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Рассматривается математическая модель среды, состоящей из активных частиц, спо-
собных корректировать свое движение в зависимости от так называемых сигналов или
стимулов. Такие модели применяются, например, при изучении роста живых тканей,
колоний микроорганизмов и более высокоорганизованных популяций. Исследуется взаи-
модействие частиц двух видов, один из которых (хищник) преследует другой (жертву).
При этом перемещение хищника описывается уравнением типа уравнения теплопровод-
ности Каттанео, а жертва способна лишь диффундировать. С учетом гиперболичности
модели Каттанео при достаточно слабой диффузии жертв можно предположить наличие
долгоживущих коротковолновых структур. Однако выявлен механизм неустойчивости
и разрушения таких структур. В явной форме выражены соотношения между транс-
портными коэффициентами хищника, блокирующие этот механизм.

Ключевые слова: системы Патлака — Келлера — Сегел, модель Каттанео хемосен-
ситивного движения, формирование пространственных структур, осреднение, гомоге-
низация, устойчивость, неустойчивость, бифуркация

Введение. Рассмотрим частицы двух видов, один из которых (например, хищник)
чувствителен к концентрации другого (жертвы). Пусть жертва распространяется только
диффузным путем. Распространение хищника определяется как диффузией, так и переме-
щениями частиц вследствие преследования жертв. Вклад таких перемещений выражается
в форме соотношения Патлака — Келлера — Сегел (ПКС) pχ∇s, где p — плотность

хищников; s — плотность жертв; χ — коэффициент чувствительности (см., например,
обзор [1]). Аналогично выражаются вклады более общих перемещений частиц в процессе
преследования-избегания различных, возможно, нескольких сигналов (стимулов). Вклю-
чение ПКС-члена (наряду с диффузией) непосредственно в выражение для потока вида
приводит к так называемым параболическим моделям различных видов таксиса, напри-
мер хемотаксиса. В данной работе рассматривается альтернативная модель перемещения
хищника типа модели Каттанео [2], в которой вклады как диффузионных, так и сенситив-
ных перемещений (в ПКС-форме) включаются в выражение для временной производной
потока. Полученная таким образом система уравнений принадлежит семейству гипер-
болических моделей сенситивного движения активной среды, которые применяются для
изучения роста живых тканей, колоний микроорганизмов и более высокоорганизованных
популяций [3].
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В данной работе рассматривается медленная эволюция коротковолновых пакетов для

исследуемой модели. Интерес к этой проблеме обусловлен агрегацией — спонтанным фор-
мированием крупномасштабных структур из мелкомасштабных, которое рассматривается
как важная область приложения гиперболических моделей [3]. Если в силу гиперболично-
сти модели типа модели Каттанео наличие долгоживущих коротковолновых структур при

достаточно слабой диффузии жертв вполне ожидаемо, то возможность агрегации подразу-
мевает механизм их дестабилизации и разрушения. Этот механизм исследуется в данной
работе.

Вследствие гиперболичности модель Каттанео допускает распространение коротких

волн. Гомогенизация этих волн приводит к уравнениям медленной модуляции амплитуд
коротковолновых пакетов. В гомогенизированной системе имеют место дестабилизация и
разрушение квазиравновесий, обусловленные исключительно вкладом коротких волн. Де-
стабилизация не имеет места лишь в том случае, если выполняются некоторые соотноше-
ния между транспортными коэффициентами хищника. Следует отметить, что такой тип
транспортных коэффициентов независимо рассматривался ранее при описании мелкомас-
штабных “мозаичных” распределений некоторых реальных популяций [4, 5].

1. Уравнения движения системы. В безразмерных переменных рассматриваемые
уравнения имеют вид

pt + div q = F (p, s); (1)

qt + νq = χ(p, s)p∇s− µ(p, s)∇p; (2)

st = G(p, s) + δ∆s. (3)

Здесь x ∈ Rn (n = 1, 2, 3) и t > 0 — пространственная и временная координаты; зависимые
переменные p = p(x, t), q = q(x, t), s = s(x, t) представляют собой плотность и поток хищ-
ников, а также плотность жертв. Уравнения (1), (2) образуют модель Каттанео движения
хищника в поиске жертв, где µ > 0 — коэффициент диффузии; χ > 0 — коэффициент чув-
ствительности хищника к жертве. Эти коэффициенты будем называть транспортными.
Кроме того, уравнение (2) содержит слагаемое с постоянным множителем ν > 0, кото-
рый далее называется удельным сопротивлением по аналогии с силой сопротивления в

механике.
Транспортные коэффициенты, а также кинетические члены F , G, считаются анали-

тическими функциями переменных p > 0, s > 0, причем

F (0, s) = G(p, 0) = 0 ∀p > 0, s > 0. (4)

Коэффициент диффузии жертвы δ > 0 постоянен.
Исключая q из уравнений (1), (2), получаем уравнения второго порядка

(pt − F (p, s))t + ν(pt − F (p, s)) = div (µ(p, s)∇p− χ(p, s)p∇s); (5)

st = G(p, s) + δ∆s. (6)

При этом задача с начальными данными p0, q0, s0 для системы (1)–(3) сводится к задаче
со специальными начальными данными для системы (5), (6), а именно:

pt

∣∣
t=0

= F (p0, s0)− div q0. (7)

Уравнение относительно ω = rot q имеет вид

ωt + νω = −κ∇p×∇s, κ = χ(p, s) + pχp(p, s) + µs(p, s). (8)

Следовательно, завихренность потока хищника затухает со временем при выполнении

условия интегрируемости

∃ϕ(p, s): dϕ = µ(p, s) dp− pχ(p, s) ds. (9)
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При условии (9) уравнение (2) представляет собой закон сохранения. Соответствующие
ударные волны рассмотрены в [6].

2. Постановка задачи. Рассмотрим три численных решения задачи Коши для од-
номерной модели (1)–(3), где

µ = const, χ = const, G(p, s) = s(α− p− s), F = p(γs− β), (10)

α, β, γ — положительные постоянные. Таким образом, используется кинетика Лотки —
Вольтерры.

В расчетах параметры α, β, γ подобраны таким образом, что система (1)–(3) допус-
кает однородное равновесие, в котором p ≡ pe > 0, s ≡ se > 0 и q ≡ 0. Диффузия жертвы
считается малой. При этом чувствительности хищника χ присвоено значение, представ-
ляющее собой порог линейной неустойчивости однородного равновесия в случае δ = 0 (см.
п. 6).

На рис. 1 представлены мгновенные значения отклонения плотностей видов от их

равновесных значений для одного и того же набора параметров системы. На рис. 1,а–г
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Рис. 1. Эволюции плотностей видов при начальных данных p|t=0 = pe(1 +
ε e−x2

+ a sinN (2πnx)), q|t=0 =
√

µ pea sinN (2πnx), s|t=0 = se:
а–з— отклонение мгновенных значений плотности хищников от равновесного значения,
и–м — отклонение мгновенных значений плотности хищников (сплошные линии) и
жертв (пунктирные линии) от равновесного значения; a–г — N = 5, n = 3, ε = 0,
a = 1/2 (а — t = 0, б — t = 2,0, в — t = 3,9, г — t = 6,0), д–з — N = 5, n = 3, ε = 0,1,
a = 1/2 (д — t = 0, е — t = 2,0, ж — t = 4,1, з — t = 5,4), и–м — N = 5, n = 3, ε = 0,1,
a = 0 (и — t = 0, к — t = 3,1, л — t = 6,9, м — t = 10,0)
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показаны отклонения, возникающие в результате коротковолновой модуляции однородно-
го равновесия. На рис. 1,д–з показано взаимодействие той же модуляции с небольшим
гладким локализованным возмущением. Рис. 1,и–м соответствуют тому же возмущению,
но без фоновой короткой волны. Рис. 1,а–г указывает на сходство эволюции коротковол-
нового профиля плотности хищников и медленно затухающей линейной бегущей волны.
Это наблюдение согласуется с тем, что в коротковолновом пределе основные уравнения
сводятся к линейной акустической системе, в которой скорость звука равна

√
µ:

pt + qx = 0, qt + µpx = 0.

Затухание амплитуды обусловлено тем, что в расчете коэффициент сопротивления явля-
ется положительным.

Из рис. 1,д–з следует, что локализованное начальное возмущение не только сохраняет-
ся, но и увеличивается, несмотря на имеющееся сопротивление. На рис. 1,и–м представлена
картина затухания возмущения, симметрия которой обусловлена зеркальной инвариант-
ностью уравнений (1)–(3) и начальных данных.

Анализ рис. 1 позволяет предположить, что короткие волны способны усиливать воз-
мущения. Проверим это с помощью гомогенизации.

3. Гомогенизация системы. Рассмотрим частный случай

µ = µ(s), χ = χ(s). (11)

Такой вид транспортных коэффициентов часто встречается в приложениях (см., например,
[4, 5, 7]).

Пусть в уравнении (3) δ → +0. Будем искать коротковолновые решения в виде сте-
пенных рядов

(p, q, s)(x, t, ξ, τ, δ) =
∞∑

k=0

(p, q, s)k(x, t, ξ, τ)δ
k,

где τ = t/δ; ξ = x/δ. Предполагается, что коэффициенты этих рядов имеют средние

значения, определяемые следующим образом:

〈u〉(x, t) def
= lim

L→∞

1

(2L)n+1

∫
[−L,L]n+1

u(x, t, ξ, τ) dξ dτ. (12)

Следовательно, для каждого k = 0, 1, . . . существует разложение

(p, q, s)k(x, t, ξ, τ) = (p̄, q̄, s̄)k(x, t) + (p̃, q̃, s̃)k(x, t, ξ, τ),

где (p̄, q̄, s̄)k = (〈p〉, 〈q〉, 〈s〉)k; знак “∼” обозначает функцию с нулевым средним. Далее

p̄0 = p̄, p̃0 = p̃, q̄0 = q̄, q̃0 = q̃, s̄0 = s̄, s̃0 = s̃.

Кроме того, нижний индекс ξ при знаке дифференциального оператора обозначает, что
этот оператор действует по быстрой переменной ξ. Наконец, предположим, что

s̃ = s̃0 = 0.

Замена зависимых переменных p, q, s приведенными выше разложениями дает цепочку
уравнений для последовательных приближений. В частности, в результате сравнения чле-
нов порядка δ−1 получаем уравнения

p̃τ + divξ q̃ = 0, q̃τ + µ(s̄)∇ξp̃ = 0, (13)

где зависимая переменная s̄ заморожена и представляет собой параметр. Система (13)
сводится к линейному волновому уравнению

p̃ττ = µ(s̄) ∆ξp̃. (14)
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В результате сравнения членов порядка δ0 = 1 получаем уравнения

p̃1τ + divξ q̃1 = F (p0, s̄)− p0t − div q0; (15)

q̃1τ + µ(s̄)∇ξp1 = p0χ(s̄)(∇s̄+∇ξ s̃1)− µs(s̄)s1∇ξp̃− µ(s̄)∇p0 − q0t − νq0; (16)

s̃1τ −∆ξ s̃1 = G(p0, s̄)− s̄t. (17)

Условия совместности уравнений (15)–(17) имеют вид

p̄t + div q̄ = 〈F (p̄+ p̃, s̄)〉; (18)

q̄t + νq̄ + µ(s̄)∇̄p = p̄χ(s̄)∇s̄+ w; (19)

s̄t = 〈G(p̄+ p̃, s̄)〉, (20)

где

w = W (p̄, s̄) = 〈χ(s̄)p̃∇ξ s̃1 − µs(s̄)s̃1∇ξp̃〉 = κ(s̄)〈p̃∇ξ s̃1〉, (21)

κ — коэффициент в уравнении вихря (8) (упрощенный с учетом предположения (11));W —
нелинейный нелокальный оператор, вычисление которого включает выражение быстрых
зависимых переменных p̃, s̃1 через медленные s̄, p̄ из уравнений (14) и уравнения

s̃1τ −∆ξ s̃1 = G(p̄+ p̃, s̄)− 〈G(p̄+ p̃, s̄)〉. (22)

Таким образом, уравнения (18)–(20) составляют замкнутую систему относительно мед-
ленных зависимых переменных p̄, q̄, s̄, которую будем называть гомогенизированной или

осредненной системой.
Гомогенизированная система отличается от исходной только наличием в правой части

уравнения потока (19) векторного поля w = W (p̄, s̄), которое будем называть “ветром”.
“Ветер” представляет собой вклад коротких волн в гомогенизированную систему.

“Ветер” заведомо исчезает при выполнении условия

κ = µs(s) + χ(s) = 0, (23)

которое является условием интегрируемости (9), записанным с учетом предположе-
ния (11).

Задача вычисления “ветра” упрощается за счет того, что уравнение (14) линейно и
может быть решено независимо от (22). Например, имеем решения

e±k = ei(kξ±c|k|τ), c =
√
µ(s̄(x, t)) , (24)

где индекс k ∈ Zn \ {0}. Полагаем

ψ̃ =
∑
k∈K

(ψ+
k e+

k + ψ−k e−k ), (25)

где K ⊂ Zn \ {0} — конечное множество, причем K = −K и ψ+
k = (ψ−−k)

∗. Последние два
условия обеспечивают вещественность функции (25). Если, например, n = 1, K = {−1, 1},
ψ+

1 = ψ−−1 = 1, ψ−1 = ψ+
−1 = 0, то ψ̃ = 2 cos (x+ ct).

Путем нормализации обеспечивается выполнение неравенства 1+ ψ̃ > 0. Главное при-
ближение плотности хищника определяем равенством

p0 = p̄(x, t)(1 + ψ̃), p̃ = p̄(x, t)ψ̃. (26)

Для явного выражения “ветра” полагаем кинетические члены линейными по плотности
хищников (как в модели Лотки — Вольтерры):

G(p, s) = G1(s)p+G0(s), F (p, s) = F1(s)p+ F0(s). (27)
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Тогда такие же кинетические члены включают осредненные уравнения (18), (20). При
этом уравнение (22) имеет вид

s̃1τ −∆s̃1 = G1(s̄)p̃.

Отсюда находим s̃1 и подставляем в формулу (21). После ряда вычислений получаем вы-
ражение

w = κ(s̄)G1(s̄)p̄
2θ(s̄), θ(s̄) = c

∑
k∈K

|ψ+
k |

2 − |ψ−k |
2

k2 + c2
k

|k|
, (28)

где c = c(s̄) =
√
µ(s̄). Вектор w в общем случае ненулевой, так как члены суммы не

сокращаются в силу нечетности выражения |ψ+
k |

2 − |ψ−k |
2 относительно индекса k.

В одномерном случае

w = G1(s̄)κ(s̄)p̄2θ, c = c(s̄) =
√
µ(s̄) ;

θ = 2c
∑

k>0, k∈K

|ψ+
k |

2 − |ψ−k |
2

c2 + k2
. (29)

Функционал (29) можно продолжить на пространство мер ψ± на окружности, исполь-
зуя бесконечные ограниченные последовательности ψ±k . Рассмотрим задачу максимизации
(минимизации) коэффициента θ при фиксированном c > 0, считая сумму ψ+ + ψ− вероят-
ностной мерой. Следовательно, |ψ±k | < 1, k ∈ N, а максимизирующая (минимизирующая)

пара последовательностей имеет вид |ψ+
k | = 1, ψ−k = 0 (|ψ−k | = 1, ψ+

k = 0). Итак, верхнюю
и нижнюю грани функционала θ можно представить следующим образом:

±2c
∞∑

k=1

1

c2 + k2
= ±π cth (πc)c− 1

c
. (30)

Эти значения доставляются 2π-периодической решеткой мер Дирака, по одному атому на
период.

Оценка типа (30) имеет место в многомерном случае, если дополнительно предполо-
жить, что ∑

k∈K, k2=m2

|ψ+
k |

2 6 1, m = 1, 2, . . . . (31)

Тогда

|θ| 6 π cth (πc)c− 1

c
. (32)

Далее будем считать условие (31) выполненным.
4. Квазиравновесия. В общем случае из формулы (21) следует, что W (p̄, s̄) = const

при условии p̄ = const, s̄ = const. Следовательно, условия равновесия общей гомогенизи-
рованной системы (в случае их наличия) имеют вид

p̄ ≡ p̄e = const, s̄ ≡ s̄e = const, q̄e = w/ν, w = W (p̄e, s̄e),

где равновесные плотности — решения системы уравнений

〈F (p̄e + p̃, s̄e)〉 = 0, 〈G(p̄e + p̃, s̄e)〉 = 0.

Если равновесие гомогенизированной системы существует, то оно порождает квазиравно-
весие — коротковолновый пакет вида (24)–(26) с амплитудой p̄ ≡ const.
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В случае кинетики, линейной по плотности хищников, т. е. при условии (27), равновес-
ные плотности видов одинаковы как для гомогенизированной, так и для исходной системы,
т. е.

p̄e = pe, s̄e = se,

где pe > 0, se > 0 — решения системы уравнений

pG1(s) +G0(s) = 0, pF1(s) + F0(s) = 0.

Этот вывод позволяет установить, какое влияние оказывает “ветер” на систему. Для этого
нужно исследовать устойчивость равновесия при наличии “ветра” и в его отсутствие.

5. Постоянные транспортные коэффициенты. При выполнении условий (27) век-
тор θ в формуле (28) постоянен и гомогенизированная система имеет вид

p̄t + div q̄ = p̄F1(s̄) + F0(s̄), q̄t + νq̄ = −µ∇p+ χp̄(∇s̄+ p̄G1(s̄)θ),

θ = c
∑
k∈K

|ψ+
k |

2 − |ψ−k |
2

k2 + c2
k

|k|
, s̄t = p̄G1(s̄) +G0(s̄),

(33)

где µ = const > 0; χ = const > 0; c =
√
µ. Гомогенизированная система (33) при θ = 0

совпадает с системой (1)–(3) с точностью до диффузионного члена.
Выберем систему декартовых координат таким образом, чтобы вектор θ был сона-

правлен с ортом ex оси Ox. Рассмотрим частные решения q̃ = q̄ex. Для этих решений
имеем систему уравнений

p̄t + q̄x = p̄F1(s̄) + F0(s̄), q̄t + νq̄ = −µpx + χp̄(s̄x + p̄G1(s̄)θ),

θ = c
∣∣∣ ∑

k∈K

|ψ+
k |

2 − |ψ−k |
2

k2 + c2
k

|k|

∣∣∣, s̄t = p̄G1(s̄) +G0(s̄).

(34)

От коротковолнового пакета зависит лишь величина θ. Будем рассматривать ее в каче-
стве дополнительного числового параметра, изменяющегося в диапазоне, заданном оцен-
кой (32). Тогда система (34) совпадет с одномерным вариантом системы (33) с точностью
до знака параметра θ. Это различие несущественно ввиду инвариантности относительно
преобразования (x, t, p̄, q̄, s̄, θ) → (−x, t, p̄,−q̄, s̄,−θ).

6. Линейный анализ устойчивости. Будем полагать, что кинетические члены
имеют вид (10). В этих условиях как исходная, так и осредненная система допускают
равновесные плотности видов

pe = α− β/γ, se = β/γ, (35)

где α, β, γ — кинетические параметры (см. (10)). Выполним линеаризацию системы (34)
вблизи равновесия (35) и найдем нормальные моды (p̂, q̂, ŝ) exp (ikx + λt), p̂, q̂, ŝ, λ ∈ C,
k ∈ R.

В рассматриваемом случае проверка устойчивости индивидуальной нормальной моды

тривиальна и сводится к подсчету количества собственных значений некоторой комплекс-
ной матрицы размером 3 × 3, принадлежащих правой полуплоскости (см. [8]). Заметим,
что характеристические полиномы указанных матриц зависят не от параметра θ, а от
параметра θ2, что также согласуется с инвариантностью гомогенизированной системы.
Приведем сведения о линейной устойчивости равновесия (35) при θ = 0.

Нейтральные моды существуют при значениях параметров, принадлежащих графику
функции χ = χnt(γ, pe, se, s, k

2), где

χnt =
µν

pese
+
γpes

2
e + seν

2 + s2eν

pesek2
. (36)
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Нормальная мода конкретного равновесия при конкретном волновом числе k устойчива
при χ < χnt и неустойчива при χ > χnt.

Потеря устойчивости равновесия происходит при пересечении графика функции χ =
χcr = µν/(pese). Конкретное равновесие устойчиво при условии χ < χcr и становится

неустойчивым в противном случае. Эта неустойчивость всегда колебательная, поэтому
при χ = χcr имеют место неравенства Reλ = 0, Imλ 6= 0. При этом неустойчивость явля-
ется коротковолновой, т. е. при χ > χcr существует k∗ > 0, такое что каждая собственная
мода неустойчива (устойчива) при условии |k| > k∗ (|k| < k∗).

Приведенные выше выводы в основном справедливы при ненулевой диффузии жерт-
вы, за исключением коротковолнового характера неустойчивости, так как нейтральная
гиперповерхность является графиком функции

χ = χ̌nt = δ2k2A+ δB + χnt

(χnt — функция (36)), а множители A, B не зависят от k и δ.
Критическая гиперповерхность представляет собой график функции χ = χ̌cr =

mink χ̌nt(γ, pe, se, k
2, δ), где

χ̌cr =
δ(ν2 + 2νse + γpese + νse

√
ν2 + νse + γpese) + µν

pese
> χcr.

При δ > 0 конкретное равновесие устойчиво при условии χ < χ̌cr(γ, pe, se, k
2) и стано-

вится неустойчивым в противном случае. Эта неустойчивость всегда имеет колебательный
характер, при этом существуют действительные числа k1 > k0 > 0, такие что каждая соб-
ственная мода неустойчива при условии, что ее волновое число удовлетворяет неравенству
k0 < |k| < k1. Функция χ̌cr линейна как по µ, так и по δ.

Перейдем к осредненной системе (33) и проверим линейную устойчивость для χ = χcr

и максимального значения θ. С учетом сказанного выше равновесие (35) неустойчиво,
несмотря на то что оно устойчиво при θ = 0 и δ > 0 и по крайней мере нейтрально при
δ = 0. Следовательно, “ветер” может нарушить равновесие.

Иными словами, при χ = χcr и максимальном θ для любых допустимых заданий
остальных параметров существуют значения k2 > k1 > 0, при которых для каждого вол-
нового числа k, такого что |k| > k2, существуют неустойчивые нормальные моды, но все
нормальные моды устойчивы, если k такое, что |k| < k1.

На рис. 2,а показана зависимость наибольшей действительной части спектрального
параметра λ от волнового числа k при различных значениях параметра µ. Видно, что по
мере его увеличения зависимость Reλ(k2) возрастает. Соответственно, кривая смещается
вверх, причем ее часть, лежащая ниже оси абсцисс, плотнее прилегает к оси ординат,
поэтому k1 → +0.

На рис. 2,б приведены нейтральные кривые на плоскости (µ, k2) при различных зна-
чениях параметра α. При увеличении этого параметра нейтральная кривая смещается
вправо и вверх, вследствие чего область устойчивых мод, ограниченная нейтральной кри-
вой и координатными осями, увеличивается.

Из рис. 2 следует, что Imλ = |k|√µ + O(|k|−1) при |k| → ∞, а Reλ имеет предел,
зависящий от параметров задачи.

7. Численный эксперимент. Численный эксперимент проводился для системы (34)
с кинетикой Лотки — Вольтерры при постоянных транспортных коэффициентах. На
рис. 3,а–в показаны типичные картины эволюции гладкого локализованного возмущения,
на рис. 3,г–е — картины его затухания в отсутствие “ветра” (ср. c рис. 1). Эти кар-
тины получены путем численного решения задач Коши при одних и тех же значениях

всех параметров, за исключением значения θ, которое равно либо нулю (см. рис. 3,г–е),
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Рис. 2. Линейная устойчивость квазиравновесия при χ = χcr, θ = θmax, ν = 1,
γ = 2/3, β = 0,4γα:
а — зависимость максимального значения Re λ от волнового числа при α = 3/4 (1 —
µ = 0,1, 2 — µ = 0,7, 3 — µ = 1,3, 4 — µ = 1,8, 5 — µ = 2,4, 6 — µ = 3,0); б —
нейтральные кривые (1 — α = 0,5, 2 — α = 0,875, 3 — α = 1,25, 4 — α = 1,625, 5 —
α = 2,0)

либо отрицательному абсолютному максимальному значению (см. рис. 3,а–в), заданному
формулой (30), где c =

√
µ. Начальные условия и значения параметров следующие:

p
∣∣
t=0

= pe + 0,05 e−x2/4, s
∣∣
t=0

= se, q
∣∣
t=0

= qe = −θχsep2
e/ν; (37)

se = β/γ < α, pe = α− se > 0;

χ = χcr = µν/(pese), ν = 1, µ = 1/2, β = 0,4αγ; (38)

α = 3/4, γ = 2/3. (39)

Во всех численных экспериментах поведение малого конечного возмущения качественно

согласуется с линейной теорией (см. п. 6). Согласно этой теории система устойчива при
условии θ = 0, если остальные параметры принимают значения (38), (39). В этом слу-
чае в численном эксперименте наблюдается затухание малых конечных возмущений. В то
же время увеличение абсолютной величины параметра θ при неизменных остальных пара-
метрах приводит к возникновению неустойчивости линейного приближения. В этом случае
в численном эксперименте наблюдается рост конечных возмущений.

Были проведены расчеты для комбинаций параметров с более сильным или слабым

сопротивлением, более быстрым ростом жертвы (α > 1), меньшей диффузией жертвы, уме-
ренным переизбытком жертвы (α = 0,6βγ), большей эффективностью действий хищников
(γ > 1), также использовались меньшие значения параметра θ (например, создаваемые од-
ной гармоникой). Тем не менее возмущения, качественно отличающиеся от рассмотренных
выше возмущений, не наблюдались.

При решении задачи Коши для одномерной системы (33) с данными (37), (38) система
(1)–(3) редуцировалась к системе (5), (6) путем исключения потока (см. п. 1). При этом
в начальном условии (7) правая часть полагалась равной нулю в соответствии с данны-
ми (37).

Расчеты, описанные в п. 2, выполнялись с помощью указанной редукции одномер-
ного варианта уравнений (1)–(3) при условиях (10) и следующих начальных условиях и
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Рис. 3. Эволюция возмущений равновесного состояния гомогенизированной си-
стемы:
сплошные линии — мгновенные значения отклонения плотности хищников от равно-
весного значения; пунктирные— мгновенные значения отклонения плотности жертв от

равновесного значения; а–в — эволюция гладкого локализованного возмущения (а —
t ≈ 0, б — t ≈ 3,4, в — t ≈ 9,3), г–е — затухание возмущения в отсутствие “ветра”
(г — t ≈ 0, д — t ≈ 5,2, е — t ≈ 10)

параметрах:

p
∣∣
t=0

= pe(1 + ε e−x2
+ a sinN (2πnx)), q

∣∣
t=0

=
√
µ pea sinN (2πnx),

s
∣∣
t=0

= se, se = β/γ, pe = α− se, β/(γα) = 0,4, α = 5/4, γ = 2/3,

µ ≡ const = 4, ν = 1, δ = 0,01, χ ≡ const = µν/(pese).

Конкретные значения параметров N , n, ε, a соответствуют рис. 1.
Во всех расчетах задача Коши заменялась начально-краевой задачей с граничны-

ми условиями Неймана на достаточно широком пространственном интервале, которая ре-
шалась с помощью встроенного солвера Maple. В данном пункте был выбран интервал
x ∈ (−25, 25), в п. 2 — интервал x ∈ (−35, 35).

8. Выводы. Исследована модель сообщества хищник— жертва, в которой чисто диф-
фузная жертва взаимодействует с преследующим ее хищником, движение которого опи-
сывается моделью типа модели Каттанео. Результаты предварительных численных экс-
периментов (см. п. 2) свидетельствуют о возможности неустойчивости коротковолновых
структур вследствие медленной амплитудной модуляции. Рассмотрен процесс распростра-
нения коротковолновых пакетов в пределе бездиффузионной жертвы и выведена замкнутая

система уравнений, описывающая медленную эволюцию оболочек таких пакетов. Данная
система отличается от исходной одним членом (“ветром”) в осредненном уравнении пото-
ка хищника.

Анализ линейной устойчивости показал, что “ветер” всегда дестабилизирует равнове-
сие гомогенизированной системы и, следовательно, соответствующую квазиравновесную
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коротковолновую структуру. В соответствии с линейной теорией при численном реше-
нии гомогенизированной системы наблюдаются рост конечных возмущений равновесия

под действием “ветра” и их затухание в его отсутствие.
Итак, обнаружен механизм дестабилизации и разрушения коротковолновых

пространственно-временных структур в модели Каттанео. Условие (23) определяет

единственный случай, соответствующий отсутствию этого механизма. В работах [4, 5]
это условие было введено при моделировании мелкомасштабных мозаик в простран-
ственном распределении некоторых популяций веслоногих. В [4, 5] использовалась
параболическая модель Патлака — Келлера — Сегел с транспортными коэффициентами,
удовлетворяющими условию (23). В силу изложенного выше гиперболические модели при
условии (23) также пригодны для изучения формирования мелкомасштабных структур в
популяционной динамике.
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