϕ + µ∇xvn : ∇xϕ− κ∇xvn : ∇x∂tϕ) dx dt = 0, (5.1)

где учтено, что носитель функции t 7→ nΦ(nt) лежит на отрезке [0, 1/n]. В (5.1) на интер-
валах 0 < t < 1/n и 1/n < t 6 T выполним следующие замены независимой переменной t
и искомой функции vn. На интервале (1/n, T ] сдвигаем шкалу времени и полагаем

t̃ = t− 1/n, ṽn(x, t̃) = vn(x, t) ≡ vn(x, t̃ + 1/n), t ∈ (1/n, T ]. (5.2)

Заметим, что t̃ ∈ (0, T − 1/n], dt = dt̃, ∂t = ∂t̃, t = t̃ + 1/n. Далее, следуя [20], полагаем

ϑ = nt, v̄n(x, ϑ) = vn(x, t) ≡ vn(x, n−1ϑ), t ∈ [0, 1/n]. (5.3)

Заметим также, что ϑ ∈ [0, 1], dt = n−1 dϑ, ∂t = n∂ϑ, t = n−1ϑ. Таким образом, (5.1)
принимает вид

1∫
0

∫
Ω

(
−v̄n(x, ϑ) · ∂ϑϕ(x, n−1ϑ)− n−1(v̄n(x, ϑ)⊗ v̄n(x, ϑ)) : ∇xϕ(x, n−1ϑ) +

+ n−1µ∇xv̄n(x, ϑ) : ∇xϕ(x, n−1ϑ)− κ∇xv̄n(x, ϑ) : ∇x∂ϑϕ(x, n−1ϑ)−

− aΦ(ϑ)v̄n(x, ϑ)ϕ(x, n−1ϑ)
)
dx dϑ−

−
∫
Ω

v0(x) · ϕ(x, 0) dx− κ
∫
Ω

∇xv0(x) : ∇xϕ(x, 0) dx+

+

T−1/n∫
0

∫
Ω

(
−ṽn(x, t̃) · ∂t̃ϕ(x, t̃ + 1/n)− (ṽn(x, t̃)⊗ ṽn(x, t̃)) : ∇xϕ(x, t̃ + 1/n) +

+ µ∇xṽn(x, t̃) : ∇xϕ(x, t̃ + 1/n)− κ∇xṽn(x, t̃) : ∇x∂t̃ϕ(x, t̃ + 1/n)
)
dx dt̃ = 0. (5.4)

Для выполнения предельного перехода при n → +∞ в (5.4) выберем пробную вектор-
функцию ϕ = ϕn(x, t), зависящую от n, в виде

ϕn(x, t) =

{
ϕ̄(x, ϑ) ≡ ϕ̄(x, nt), t ∈ [0, 1/n], ϑ ∈ [0, 1],

ϕ̃(x, t̃) ≡ ϕ̃(x, t− 1/n), t ∈ (1/n, T ], t̃ ∈ (0, T − 1/n],
(5.5)
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где ϕ̄ = ϕ̄(x, ϑ), ϕ̃ = ϕ̃(x, t̃) — произвольные гладкие пробные вектор-функции, опреде-
ленные на Ω̄ × [0, 1] и Ω̄ × (0, T ] соответственно, такие что ϕ̄ = ϕ̃ ≡ 0 в окрестности ∂Ω,
ϕ̃ ≡ 0 в окрестности сечения t̃ = T и выполняется условие согласования

ϕ̄(x, 1− 0) = ϕ̃(x, 0+). (5.6)

Заметим, что в силу условия (5.6) обобщенные производные ∂tϕn и ∇x∂tϕn существенно

ограничены в QT , откуда следует ϕn ∈ L2(0, T ;V1(Ω)), ∂tϕn ∈ L2(0, T ;V1(Ω)), поэто-
му ϕn является допустимой пробной вектор-функцией для интегрального равенства (5.1)
и для (5.4). Подставляя (5.5) в (5.4), получаем

1∫
0

∫
Ω

(
−v̄n(x, ϑ) · ∂ϑϕ̄(x, ϑ)− n−1(v̄n(x, ϑ)⊗ v̄n(x, ϑ)) : ∇xϕ̄(x, ϑ) +

+ n−1µ∇xv̄n(x, ϑ) : ∇xϕ̄(x, ϑ)− κ∇xv̄n(x, ϑ) : ∇x∂ϑϕ̄(x, ϑ)−

− aΦ(ϑ)v̄n(x, ϑ)ϕ̄(x, ϑ)
)
dx dϑ−

−
∫
Ω

v0(x) · ϕ̄(x, 0) dx− κ
∫
Ω

∇xv0(x) : ∇xϕ̄(x, 0) dx+

+

T−1/n∫
0

∫
Ω

(
−ṽn(x, t̃) · ∂t̃ϕ̃(x, t̃)− (ṽn(x, t̃)⊗ ṽn(x, t̃)) : ∇xϕ̃(x, t̃) +

+ µ∇xṽn(x, t̃) : ∇xϕ̃(x, t̃)− κ∇xṽn(x, t̃) : ∇x∂t̃ϕ̃(x, t̃)
)
dx dt̃ = 0. (5.7)

Заметим также, что

v̄n(x, 1− 0) = ṽn(x, 0+) в Ω̄ (5.8)

в силу (5.2), (5.3) и свойств регулярности решения vn (см. определение 1). Дальнейшее
обоснование теоремы 1 базируется на использовании семейств {v̄n} и {ṽn} и интегрального
равенства (5.7) с учетом соотношения (5.8).

5.3. Предельный переход при n → +∞ в последовательности {v̄n}. Доказательство
утверждения 2 теоремы 1. Применяя сдвиг и рескейлинг (преобразования (5.2) и (5.3)) в
оценках (2.3), (2.4) и отбрасывая неотрицательные выражения, содержащие ṽn, получаем
равномерные оценки для семейства {v̄n}|n>n0

‖v̄n‖L∞(0,1;V2(Ω)) 6 ‖vn‖L∞(0,T ;V2(Ω)) 6 C0; (5.9)

‖∂ϑv̄n‖L1(0,1;H(Ω)) + ‖∇x∂ϑv̄n‖L1(0,1;L2(Ω)d×d) 6

6 ‖∂tvn‖L1(0,T ;H(Ω)) + ‖∇x∂tvn‖L1(0,T ;L2(Ω)d×d) 6 C1, (5.10)

где постоянные C0, C1 те же, что и в оценках (2.3), (2.4). В силу этих оценок утвержде-
ние 2 теоремы 1 следует из леммы Обена — Лионса — Симона о компактности и теоремы

Алаоглу.
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5.4. Предельный переход в Ω×{0 < ϑ < 1}. Уравнения начального слоя. Полагая ϕ̃ ≡ 0
в (5.7), получаем интегральное равенство

1∫
0

∫
Ω

(
−v̄n(x, ϑ) · ∂ϑϕ̄(x, ϑ)− n−1(v̄n(x, ϑ)⊗ v̄n(x, ϑ)) : ∇xϕ̄(x, ϑ) +

+ n−1µ∇xv̄n(x, ϑ) : ∇xϕ̄(x, ϑ)− κ∇xv̄n(x, ϑ) : ∇x∂ϑϕ̄(x, ϑ)−
− aΦ(ϑ)v̄n(x, ϑ) · ϕ̄(x, ϑ)

)
dx dϑ−

−
∫
Ω

v0(x) · ϕ̄(x, 0) dx− κ
∫
Ω

∇xv0(x) : ∇xϕ̄(x, 0) dx = 0 (5.11)

для любых пробных вектор-функций ϕ̄, удовлетворяющих условиям (5.5) и обращающихся
в нуль в окрестности сечения ϑ = 1.

В силу неравенства AB 6 (A2 + B2)/2 (∀ A, B ∈ R) и оценки (5.9) имеем∣∣∣ 1∫
0

∫
Ω

n−1(v̄n(x, ϑ)⊗ v̄n(x, ϑ)) : ∇xϕ̄(x, ϑ) dx dϑ
∣∣∣ 6

6
d

2n
‖v̄n‖2

L∞(0,1;H(Ω)) ‖∇xϕ̄‖C(Ω̄×[0,T ]) 6
d

2n
C2

0‖∇xϕ̄‖C(Ω̄×[0,T ]) −→
n→+∞

0,

т. е. конвективное слагаемое в интегральном равенстве (5.11) обращается в нуль при
n → +∞. Остальные слагаемые в первом интеграле в (5.11) являются линейными по
v̄n, предельный переход в них основан на предельном соотношении (3.3). В результате при
n → +∞ из (5.11) получаем интегральное равенство

1∫
0

∫
Ω

(
−v̄(x, ϑ) ·∂ϑϕ̄(x, ϑ)−κ∇xv̄(x, ϑ) : ∇x∂ϑϕ̄(x, ϑ)− aΦ(ϑ)v̄(x, ϑ) · ϕ̄(x, ϑ)

)
dx dϑ−

−
∫
Ω

v0(x) · ϕ̄(x, 0) dx− κ
∫
Ω

∇xv0(x) : ∇xϕ̄(x, 0) dx = 0 (5.12)

для любых пробных вектор-функций ϕ̄, удовлетворяющих условиям (5.5).
Следует отметить, что интегральное равенство (5.12) является линейным по v̄ и хо-

рошо изучено с использованием классических методов теории обобщенных решений урав-
нений математической физики. На основе теоремы 2.1 из работы [9] можно сделать вывод,
что равенство (5.12) с включением v̄ ∈ L∞(0, 1;V2(Ω)) эквивалентно системе (3.4)–(3.7),
в которой градиент давления∇xπ̄ ∈ L2(Ω×(0, 1))d восстанавливается по полю скоростей v̄
в силу разложения Вейля, и пара функций (v̄, π̄) является сильным решением системы
(3.4)–(3.7) в соответствии с п. 1 определения 2.

5.5. Предельный переход в Ω × {0 < t̃ < T}. Уравнения внешнего течения. Полагая
ϕ̄ ≡ 0 в (5.7), получаем интегральное равенство

T∫
0

∫
Ω

θ|0<t̃<T−1/n

(
− ṽn(x, t̃) · ∂t̃ϕ̃(x, t̃)− (ṽn(x, t̃)⊗ ṽn(x, t̃)) : ∇xϕ̃(x, t̃) +

+ µ∇xṽn(x, t̃) : ∇xϕ̃(x, t̃)− κ∇xṽn(x, t̃) : ∇x∂t̃ϕ̃(x, t̃)
)
dx dt̃ = 0 (5.13)
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для любых пробных вектор-функций ϕ̃, удовлетворяющих условиям (5.5) и обращающихся
в нуль в окрестности сечения t̃ = 0. Здесь

θ|0<t̃<T−1/n =

{
1, 0 < t̃ < T − 1/n,

0, t̃ 6∈ (0, T − 1/n).

Аналогично оценкам (5.9), (5.10) для v̄n выводим равномерные оценки для семейства

{ṽn}|n>n0 :

‖ṽn‖L∞(0,T−1/n;V2(Ω)) 6 C0; (5.14)

‖∂t̃ṽn‖L1(0,T−1/n;H(Ω)) + ‖∇x∂t̃ṽn‖L1(0,T−1/n;L2(Ω)d×d) 6 C1, (5.15)

где постоянные C0, C1 те же, что и в оценках (2.3), (2.4), (5.9), (5.10). В силу (5.14), (5.15),
леммы Обена — Лионса — Симона о компактности и соотношения

θ|0<t̃<T−1/n −→
n→+∞

1 сильно в Lr(0, T ) ∀ r ∈ [1, +∞) (5.16)

существуют подпоследовательность {ṽn} и предельная вектор-функция ṽ ∈ L∞(0, T ;
V2(Ω)), такие что

θ
∣∣
0<t̃<T−1/n

ṽn −→
n→+∞

ṽ сильно в L2−ν(0, T ;V1(Ω)), слабо в Lr(0, T ; V2(Ω))

∀ν ∈ (0, 1], ∀ r ∈ [1, +∞).
(5.17)

Напомним, что согласно теореме вложения Соболева V1(Ω) компактно вложено в L4(Ω)d

при d = 2; 3. Отсюда и из (5.17) следует

θ
∣∣
0<t̃<T−1/n

ṽn ⊗ ṽn −→
n→+∞

ṽ ⊗ ṽ сильно в L2−ν(0, T ; L2(Ω)d×d). (5.18)

Далее, в силу представлений (5.2), оценки (2.4) и формулы для конечных приращений (см.,
например, лемму 4 в [19]) имеем

T−1/n∫
0

‖ṽn(·, t̃)− vn( · , t̃)‖H(Ω) dt̃ =

T−1/n∫
0

‖vn( · , t̃ + 1/n)− vn( · , t̃)‖H(Ω) dt̃ 6

6 n−1

T∫
0

‖∂t̃vn( · , t̃)‖H(Ω) dt̃ 6 n−1C1 −→
n→+∞

0.

Отсюда, из (3.1) и (5.17) следует

ṽ(x, t̃) = v(x, t̃) при почти всех (x, t̃) ∈ QT . (5.19)

Перейдем к пределу при n → +∞ в (5.13), используя соотношения (5.16)–(5.19) и
обозначая t = t̃. Таким образом, получаем интегральное равенство

T∫
0

∫
Ω

(−v(x, t) · ∂tϕ̃(x, t)− (v(x, t)⊗ v(x, t)) : ∇xϕ̃(x, t) +

+ µ∇xv(x, t) : ∇xϕ̃(x, t)− κ∇xv(x, t) : ∇x∂tϕ̃(x, t)) dx dt = 0. (5.20)

В силу произвольности пробной вектор-функции ϕ̃ интегральное равенство (5.20) с вклю-
чением v ∈ L∞(0, T ;V2(Ω)) эквивалентно системе (3.8), (3.9), (3.11) в смысле теории
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распределений. При этом градиент давления ∇xπ ∈ L2(QT )d стандартно восстанавли-
вается по полю скоростей v в силу разложения Вейля, а уравнение неразрывности (3.9)
выполняется почти всюду в QT . Далее, аналогично [7, 8] на основе (5.20) получаем
∂tv ∈ L∞(0, T ;H(Ω)), откуда следует v ∈ C([0, T ];H(Ω)). Таким образом, v( · , 0+) ∈ H(Ω),
иными словами, вектор-функция v имеет сильный след из H(Ω) в сечении t = 0 справа.
На основе (5.20) и включений ∂tv ∈ L∞(0, T ;H(Ω)) и v ∈ L∞(0, T ;V2(Ω)) по определению
обобщенной производной (в смысле Соболева) получаем ∆x∂tv ∈ L∞(0, T ;H(Ω)). Таким
образом, уравнение (3.8) выполняется почти всюду в QT и предельная вектор-функция v
удовлетворяет всем условиям регулярности в (3.12).

5.6. Условия согласования при ϑ = 1−0. Завершение доказательства утверждения 3
теоремы 1. Обоснование условия (3.10) проводится с учетом работы [8]. Заметим, что
в силу оценки (5.10), полученной с использованием формулы конечных приращений [19],
семейство отображений v̄n: [0, 1] 7→ H(Ω) является равностепенно-непрерывным. В то

же время в силу оценки (5.9) значения функций ϑ 7→ v̄n( · , ϑ) принадлежат интервалу
‖v̄n( · , ϑ)‖V1(Ω) 6 C0. Согласно теореме Реллиха этот интервал является компактным

множеством в H(Ω), поэтому в соответствии с теоремой Арцела — Асколи множество

{v̄n}|n>n0 относительно компактно в C([0, 1];H(Ω)). Следовательно, существует подпосле-
довательность, обозначаемая через n, такая что v̄n( · , ϑ) −→

n→+∞
v̄( · , ϑ) в H(Ω) равномерно

на 0 6 ϑ 6 1. Аналогично из (5.14), (5.15) следует, что ṽn( · , t̃) −→
n→+∞

ṽ( · , t̃) сильно в H(Ω)

равномерно на 0 6 t̃ 6 T − 1/n0. Из этих двух предельных соотношений, равенств (5.8),
(5.19) и включений v̄( · , 1 − 0) ∈ H(Ω) и ṽ( · , 0+) = v( · , 0+) ∈ H(Ω) следует выполнение
начального условия (3.10) — условия согласования при ϑ = 1 − 0 — в смысле сильного

следа в H(Ω). Теорема 1 доказана.
5.7. Замечание о единственности решения задачи (3.4)–(3.11). Из [21] следует, что

слабое решение, а значит, и сильное решение задачи (3.4)–(3.11) в смысле определения 1
единственно. (При этом функции давления π̄ и π определяются единственным образом с
точностью до постоянного значения.) В свою очередь, поскольку решение единственно,
все семейство {vn}|n>n0 решений задачи (1.1) сходится к (v̄,v) при n → +∞ в смысле

соотношений (3.1), (3.3), поэтому отсутствует необходимость извлекать какую-либо под-
последовательность из {vn}|n→+∞.

Авторы выражают благодарность В. В. Пухначеву и Е. В. Ерманюку за внимание
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