УДК 539.3

МОДЕЛИРОВАНИЕ ПРОЧНОСТИ ВОДОИЗОЛИРУЮЩИХ БАРЬЕРОВ В ПОРИСТЫХ ПЛАСТАХ

А. М. Ильясов, Т. Ф. Киреев, Г. Т. Булгакова

Уфимский государственный авиационный технический университет, 450008 Уфа, Россия E-mails: amilyasov67@gmail.com, kireevtf@mail.ru, bulgakova.guzel@mail.ru

В рамках модели идеально пластического тела исследуется прочность двухслойного водоизолирующего барьера, примыкающего к стволу добывающей скважины в пористой среде. Барьер образуется в результате закачки (с последующим затвердеванием) синтетической смолы в пористый пласт через добывающую скважину. В пространстве параметров задачи определены области, в которых выполняются условия прочности и текучести внешнего и внутреннего слоев барьера.

Ключевые слова: водоизолирующий барьер, пористая среда, дифференциальный метод самосогласования, идеально пластическое тело.

DOI: 10.15372/PMTF20190519

Введение. На поздних стадиях разработки нефтенасыщенных пластов происходит обводнение большинства добывающих скважин, что обусловлено либо прорывом в скважину нагнетаемой воды по высокопроницаемым пропласткам, либо фильтрацией воды в скважину из ближайших к разрабатываемому участку пласта водонасыщенных пропластков по заколонному пространству скважины вследствие разрушения цементного кольца между породой и эксплуатационной колонной.

Для водоизоляции обводненных участков пласта применяются синтетические смолы, "сшивающиеся" водные растворы полимеров или цементные растворы.

Преимущество смол и водных растворов полимеров по сравнению с цементными растворами состоит в том, что они проникают в пласт на некоторую глубину. Дисперсные частицы цементного раствора не могут проникнуть в пористую породу, поскольку их характерный размер превышает характерный размер пор.

В свою очередь, водонепроницаемые барьеры, образованные водными растворами полимеров, имеют меньший предел прочности (устойчивости) в пористой среде по сравнению с барьерами, образовавшимися из отвердевших смол вследствие неустойчивости Сэфмана — Тейлора (прорыва "невязких пальцев" [1]).

Для водоизоляции добывающих скважин в основном используются синтетические смолы трех типов: карбамидоформальдегидные, ацетоноформальдегидные и фенолформальдегидные. В данной работе предложена модель для определения прочности двухслойного цилиндрического барьера, образованного синтетической смолой.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 17-41-020226 р.а).

[©] Ильясов А. М., Киреев Т. Ф., Булгакова Г. Т., 2019

Рис. 1. Схема водоизолирующего барьера: 1 — эксплуатационная колонна, 2 — отвердевшая смола, 3 — слой порода — смола, 4 — порода

1. Постановка задачи. Для исключения влияния обводненных пропластков пласта толщиной h проводится их водоизоляция путем закачки водоизолирующего материала в рассматриваемый участок пласта вблизи остановленной добывающей скважины. После затвердевания водоизолирующего материала проверяется герметичность эксплуатационной колонны в области водоизоляции (опрессовка колонны). Если герметичность скважины нарушена, то процедура водоизоляции повторяется до тех пор, пока не будет обеспечена полная герметичность эксплуатационной колонны. После водоизоляции добывающая скважина вновь вводится в эксплуатацию.

В большинстве случаев цементное кольцо между эксплуатационной колонной и породой бывает полностью разрушено вследствие больших депрессий при добыче углеводородной жидкости. Поэтому в данной работе предполагается, что водоизолирующий барьер представляет собой двухслойный цилиндр, состоящий из примыкающего к внешней стенке эксплуатационной колонны внутреннего слоя, свойства которого зависят от свойств отвердевшей смолы, а также из внешнего слоя порода — смола, примыкающего к внутреннему слою (рис. 1). В случае разрушения внутреннего слоя барьера скважина может обводниться за счет поступления воды из вышележащих или нижележащих водоносных пропластков. В случае разрушения внешнего слоя водоизоляция данного участка пласта может быть охарактеризована как технологически неуспешная операция.

Оптимальным является случай, когда оба слоя барьера остаются неразрушенными после введения добывающей скважины в эксплуатацию.

Таким образом, при заданных параметрах материалов водоизолирующих барьеров необходимо определить режимы работы добывающей скважины, при которых не происходит разрушения слоев барьера.

2. Определение давлений на внутренних границах слоев барьера. При моделировании прочности водоизолирующих барьеров температурными напряжениями пренебрегается.

В данной работе параметры эксплуатационной колонны отмечены нижним индексом 1, параметры внутреннего слоя водоизолирующего барьера (слоя смолы) — нижним индек-

сом 2, параметры внешнего слоя порода — смола — нижним индексом 3, параметры, соответствующие породе в интервале водоизоляции, — нижним индексом 4.

Вводятся следующие обозначения: R_t , R_e — внутренний и внешний радиусы эксплуатационной колонны соответственно; R_w — внешний радиус внутреннего слоя водоизолирующего барьера (слоя смолы); R — внешний радиус внешнего слоя порода — смола.

Также вводятся обозначения рабочих параметров скважины после ее водоизоляции: p_w — давление внутри эксплуатационной колонны; p_e — давление на внешней стенке эксплуатационной колонны (внутренней границе внутреннего слоя барьера); p_r — давление на внешней границе внутреннего слоя барьера (внутренней границе внешнего слоя барьера); p_p — давление на внешней границе внешнего слоя барьера.

Введем осредненную плотность, а также осредненные технические константы вышележащих пород — коэффициент Пуассона и модуль Юнга:

$$\langle \rho \rangle = \frac{1}{H} \int_{0}^{H} \rho(z) \, dz, \qquad \langle \nu \rangle = \frac{1}{H} \int_{0}^{H} \nu(z) \, dz, \qquad \langle E \rangle = \frac{1}{H} \int_{0}^{H} E(z) \, dz \tag{1}$$

(*H* — глубина, на которой находится середина рассматриваемого водоизолирующего участка пласта).

Как отмечено выше, при обводнении скважины контакт между породой и цементным кольцом не является идеальным и заколонное пространство в интервале водоизоляции заполнено пластовой водой, которая создает давление на породу p_{r0} .

В работе [2] получено решение задачи для упругого трансверсально-изотропного полупространства с цилиндрической полостью радиусом R_w с учетом объемных сил и действующего внутри полости давления p_{r0} . Для изотропного полупространства решение упрощается. В этом случае давление на произвольном расстоянии от центра скважины $(r > R_w)$ равно

$$p_{p0} = \frac{\langle \nu \rangle}{1 - \langle \nu \rangle} \langle \rho \rangle g H \left(1 - \frac{R_w^2}{r^2} \right) + p_{r0} \frac{R_w^2}{r^2}, \tag{2}$$

где *g* — ускорение свободного падения.

Следует отметить, что решение (2) основано на гипотезе Динника [3] об отсутствии горизонтальных перемещений (деформаций).

Поскольку пропласток в интервале водоизоляции насыщен водой, к величине p_{p0} , определенной в решении (2), нужно добавить нормальное напряжение в жидкой фазе. В этом случае давление на внешней границе внешнего слоя равно

$$p_{p0} = \frac{\langle \nu \rangle}{1 - \langle \nu \rangle} \langle \rho \rangle g H \left(1 - \frac{R_w^2}{r^2} \right) + p_{r0} \frac{R_w^2}{r^2} + \alpha p, \tag{3}$$

где p — поровое давление в интервале водоизоляции пласта; $\alpha = K_4/K_{4m}$ — постоянная Био; K_4 , K_{4m} — объемные модули водонасыщенного скелета породы и материала зерен скелета породы в интервале водоизоляции пласта соответственно.

Для осуществления водоизоляции пропластков закачиваются небольшие объемы синтетических смол: $V = 1 \div 3 \text{ м}^3$. Радиус внешней границы барьера можно оценить по формуле

$$R = \sqrt{R_e^2 + V/(\pi m h)} \; ,$$

где m — коэффициент пористости среды; h — толщина обводненного пропластка. Полагая $R_e = 0.073$ м, h = 10 м, m = 0.25, получаем $R = 0.364 \div 0.622$ м. Следовательно, смола проникает в породу на расстояние $l = R - R_w = 0.256 \div 0.514$ м.

Оценим относительные погрешности изменения модулей упругости породы Δ_{ν} и Δ_{E} , а также ее плотности Δ_{ρ} на расстоянии порядка l после водоизоляции. Согласно формулам (1) справедливы оценки

$$\Delta_{\nu} \sim \frac{h}{H} \frac{|\langle \nu \rangle - \nu_3|}{\langle \nu \rangle}, \qquad \Delta_E \sim \frac{h}{H} \frac{|\langle E \rangle - E_3|}{\langle E \rangle}, \qquad \Delta_{\rho} \sim \frac{h}{H} \frac{|\langle \rho \rangle - \rho_3|}{\langle \rho \rangle}. \tag{4}$$

Оценим относительное изменение давления p_p на внешней границе водоизолирующего барьера введенной в эксплуатацию добывающей скважины после ее водоизоляции по сравнению с давлением на внешней границе водоизолирующего барьера в случае остановленной скважины. Следует отметить, что, поскольку изолируется только часть заколонного пространства протяженностью h, а остальная его часть протяженностью H - h заполнена пластовой водой вследствие разрушения цементного камня, различие значений давления в заколонном пространстве до водоизоляции p_{r0} и после водоизоляции (но до введения скважины в эксплуатацию) p_r порядка величины

$$\Delta_r = h/H. \tag{5}$$

Следовательно, согласно решению (3) на величину того же порядка различаются значения давления на внешней границе водоизолирующего барьера до и после водоизоляции (но до введения скважины в эксплуатацию). С учетом этого замечания и (4) из формулы (3) при r = R следует оценка

$$\Delta p_p = \frac{p_{p0} - p_p}{p_{p0}} = \frac{(p_{r0} - p_r)R_w^2/R^2}{(\langle \nu \rangle / (1 - \langle \nu \rangle))\langle \rho \rangle g H (1 - R_w^2/R^2) + p_{r0}R_w^2/R^2 + \alpha p}.$$
 (6)

Для характерных параметров $E_4 = \langle E \rangle = 60$ ГПа, $E_2 = 5$ ГПа, $\nu_4 = \langle \nu \rangle = 0,2$, $\nu_2 = 0,35$, h = 10 м, H = 2000 м, $\rho_4 = \langle \rho \rangle = 2500$ кг/м³, $\rho_2 = 1250$ кг/м³, $R_w = 0,108$ м, R = 0,364 м, $p_{r0} = p \approx 2 \cdot 10^7$ Па, $p_r = 10^7$ Па, $\alpha = 0,85$, m = 0,25 с использованием правила смесей $\varphi_3 = m\varphi_2 + (1-m)\varphi_4$, где φ — модули упругости или плотность, из соотношений (4)–(6) следуют оценки относительных погрешностей определения осредненных модулей упругости и относительной погрешности Δp_p определения давления на внешней границе двухслойного барьера после водоизоляции.

До запуска добывающей скважины в эксплуатацию относительные погрешности равны $\Delta_{\nu} = 0.095 \%$, $\Delta_E = 0.115 \%$, $\Delta_{\rho} = 0.062 \%$, $\Delta_r = 0.5 \%$. После запуска скважины относительная погрешность определения давления на внешней границе водоизоляционного барьера равна $\Delta p_p = 2.6 \%$.

Выполненные оценки показывают, что если вместо данных, полученных после запуска скважины, использовать данные, имеющиеся до водоизоляции, то максимальная относительная погрешность расчетов по модели не превысит 3,2 %. В то же время погрешность определения модулей упругости горных пород находится в более широком диапазоне [4, 5]. Таким образом, погрешность расчетов по представленной модели не превышает погрешности определения входных параметров задачи.

Для определения давлений на внешней стенке эксплуатационной колонны p_e и внешней границе внутреннего слоя барьера p_r после запуска скважины решим задачу Ламе для трехслойного упругого цилиндра с заданными давлениями на его внутренней (p_w) и внешней (p_p) границах.

Как отмечено выше, после водоизоляции рассматриваемого участка пласта проводится тест на герметичность скважины на этом участке. Поэтому будем считать, что на контактных границах двухслойного барьера с колонной и породой, а также на границе между слоями барьера выполняются условия идеального контакта [6]. Таким образом, на контактных границах должны выполняться условия непрерывности вектора напряжения σ_n и радиальной компоненты вектора перемещения w:

$$w(R_e+0) = w(R_e-0), \qquad \boldsymbol{\sigma}_n(R_e+0) = \boldsymbol{\sigma}_n(R_e-0), \tag{7}$$

$$w(R_w+0) = w(R_w-0), \qquad \boldsymbol{\sigma}_n(R_w+0) = \boldsymbol{\sigma}_n(R_w-0).$$

Кроме того, должно быть выполнено граничное условие на внутренней стенке эксплуатационной колонны

$$\boldsymbol{\sigma}_n(R_t) = -p_w \boldsymbol{n},\tag{8}$$

а также условие на внешней границе водоизолирующего барьера

$$\boldsymbol{\sigma}_n(R) = -p_p \boldsymbol{n}.\tag{9}$$

Из соотношений (7)–(9) следует система уравнений для определения вектора C

$$AC = b, \tag{10}$$

где $\boldsymbol{C} = (A_1, B_1, A_2, B_2, A_3, B_3)^{\mathrm{T}}; \boldsymbol{b} = (0, 0, 0, 0, -p_w, -p_p)^{\mathrm{T}},$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & 0 & 0\\ a_{21} & a_{22} & a_{23} & a_{24} & 0 & 0\\ 0 & 0 & a_{33} & a_{34} & a_{35} & a_{36}\\ 0 & 0 & a_{43} & a_{44} & a_{45} & a_{46}\\ a_{51} & a_{52} & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & a_{65} & a_{66} \end{bmatrix}.$$
(11)

Для элементов матрицы А введены обозначения

$$\begin{aligned} a_{11} &= R_e, \quad a_{12} = R_e^{-1}, \quad a_{13} = -R_e = -a_{11}, \quad a_{14} = -R_e^{-1} = -a_{12}, \\ a_{21} &= \frac{E_1}{(1+\nu_1)(1-2\nu_1)}, \quad a_{22} = -\frac{E_1}{1+\nu_1} R_e^{-2}, \\ a_{23} &= -\frac{E_2}{(1+\nu_2)(1-2\nu_2)}, \quad a_{24} = \frac{E_2}{1+\nu_2} R_e^{-2}, \\ a_{33} &= R_w, \quad a_{34} = R_w^{-1}, \quad a_{35} = -R_w = -a_{33}, \quad a_{36} = -R_w^{-1} = -a_{34}, \\ a_{43} &= \frac{E_2}{(1+\nu_2)(1-2\nu_2)} = -a_{23}, \quad a_{44} = -\frac{E_2}{1+\nu_2} R_w^{-2}, \quad a_{45} = -\frac{E_3}{(1+\nu_3)(1-2\nu_3)}, \\ a_{46} &= \frac{E_3}{1+\nu_3} R_w^{-2}, \quad a_{51} = \frac{E_1}{(1+\nu_1)(1-2\nu_1)} = a_{21}, \quad a_{52} = -\frac{E_1}{1+\nu_1} R_t^{-2}, \\ a_{65} &= \frac{E_3}{(1+\nu_3)(1-2\nu_3)} = -a_{45}, \quad a_{66} = -\frac{E_3}{1+\nu_3} R^{-2}. \end{aligned}$$

Матрица (11) не вырождена, поэтому решение системы (10) имеет вид

$$\boldsymbol{C} = A^{-1}\boldsymbol{b}$$

Определив вектор констант C, можно вычислить давление на внешней стенке эксплуатационной колонны p_e :

$$p_e = -\frac{E_1}{(1+\nu_1)(1-2\nu_1)} A_1 + \frac{E_1}{1+\nu_1} \frac{1}{R_e^2} B_1,$$

а также давление на внешней границе внутреннего слоя барьера p_r :

$$p_r = -\frac{E_2}{(1+\nu_2)(1-2\nu_2)} A_2 + \frac{E_2}{1+\nu_2} \frac{1}{R_w^2} B_2.$$

3. Определение эффективных модулей упругости внешнего слоя барьера. Внешний слой барьера можно моделировать как двухфазный дисперсный композиционный материал, в котором роль матрицы играет скелет породы, а роль наполнителя — частицы смолы, заполняющие поровое пространство. Следовательно, необходимо определить упругие постоянные композита, армированного дисперсными частицами, как параметры эффективной однородной среды. Для определения эффективных модулей упругости применим дифференциальный метод самосогласования, описанный в работе [7]. Будем моделировать заполненное синтетической смолой поровое пространство хаотически расположенными сферическими включениями. Для сферических включений дифференциальный метод самосогласования впервые применен в работе [8].

В случае изотропной эквивалентной среды использование данного метода для определения двух упругих констант (модуля объемного сжатия K_3 и модуля сдвига G_3) позволяет получить систему двух обыкновенных дифференциальных уравнений

$$\frac{dK_3}{d\alpha_2} = \frac{(K_2 - K_3)(3K_3 + 4G_3)}{(3K_2 + 4G_3)(1 - \alpha_2)}, \qquad \alpha_2 \in [0, m],$$

$$\frac{dG_3}{d\alpha_2} = \frac{5(G_2 - G_3)(3K_3 + 4G_3)G_3}{4G_3(3G_2 + 2G_3) + 3K_3(2G_2 + 3G_3)} \frac{1}{1 - \alpha_2}$$
(12)

с начальными условиями $(\alpha_2 \rightarrow 0)$

$$K_3(0) = \frac{E_4}{3(1-2\nu_4)}, \qquad G_3(0) = \frac{E_4}{2(1+\nu_4)}, \tag{13}$$

где E_4 , ν_4 — модуль Юнга и коэффициент Пуассона водонасыщенного скелета породы соответственно.

Пересчет технических констант эффективной среды проводится по формулам теории изотропной упругости:

$$E_3 = \frac{9K_3G_3}{3K_3 + G_3}, \qquad \nu_3 = \frac{3K_3 - 2G_3}{6K_3 + 2G_3}.$$
(14)

4. Области, в которых выполняются условия прочности и текучести слоев водоизолирующего барьера в пространстве параметров задачи. Определим области, в которых выполняются условия прочности и текучести слоев водоизолирующего барьера. Следуя работе [9], для однослойного изотропного идеально пластического материала трубы введем безразмерные параметры

$$x = p/P, \qquad \Sigma_s = \sigma_s/P, \qquad \rho = R/r_0,$$
(15)

где x — отношение давлений на внутренней p и внешней P стенках трубы; σ_s — прочность материала трубы на сжатие; R — внешний радиус трубы; r_0 — внутренний радиус трубы.

С использованием введенных безразмерных параметров получаем условие прочности Губера — Мизеса для толстостенной трубы [9]

$$a_{1}x^{2} + b_{1}x + c_{1} < 0, \qquad a_{1} = 3\rho^{4} + (1 - 2\nu)^{2} > 0, \qquad b_{1} = -2[3\rho^{4} + \rho^{2}(1 - 2\nu)^{2}] < 0,$$

$$c_{1} = 4(\nu^{2} - \nu + 1)\rho^{4} - (\rho^{2} - 1)^{2}\Sigma_{s}^{2}, \qquad x_{0} = -b_{1}/(2a_{1}) > 1, \qquad (16)$$

$$D = b_{1}^{2} - 4a_{1}c_{1}, \qquad x_{1,2} = (-b_{1} \pm \sqrt{D})/(2a_{1}).$$

Области изменения D и c_1	Область изменения x_0	Положение корней x_1, x_2 относительно единицы	Область прочности	Область текучести
$ \begin{array}{c} D \leqslant 0 \\ D > 0, c_1 \geqslant 0 \\ D > 0, c_1 \geqslant 0 \\ D > 0, c_1 \geqslant 0 \\ D > 0, c_1 < 0 \end{array} $	$x_0 > 1$ $x_0 > 1$ $x_0 > 1$ $x_0 > 1$ $x_0 > 1$	$x_{2} \in [0, 1], x_{1} > 1$ $x_{1} > 1, x_{2} > 1$ $x_{1} > 1, x_{2} < 0$	$x \in]x_2, 1]$ $x \in [0, 1]$	$ \begin{array}{c} x \in [0,1] \\ x \in [0,x_2] \\ x \in [0,1] \end{array} $

Области, в которых выполняются условия прочности и текучести цилиндра при $x \in [0,1]$

В таблице представлены области решения неравенства (16).

При исследовании прочности внутреннего слоя барьера в (15), (16) нужно положить

$$p = p_e,$$
 $P = p_r,$ $\Sigma_s = \sigma_{s2}/p_r,$ $\rho = R_w/R_e,$ $\nu = \nu_{2s}$

где σ_{s2} — прочность смолы на сжатие; ν_2 — коэффициент Пуассона смолы.

При исследовании прочности внешнего слоя барьера следует положить

$$p = p_r,$$
 $P = p_p,$ $\Sigma_s = \sigma_{s3}/p_p,$ $\rho = R/R_w,$ $\nu = \nu_3,$

где σ_{s3} — прочность композита смола — порода на сжатие; ν_3 — коэффициент Пуассона двухфазной среды смола — порода, который, так же как и модуль Юнга E_3 , вычисляется по формулам (14) в результате решения системы обыкновенных дифференциальных уравнений (12), (13).

При определении областей, в которых выполняются условия прочности и текучести слоев водоизоляционного барьера, использовались следующие параметры: $R_t = 0,066$ м, $R_e = 0,073$ м, $R_w = 0,108$ м, $\alpha = 0,85$. Модуль Юнга стальной колонны равен $E_1 = 204\,000$ МПа, коэффициент Пуассона стали $\nu_1 = 0,25$. Средняя плотность и средний коэффициент Пуассона породы равны $\langle \rho \rangle = 2500$ кг/м³, $\langle \nu \rangle = 0,25$ соответственно. Модуль Юнга смолы составляет $E_2 = 5$ ГПа. Пористость равна m = 0,2. Поровое давление в водонасыщенном пропластке равно p = 20 МПа. Радиус внешнего слоя барьера R, коэффициент Пуассона смолы σ_{s2} и забойное давление p_w варьировались.

В качестве пористой среды рассматривается песчаник. Прочность песчаников находится в диапазоне $\sigma_{s4} = 28 \div 200$ МПа, прочность фенолформальдегидных смол — в диапазоне $\sigma_{s2} = 7 \div 21$ МПа. Для определения прочности двухфазного барьера смола — порода σ_{s3} необходимо провести серию экспериментов на кернах с отвердевшей синтетической смолой. В данной работе прочность внешнего слоя барьера оценивалась по правилу смесей

$$\sigma_{s3} = m\sigma_{s2} + (1-m)\sigma_{s4}.$$

На рис. 2 показаны трехмерные области, в которых выполняются условия прочности и текучести для внешнего слоя, внутреннего слоя и обоих слоев, в зависимости от прочности смолы σ_{s2} , забойного давления p_w и коэффициента Пуассона смолы ν_2 при фиксированной глубине проникания смолы l = 0,05 м, прочности породы $\sigma_{s4} = 30$ МПа и модуле Юнга "мягкого" водонасыщенного скелета в интервале водоизоляции $E_4 = 5$ ГПа. Видно, что внешний слой является прочным при любых параметрах (см. рис. 2,a), внутренний слой является текучим в области малых и умеренных значений прочности смолы (см. рис. 2,6). На рис. 2,6 показана область параметров, при которых оба слоя являются прочными. Следует отметить, что если в рассматриваемом случае "мягкого" скелета породы увеличивать объем закачки (увеличивать глубину проникания смолы в породу до значения l = 0,55 м), то область прочности практически не изменяется, так как внешний слой остается прочным, а область текучести внутреннего слоя в рассматриваемом пространстве параметров изменяется незначительно.

Рис. 2. Области прочности (1) и текучести (2) двухслойного водоизолирующего барьера при l = 0.05 м, $\sigma_{s4} = 30$ МПа, $E_4 = 5$ ГПа: *а* — внешний слой, δ — внутренний слой, ϵ — внешний и внутренний слои

Рис. 3. Области прочности (1) и текучести (2) двухслойного водоизолирующего барьера при l = 0.05 м, $\sigma_{s4} = 30$ МПа, $E_4 = 50$ ГПа: a — внешний слой, δ — внутренний слой, ϵ — внешний и внутренний слои

На рис. 3 представлены области прочности и текучести при тех же значениях параметров, что и на рис. 2, но модуль Юнга "жесткого" водонасыщенного скелета составлял $E_4 = 50$ ГПа. Видно, что в случае более "жесткого" скелета область параметров, при которых внешний слой остается прочным, уменьшается. На рис. 3,6 показана область параметров, при которых оба слоя являются прочными. В этом случае водоизоляцию можно осуществить только при использовании смол с большим коэффициентом Пуассона.

На рис. 4 показаны области прочности и текучести при тех же значениях параметров задачи, что и на рис. 3, но при большей глубине проникания смолы в породу l = 0,55 м. Видно, что при большей величине внешнего радиуса водоизолирующего барьера области параметров, при которых внешний и внутренний слои остаются прочными, увеличиваются. Из рис. 4,6 следует, что область параметров, при которых оба слоя барьера являются прочными, также увеличивается по сравнению с аналогичной областью, показанной на рис. 3,6.

Замечание. Решение (2) не учитывает релаксацию горизонтальных главных напряжений к вертикальному главному напряжению (гидростатическому напряженному состоянию) вследствие перехода материала пород в пластическое состояние (частный случай гипотезы Динника при $\langle \nu \rangle = 0.5$) [10], а также наличие в горных массивах тектонических напряжений. В последнем случае гипотеза Динника не выполняется. При наличии тек-

Рис. 4. Области прочности (1) и текучести (2) двухслойного водоизолирующего барьера при l = 0.55 м, $\sigma_{s4} = 30$ МПа, $E_4 = 50$ ГПа: *а* — внешний слой, δ — внутренний слой, ϵ — внешний и внутренний слои

тонических напряжений горизонтальные напряжения могут быть в несколько раз больше вертикальных напряжений. Для учета указанных явлений в формуле (3) нужно выполнить замену $\langle \nu \rangle (1 - \langle \nu \rangle)^{-1} \to \beta$, где $\beta \in (0, \beta_*], \beta_* = 6 \div 7$.

Рис. 2–4 соответствуют значению коэффициента бокового распора $\beta = 1/3$. Также были выполнены расчеты для значений параметра $\beta = 2/3$; 1; 2; 5.

Результаты расчетов, выполненных при данных, соответствующих рис. 2, показывают, что при $\beta = 2/3$, так же как и при $\beta = 1/3$, внешний слой барьера остается прочным во всей рассматриваемой области параметров, при этом область прочности внутреннего слоя уменьшается незначительно. При $\beta = 1$ области прочности обоих слоев барьера значительно уменьшаются. При $\beta = 2$ внешний слой водоизолирующего барьера разрушается при любых параметрах, а внутренний слой является прочным при больших значениях коэффициента Пуассона смолы. При $\beta = 5$ оба слоя барьера разрушаются при любых параметрах.

Из результатов расчетов, проведенных при данных, соответствующих рис. 3, следует, что при $\beta = 2/3$ область прочности двухслойного барьера значительно меньше, чем в случае $\beta = 1/3$, и сдвигается в область больших значений забойного давления и коэффициента Пуассона смолы. При $\beta = 1, 2, 5$ внешний слой барьера разрушается при любых параметрах и операция водоизоляции является технологически неуспешной.

Результаты расчетов, выполненных при данных, соответствующих рис. 4, показывают, что при $\beta = 2/3$ область параметров, при которых двухслойный барьер является прочным, меньше, чем в случае, показанном на рис. 3, и смещается в область больших значений прочности смолы, забойного давления и коэффициента Пуассона смолы. При $\beta = 1$, 2, 5 двухслойный водоизолирующий барьер также разрушается при любых параметрах.

Заключение. В работе предложена математическая модель, позволяющая оценить прочность двухслойного водоизоляционного барьера, образующегося в результате закачки отверждающейся синтетической смолы. В модели используются решение задачи об изотропном упругом полупространстве с полостью, решение задачи Ламе для трехслойного цилиндра, а также критерий текучести Мизеса для изотропного идеально пластического материала. Для определения эффективных модулей внешнего слоя барьера в породе применялся дифференциальный метод согласования упругих полей. Построены области прочности и текучести в пространстве параметров задачи с учетом тектонических напряжений и релаксации главных напряжений до значений, соответствующих гидростатическому напряженному состоянию.

ЛИТЕРАТУРА

- 1. Ершов А. П., Даммер А. Я., Куперштох А. Л. Неустойчивость "невязкого пальца" в регулярных моделях пористой среды // ПМТФ. 2001. Т. 42, № 2. С. 129–140.
- 2. Лехницкий С. Г. Теория упругости анизотропного тела. М.: Наука, 1977.
- 3. Динник А. Н. О давлении горных пород и расчет крепи круглой шахты // Инж. работник. 1925. № 7. С. 1–12.
- 4. Котяхов Ф. И. Физика газовых и нефтяных коллекторов. М.: Недра, 1977.
- Malkowski P., Ostrowski L. The methodology for the Young modulus derivation for rocks and its value // Proc. of the ISRM Europ. rock mechanics symp. (EUROCK 2017), Ostrava (Czech Republic), 20–22 June 2017. Oxford: Elsevier, 2017. V. 191. P. 134–141.
- 6. Димитриенко Ю. И. Нелинейная механика сплошной среды. М.: Физматлит, 2009.
- 7. Устинов К. Б. Об определении эффективных упругих характеристик двухфазных сред. Случай изолированных неоднородностей в форме эллипсоидов вращения // Успехи механики. 2003. № 2. С. 126–168.
- Roscoe R. A. Isotropic composites with elastic and viscoelastic phases: general bounds for the moduli and solutions for special geometries // Rheol. Acta. 1973. V. 12. P. 404–411.
- 9. **Ильясов А. М.** Оценка прочности цементного кольца, примыкающего к стволу добывающей скважины // ПМТФ. 2017. Т. 58, № 1. С. 210–217.
- 10. Желтов Ю. П., Христианович С. А. О гидравлическом разрыве нефтеносного пласта // Изв. АН СССР. Отд-ние техн. наук. 1955. № 5. С. 3–41.

Поступила в редакцию 26/X 2018 г., после доработки — 13/III 2019 г. Принята к публикации 25/III 2019 г.