2013. Том 54

Приложение

*S*99 – *S*103

УДК 539.192:543.422.27:547.546

ПИРАМИДАЛЬНОЕ ИСКАЖЕНИЕ ГРУППЫ NO₂ В АНИОН-РАДИКАЛЕ 2,4,6-ТРИМЕТОКСИНИТРОБЕНЗОЛА

Л.А. Шундрин

Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН E-mail: shundrin@nioch.nsc.ru

Статья поступила 4 апреля 2013 г.

Электрохимическим восстановлением в ДМФА получен анион-радикал 2,4,6триметоксинитробензола, в спектре ЭПР которого наблюдались сверхтонкие расщепления от ядер ¹⁵N нитрогруппы и ¹³C бензольного кольца при природном содержании изотопов. Согласно квантово-химическим расчетам методом UB3LYP/6-31+G* с учетом сольватации по модели РСМ, в равновесной конформации AP 2,4,6-триметоксинитробензола нитрогруппа развернута относительно плоскости бензольного кольца на угол, близкий к 90°, и имеет пирамидальное строение, а значения рассчитанных констант изотропного сверхтонкого взаимодействия для этой конформации наиболее близки к экспериментальным величинам.

Ключевые слова: анион-радикалы, сверхтонкое взаимодействие, структурные искажения, нитробензол, нитрогруппа.

Возможность пирамидального искажения группы NO₂ у анион-радикалов (AP) ряда нитробензола с орто-расположенными по отношению к нитрогруппе заместителями неоднократно рассматривалась в литературе [1-3]. Физическая модель пирамидального искажения была предложена в нашей работе [4], где было показано, что величина пирамидального искажения, имеющего псевдо-Ян-Теллеровскую природу, связана с поворотом нитрогруппы относительно плоскости бензольного кольца. Угол поворота определяется взаимодействием атомов нитрогруппы с атомами ближайшего окружения, а угол пирамидального искажения — углом поворота. Используя этот подход, удалось описать наблюдаемую экспериментально картину констант изотропного сверхтонкого взаимодействия (ИСТВ) и их сольватационных зависимостей для АР ряда хлор- [5], фторзамещенных нитробензолов [6] и АР с орто-расположенными алкильными заместителями [7]. Для AP без заместителей в *орто*-положениях группа NO₂ и бензольное кольцо компланарны, и пирамидальное искажение отсутствует. Для АР с орто-расположенными заместителями группа NO₂ и бензольное кольцо теряют компланарность, спиновая плотность смещается в сторону нитрогруппы, а пирамидальное искажение последней дает дополнительный спин-делокализационный вклад в константу ИСТВ с ядром азота. Оба взаимосвязанных эффекта приводят к значительному увеличению константы a_{14_N} .

По данным квантово-химических расчетов [4], константы ИСТВ с ядрами ¹⁴N и ¹³C(1) (*ипсо*-положение к нитрогруппе) наиболее чувствительны к пирамидальному искажению группы NO₂, а величины констант с ядрами ¹³C в других положениях кольца зависят и от природы заместителя в данном положении. Для большинства AP ряда нитробензола экспериментальное наблюдение ИСТВ с ядрами ¹³C кольца с природным содержанием изотопа затруднено из-за достаточно сложной сверхтонкой структуры, были описаны лишь константы для AP с замести-

[©] Шундрин Л.А., 2013

Таблица 1

Экспериментальные константы ИСТВ (Гс) с ядрами ¹⁴N, ¹³С в АР нитробензола и в некоторых АР замещенных нитробензолов

AP	Растворитель/метод получения/температура, К	$a_{{}^{14}\rm N}$	<i>a</i> ₁₃ _{C(1)}	<i>a</i> ₁₃ _{C(4)}	<i>a</i> ₁₃ _{C(2,6)}	Ссылка
1	ДМФА/ЭХВ/300 ГМФТА/ЭХВ/300	9,71 8,96	7,62 7,05	5,95 6,14	4,70	[8] [8,9]
2	АЦ/восстановление щелочным металлом/300	19,00	5,20	_	9,42	[10]
3	АЦ/ЭХВ/300	16,60	5,50		7,40	[11]

Примечание. ЭХВ — электрохимическое восстановление, АЦ — ацетонитрил, ГМФТА — гексаметилфосфортриамид.

телями большого эффективного объема (табл. 1)*, для которых ИСТВ с протонами в составе заместителей не проявляется. В данной работе рассмотрены сверхтонкие взаимодействия в AP 2,4,6-триметоксинитробензола (4), содержащем заместители ОСН₃ в обоих *орто*-положениях к нитрогруппе. Спектр ЭПР AP 4 должен характеризоваться сверхтонкой структурой (СТС) сходной с СТС AP 2 и 3 (см. табл. 1), поскольку ИСТВ с ядрами ¹Н групп CH₃ не должно проявляться из-за достаточной их удаленности от системы π -электронов нитробензольного фрагмента.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ И МЕТОДИКА РАСЧЕТОВ

2,4,6-Триметоксинитробензол был получен по методике, описанной в [12]. АР 4 был получен электрохимическим восстановлением предшественника в ДМФА по классической электрохимической методике, в анаэробных условиях (кислород удаляли методом "замораживание—откачивание—размораживание") в электрохимической ячейке со стационарным платиновым катодом, помещенным в резонатор ЭПР спектрометра. Поддерживающим электролитом служил перхлорат тетра-*н*-бутиламмония (0,1 М раствор). Восстановление проводили на потенциале первой обратимой одноэлектронной волны (–1,1 В относительно насыщенного каломельного электрода). Спектры ЭПР измеряли при T = 298 К на радиоспектрометре Bruker ESP-300 (*X* диапазон), оборудованном двойным резонатором. *g*-Фактор АР 4 измеряли с использованием двойного резонатора относительно эталона — ионов Mn²⁺ в сфалерите (третья линия, g = 2,02983) без перенастройки СВЧ моста.

Численную реконструкцию спектров ЭПР выполняли по программе SIMFONIA (Bruker, Германия) с учетом уширений в азотном триплете, вызванных вращательной диффузией АР в приближении быстрого вращения сферической молекулы.

Расчеты геометрических параметров и Ферми-контактной плотности на ядрах AP 4 выполняли методом UB3LYP/6-31+G* по программе GAMESS [13] с полной оптимизацией всех геометрических параметров. Для модельных конформаций с плоской нитрогруппой задавали соответствующие ограничения по геометрии. Для моделирования влияния растворителя использовали модель PCM с параметрами для ДМФА: $\varepsilon = 36,64$, $R_{solv} = 3,72$ Å, где ε — диэлектрическая константа, R_{solv} — эффективный радиус растворителя.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Спектры ЭПР АР **4**** и их численные реконструкции представлены на рис. 1, *а-г*. Характер основной наблюдаемой СТС спектра соответствует ожидаемому и описывается схемой:

^{* 1 —} АР нитробензола, 2 — АР 2,4,6-*трис(трет*-бутил)нитробензола, 3 — АР 2,6-дифенил-4-*трет*-бутилнитробензола.

^{**} Спектр ЭПР АР 4, по нашим данным, в литературе не описан.

Рис. 1. Спектры ЭПР АР 2,4,6-триметоксинитробензола в ДМФА и их численные реконструкции: вид полного спектра (*a*), вид спектра при большом усилении (*б*), соответствующие численные реконструкции (*в*, *г*)

Таблица 2

S101

Константы ИСТВ (Гс) АР 2,4,6-триметоксинитробензола в ДМФА по данным численной реконструкции спектра ЭПР и соответствующие константы в конформациях A^a, B, C, рассчитанные методом UB3LYP/6-31+G*/PCM, а также углы поворота (ф) и пирамидализации нитрогруппы (θ) (град.)

Конформация	φ	θ	$a_{^{14}}\mathrm{N}$	<i>а</i> _{15 N} б	$a_{{}^{13}\mathrm{C}(1)}$	$a_{13}_{C(2,6)}$	$a_{13}_{C(3,5)}$	$a_{{}^{13}\mathrm{C}(4)}$	<i>a</i> ₁ _{H(3,5)}
Эксперимент г	_	_	19,16	26,89	4,55	8,22	~1,3	_	0,760
A^{B}	88,9	20,7	19,818	-27,946	-1,635	7,60	0,905	-0,057	0,630
В	0	0	9,896	-13,967	-10,907	6,823	-4,998	6,922	1,452
C	90	0	14,013	-19,778	-8,287	9,564	0,917	-0,022	0,742

Примечания:

^а Для констант ИСТВ конформации *A* с ядрами в положениях 2,6 и 3,5 приведены значения, усредненные по схеме двухпозиционного обмена, связанного с инверсионными движениями группы NO₂ вдоль пирамидальной координаты.

⁶ Атомная константа для изотопа ¹⁵N $A_{15_N} = -161,6$ Гс.

^в Конформация *А* получена без ограничений на оптимизацию всех геометрических параметров.

^г Константы ИСТВ с протонами метильных групп малы и в спектрах ЭПР не проявляются.

 $3N \times 3H_{(3,5)}$. Сверхтонкое взаимодействие с протонами метильных групп не наблюдается. *g*-Фактор AP **4** равен 2,0024 и характерен для AP ряда нитробензола. При большом усилении удается наблюдать сверхтонкие расщепления от ядер ¹³С бензольного кольца и ¹⁵N нитрогруппы (см. рис. 1, *б*, *г*). Экспериментальные константы ИСТВ, полученные из численной реконструкции спектра, приведены в табл. 2. Величины констант азотного ИСТВ a_{14N} , a_{15N} характер-

ны для АР "стерически затрудненных" нитробензолов ([14], см. АР **2** и **3** в табл. 1) и связаны с внеплоскостными искажениями нитрогруппы. Значение константы $a_{13}_{C(1)}$ у АР **4** заметно ниже,

Рис. 2. Равновесная конформация *А* АР 2,4,6-триметоксинитробензола по данным расчетов UB3LYP/6-31+G*/PCM

чем у АР незамещенного нитробензола 1. Такой же эффект наблюдается и у АР 2 и 3 (см. табл. 1). Это указывает на наличие пирамидального искажения группы NO₂, поскольку именно в этом случае, согласно квантово-химическим расчетам [4], абсолютная величина константы ИСТВ с ядром ¹³С в *unco*-положении к нитрогруппе заметно понижается.

Рассмотрим результаты UB3LYP/6-31+G*/PCM расчетов возможных конформаций AP 4, а именно конформации, полученной с полной оптимизацией всех геометрических параметров (A) и двух модельных конформаций: с компланарным расположением нитрогруппы и бензольного кольца (B), и с ортогональным расположением группы NO₂ при ее плоском строении (C).

Геометрия конформации A показана на рис. 2. Атомы кислорода всех групп OCH₃ находятся в плоскости бензольного кольца, а нитрогруппа развернута относительно плоскости практически ортогонально и имеет значительный угол пирамидального искажения (θ , см. табл. 2, рис. 2), как и в модельном случае ортогонального конформера AP **1** [15]. Из всех рассмотренных конформаций AP **4** равновесная конформация A обладает наименьшим значением полной энергии в растворе, а разности энергий конформаций B и C относительно A составляют +38,9 и +1,99 кДж/моль.

Результаты расчетов констант ИСТВ для конформаций *A*, *B*, *C* представлены в табл. 2. Рассчитанные константы для конформации *A* наиболее близки к экспериментальным значениям, а совпадение величин a_{14_N} и a_{15_N} практически количественное. Близки к экспериментальным значениям и константы с протонами в *мета*-положениях к нитрогруппе ($a_{1_{H(3,5)}}$). Рассчитанная абсолютная величина константы $a_{13_{C(1)}}$ для конформации *A* в 2,78 раза ниже, чем соответствующее экспериментальное значение, а для конформаций *B*, *C* значения | $a_{13_{C(1)}}$ | заметно больше экспериментального. Это означает, что метод смешанного функционала плотности на качественном уровне верно передает тенденцию изменения Ферми-контактной плотности на ядре

¹³С в *ипсо*-положении к нитрогруппе при ее пирамидализации.

Константы ИСТВ с ядрами углерода в других положениях кольца менее чувствительны к пирамидальному искажению нитрогруппы, в том числе и из-за усреднения, связанного с быстрым двухпозиционным инверсионным движением группы NO₂ вдоль пирамидальной координаты [4].

Таким образом, впервые получен и интерпретирован спектр ЭПР AP 2,4,6-триметоксинитробензола, в котором наблюдались сверхтонкие расщепления от ядер ¹⁵N и ¹³C при их природном содержании. Согласно квантово-химическим расчетам методом UB3LYP с моделированием жидкой среды по модели PCM, в равновесной конформации AP 2,4,6-триметоксинитробензола нитрогруппа ортогональна плоскости бензольного кольца и имеет пирамидальное строение. Результаты расчетов констант ИСТВ с ядрами ¹⁴N, ¹⁵N, ¹³C, ¹H для равновесной конформации хорошо согласуются с экспериментально наблюдаемыми величинами. Интерпретация сверхтонких взаимодействий в AP 2,4,6-триметоксинитробензола подтверждает сделанный ранее вывод о пирамидальном строении группы NO₂ на больших углах ее поворота в AP ряда нитробензола с заместителями в *орто*-положениях к нитрогруппе [4—7].

СПИСОК ЛИТЕРАТУРЫ

- 1. Miller C., Gulick jr. W.M. // Mol. Phys. 1974. 27. P. 1185 1196.
- 2. Шарп Г., Саймонс М. Исследование ионных пар методом электронного парамагнитного резонанса // Ионы и ионные пары в органических реакциях. – М.: Мир, 1975.

S102

- 3. Gilbert B.C., Trenwith M. // J. Chem. Soc., Perkin Trans. II. 1973. P. 2010 2015.
- 4. Стариченко В.Ф., Шундрин Л.А., Щеголева Л. Н., Штейнгарц В.Д. // Журн. структур. химии. 2000. **41**, № 3. С. 457 467.
- 5. Стариченко В.Ф., Шундрин Л.А., Щеголева Л.Н., Штейнгари В.Д. // Журн. структур. химии. 2000. **41**, № 5. С. 949 963.
- 6. Стариченко В.Ф., Шундрин Л.А, Щеголева Л.Н., Штейнгарц В.Д. // Журн. структур. химии. 2002. **43**, № 2. С. 226 238.
- 7. Шундрин Л.А., Стариченко В.Ф., Щеголева Л.Н., Штейнгарц В.Д. // Журн. структур. химии. 2003. 44, № 4. С. 647 660.
- 8. Swartz G.L., Gullick jr, W.M. // Mol. Phys. 1975. 30. P.869 879.
- 9. Schreiner K., Lotz A., Aurich H.G., Berndt A. // Tetrahedron. 1975.-31. P. 2117 2121.
- 10. McKinney T.M., Geske D.H. // J. Chem. Phys. 1966. 44. P.2277 2284.
- 11. Berndt A., Volland R., Dimroth K. // Tetrahedron. 1969. 25. P.4379 4390.
- 12. Hodgson H.H, Batty W.E. // J. Chem. Soc. 1934. P. 1433 1435.
- Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S.J., Windus T.L., Dupuis M., Montgomery J.A. // J. Comput. Chem. – 1993. – 14. – P. 1347 – 1363.
- 14. Geske D.H., Ragle J.L., Bambenek M.A., Balch.A.L. // J. Amer. Chem. Soc. -1964. 86. P.987 1002.
- 15. *Ramondo F.* // Canad. J. Chem. 1992. **70**. P. 314 326.