2010. Том 51, № 1

Январь – февраль

C. 7 – *14*

УДК 539.2.01:541.57

ЭЛЕКТРОННОЕ СТРОЕНИЕ ПРИМЕСНЫХ ЦЕНТРОВ Pu³⁺ И Pu⁴⁺ В ЦИРКОНЕ

© 2010 М.В. Рыжков¹*, А.Л. Ивановский¹, А.В. Поротников², Ю.В. Щапова², С.Л. Вотяков²

¹Институт химии твердого тела УрО РАН, Екатеринбург ²Институт геологии и геохимии УрО РАН, Екатеринбург

Статья поступила 5 марта 2009 г.

С использованием полностью релятивистского кластерного метода дискретного варырования исследовано электронное строение большого фрагмента кристаллической решетки циркона ZrSiO₄ с примесным атомом плутония, замещающим атом циркония Zr⁴⁺. Рассмотрены три возможных состояния примесного центра: Pu⁴⁺ (изовалентное замещение), Pu³⁺ (неизовалентное замещение) и Pu³⁺ с кислородной вакансией в ближайшем окружении, обеспечивающей зарядовую компенсацию. Релаксацию кристаллической решетки ZrSiO₄ вблизи дефекта моделировали с использованием полуэмпирического метода атомных парных потенциалов (программа GULP). Анализ заселенностей перекрывания и эффективных зарядов на атомах показал, что химическое связывание плутония с матрицей носит ковалентный характер, а изовалентное замещение дает более стабильную систему, чем примесь Pu³⁺. Структура химического связывания в присутствии вакансий является промежуточной по отношению к замещениям Pu⁴⁺ \rightarrow Zr⁴⁺ и Pu³⁺ \rightarrow Zr⁴⁺.

Ключевые слова: кластерный расчет, релятивистские эффекты, химическая связь примеси Ри с матрицей ZrSiO₄.

введение

Высокая изоморфная емкость минерала циркона ZrSiO₄ относительно редкоземельных и радиоактивных элементов определяет перспективность его использования в качестве материала для захоронения радиоактивных отходов [1], в частности, изотопов энергетического и оружейного плутония (²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu). Длительное безопасное хранение Pu, изоморфно замещающего додекаэдрическую позицию Zr в структуре циркона, зависит от радиационно-термической стабильности структуры синтетических керамик на основе $ZrSiO_4$ [2], подвергающихся радиационному повреждению (метамиктизации) за счет α-распада изотопов Ри и их дочерних ядер (например, ²³⁵U в случае ²³⁹Pu). В связи с высокой активностью циркона, содержащего Ри, экспериментальные исследования особенностей его локальной структуры и химической связи немногочисленны [3-6]. Известно, что при синтезе в восстановительных условиях плутоний входит в структуру циркона в зарядовом состоянии Pu³⁺; отжиг на воздухе переводит его в состояние Pu⁴⁺ [4]. По аналогии с примесным ураном в цирконе, зарядовое состояние которого может принимать значения U^{4+} и U^{5+} в зависимости от степени метамиктности образнов [7], можно предположить, что плутоний в цирконе может находиться в различном валентном состоянии. Изменение зарядового состояния примесного катиона должны приводить к релаксации структуры его ближайшего окружения, изменениям характеристик химического связывания с матрицей, возникновению структурных напряжений. Детальную информацию об атомной и электронной структуре примесных дефектов можно получить с использованием методов компьютерного моделирования. Ранее в [8] были рассчитаны энергии образования точеч-

^{*} E-mail: ryz@ihim.uran.ru

ных дефектов Pu^{3^+} и Pu^{4^+} при различных способах зарядовой компенсации; показано, что наименьшими энергиями *E* образования характеризуются: (1) $Pu^{4^+} \rightarrow Zr^{4^+}$ (*E* = 0,26 эB/Pu) — изолированное замещение одного Zr^{4^+} на Pu^{4^+} ; (2) $2Pu^{3^+} + V_0^- \rightarrow 2Zr^{4^+}$ (1,02 эB/Pu) — замещение двух соседних Zr^{4^+} на два Pu^{3^+} с компенсацией вакансией иона кислорода V_0^- ; и (3) $Pu^{3^+} + V_0^- \rightarrow Zr^{4^+}$ (4,5 эB/Pu) — изолированное замещение одного Zr^{4^+} на Pu^{3^+} с компенсацией вакансией кислорода V_0^- . Ранее с помощью полуэмпирического структурного моделирования были определены [9] характеристики структурной релаксации ближнего порядка Pu^{3^+} и рассмотрен случай его локальной зарядовой компенсации примесным катионом $P^{5^+} \rightarrow Si^{4^+}$ в соседней тетраэдрической позиции. Анализ структуры ближнего порядка Pu^{3^+} в случаях зарядовой компенсации кислородной вакансией ранее не проводился, неэмпирические расчеты особенностей химического связывания примесного плутония в матрице циркона не выполнялись. Подобные расчеты должны проводиться в рамках релятивистских расчетных методов, учитывающих спин-орбитальное взаимодействие; такой подход был нами применен для исследования электронного строения примесного урана в цирконе [10].

Целью данной работы является квантово-химическое моделирование электронного строения фрагмента кристаллической решетки $ZrSiO_4$ с атомом плутония, замещающим цирконий; анализ влияния зарядового состояния примеси (Pu^{4+} и Pu^{3+}) на степень структурной релаксации позиции, электронный энергетический спектр, распределение зарядовой плотности и химическую связь Pu—O, Zr—O и O—Si, а также исследование влияния вакансии в ближайшем окружении примеси, выполняющей роль зарядовой компенсации при гетеровалентном замещении $Pu^{3+} \rightarrow Zr^{4+}$.

ОБЪЕКТЫ И МЕТОДИКА РАСЧЕТОВ

В работе использовали оригинальную программу, реализующую релятивистский метод дискретного варьирования (РДВ) [11, 12], основанный на решении уравнения Дирака-Слэтера для четырехкомпонентных волновых функций, преобразующихся по неприводимым представлениям двойных групп (в настоящих расчетах точечные группы кластеров — S_4 и C_s). Для получения коэффициентов симметризации использовали оригинальную программу, реализующую метод проекционных операторов [11] с применением матриц неприводимых представлений двойных групп, полученных в работе [13]. Расширенный базис численных атомных четырехкомпонентных орбиталей (АО), полученных в решении одноэлектронной задачи для изолированных нейтральных атомов, включал также виртуальные состояния $Zr5p^{1/2},5p^{3/2}$ и Pu7 $p^{1/2}$, $7p^{3/2}$ -типа. Численное диофантово интегрирование при вычислении матричных элементов проводили по набору из 298 000 точек, распределенных в пространстве кластера. В работе использовали обменно-корреляционный потенциал [14], а эффективные заряды на атомах вычисляли интегрированием зарядовой плотности в пространственных областях, заключенных между точ-ками минимума электронной плотности [15].

Для определения релаксации структуры ближнего порядка минерала при вхождении примеси плутония использовали полуэмпирический метод атомных парных потенциалов, реализованный в программе GULP [16]. Точечные дефекты моделировали в рамках подхода "вложенных сфер" Мотта-Литтлтона; внутренняя область, непосредственно примыкающая к дефекту, участвует в процедуре минимизации энергии, а внешняя область рассматривается как поляризуемый диэлектрический континуум. При моделировании простых точечных дефектов циркона внутренняя сфера содержала 130 атомов; при моделировании парных дефектов замещения ее размеры увеличивали до 600 атомов. Параметры расчетных потенциалов для ионов Si и O были взяты из библиотеки [17], для Zr и Pu — из [18]. Найденные в этом подходе сдвиги атомов нескольких координационных сфер примеси, полученные сравнением рассчитанных положений атомов в идеальном цирконе и цирконе с примесью плутония, были затем добавлены к их экспериментальным координатам в идеальном ZrSiO₄,

Кластерные модели. Для изучения электронного строения Pu в $ZrSiO_4$ был выбран 213атомный фрагмент $PuZr_{22}Si_{30}O_{160}$ с центром на атоме плутония, замещающим цирконий. То-

9

			-			
Связь	Эксперимент ZrSiO ₄	Расчет ZrSiO ₄	Pасчет Pu ⁴⁺ \rightarrow Zr ⁴⁺	Расчет Pu ³⁺ \rightarrow Zr ⁴⁺	Расчет (Pu ³⁺ +V ₀₁) \rightarrow Zr ⁴⁺	Расчет (Pu ³⁺ +V _{O2}) \rightarrow Zr ⁴⁺
M—O ₁	2,27	2,30	2,45	2,50	_	2,39
$M - O_1$	2,27	2,30	2,45	2,50	2,42	2,42
$M - O_1$	2,27	2,30	2,45	2,50	2,44	2,42
$M - O_1$	2,27	2,30	2,45	2,50	2,44	2,42
$M - O_2$	2,13	2,10	2,15	2,30	2,22	—
$M - O_2$	2,13	2,10	2,15	2,30	2,22	2,25
$M - O_2$	2,13	2,10	2,15	2,30	2,25	2,26
$M - O_2$	2,13	2,10	2,15	2,30	2,31	2,22

Значения межатомных расстояний в додекаэдрах MO₈ (M = Zr, Pu) по данным расчетов GULP и эксперимента [20]

чечная симметрия такого кластера S_4 , однако при моделировании зарядовой компенсации киспородной вакансией симметрия кластера $PuZr_{22}Si_{30}O_{159}$ понижалась до C_s . Для учета роли кристаллического окружения использовали методику "расширенного кластера", подробно описанную в [19]. В этой процедуре рассматриваемый фрагмент состоит из основной (центральной) части (или "ядра"), которая является объектом исследования, и атомов еще нескольких координационных сфер, образующих оболочку или неосновную часть кластера (при обязательном условии, чтобы каждый периферийный атом Zr и Si входил с полным числом ближайших лигандов). В процессе самосогласования электронная плотность и получаемый по ней потенциал центров неосновной части заменяли на полученные для кристаллографически эквивалентных атомов из "ядра" кластера. Кроме того, для учета дальнодействующей составляющей потенциала окружающего кристалла кластер погружали в псевдопотенциал еще 10 144 атомов, форму которого на каждой итерации определяли из результатов расчетов для атомов основной части кластера.

В настоящей работе, как и ранее при исследовании примеси U [10], в основную часть исследуемого кластера входили: центральная группировка PuO₈ (далее эти лиганды обозначены O₁, O₂); два атома кремния (Si₁) — ближайшие соседи O₁, 4Zr и 4Si следующей координационной сферы (Zr₂, Si₂); 36 ионов кислорода, относящихся к шести кристаллографическим типам и формирующих ближайшее окружение Zr₂ и Si₂ (O₃, O₄, O₅, O₆, O₇, O₈). Остальные атомы формировали оболочку кластера, и в процессе самосогласования их электронные плотности и потенциалы оставались неизменными — такими, какими они получилась для идеального кристалла ZrSiO₄ [10].

Моделирование структуры идеального кристаллического циркона методом GULP предсказывает для межатомных расстояний Zr—O значения 2,10 и 2,30 Å, для Si—O 1,63 Å, что согласуется с экспериментальными данными Zr—O₁ 2,13, Zr—O₂ 2,26, Si—O 1,62 Å [20] в пределах 0,6—1,4 %. В табл. 1 даны межатомные расстояния в ближайшем окружении примесного центра в рассмотренных структурных моделях. Релаксация ближайшего окружения примесного атома Ри согласно данным расчетов методом GULP имеет следующие характеристики.

1. Изолированное изовалентное замещение $Pu^{4+} \rightarrow Zr^{4+}$. При замещении плутонием центрального атома циркония происходит увеличение размеров додекаэдра и искажение его формы. Как и в случае с примесью урана, увеличение размеров более выражено вдоль оси *z* по сравнению с увеличением вдоль осей *x*, *y*. Расстояние Pu—O₁ увеличивается относительно расчетного расстояния Zr—O для чистого кристаллического циркона на 0,15 Å, расстояние Pu—O₂ — на 0,05 Å.

2. Изолированное гетеровалентное замещение $Pu^{3+} \rightarrow Zr^{4+}$ без локальной зарядовой компенсации. Расчет релаксации решетки для Pu^{3+} предсказывает более существенные иска-

жения структуры ближайшего окружения по сравнению с четырехвалентной примесью. Расстояния $Pu-O_1$ и $Pu-O_2$ увеличиваются относительно расчетного расстояния Zr-O для чистого кристаллического циркона на 0,20 Å, что совпадает с экспериментально найденным методом EXAFS [21] значением размеров додекаэдров в синтетических образцах $ZrSiO_4:Pu$. При этом рассчитанные расстояния Pu-Zr и Pu-Si изменяются по сравнению с исходными Zr-Zr и Zr-Si значительно меньше (на 0,01 и 0,04 Å соответственно), что согласуется с данными [21], в которой получены "практически идентичные" исходным расстояния до атомов второй координационной сферы. Таким образом, встраивание Pu^{3+} в структуру циркона сопровождается с ильным локальным искажением додекаэдрической позиции, затухающим на малых расстояниях (порядка 3,6 Å). Экспериментально установленное [21] сохранение локальной структуры вокруг примесного плутония при больших дозах самооблучения α -частицами указывает на стабильность рассматриваемой группировки и в метамикном образце.

3. Гетеровалентное замещение $Pu^{3^+} \rightarrow Zr^{4^+} c$ локальной зарядовой компенсацией кислородной вакансией. Поскольку в кластере $PuZr_{22}Si_{30}O_{160}$ ближайшее окружение примеси представляет две группы неэквивалентных лигандов: O_1 (более удаленные) и O_2 (менее удаленные), были рассмотрены две модели вакансии — в полиэдрах O_1 и O_2 соответственно. Расчет релаксации решетки для V_{O1} и V_{O2} предсказывает более существенные искажения структуры кластера по сравнению с простым замещением циркония на плутоний. В случае V_{O1} расстояния $Pu-O_2$ увеличиваются на 0,12—0,21, $Pu-O_1$ — на 0,12—0,14 Å. В случае V_{O2} расстояния $Pu-O_2$ увеличиваются на 0,12—0,16, $Pu-O_1$ — на 0,09—0,12 Å. Во второй координационной сфере наиболее сильно смещаются ближайшие соседи кислородных вакансий — атомы Zr (на 0,2—0,3 Å) и Si (на 0,7—0,8 Å). В присутствии вакансии из всех операций симметрии остается только плоскость отражения, в которой находится вакансия, поэтому группа симметрии кластеров понижается до C_5 .

Найденные методом GULP сдвиги атомов нескольких координационных сфер примеси, полученные сравнением рассчитанных положений атомов в идеальном цирконе и цирконе с примесью плутония, затем добавлялись к их экспериментальным координатам в идеальном ZrSiO₄. Полученные таким образом положения атомов далее использовались в расчетах электронного строения методом РДВ.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Парциальные плотности состояний атомов Pu, O₁, O₂, Zr₂ и Si₁, полученные для изовалентного замещения Pu⁴⁺ \rightarrow Zr⁴⁺, показаны на рис. 1. Для примесного атома плутония, как и для урана, релятивистское описание имеет принципиальное значение. Спин-орбитальное расщепление для Pu6p^{1/2} (пик с энергией –27,5 эВ) и Pu6p^{3/2} (–16 эВ) уровней в 6 раз больше, чем для 4*p*-орбиталей циркония (пики с энергиями –26,6 и 28,4 эВ). При этом Pu6*p*-, как и U6*p*-состояния, нельзя считать остовными, поскольку имеет место заметная гибридизация Pu6p^{3/2} и O2*s* орбит (см. рис. 1). Для высокоэнергетических Pu5*f*,6*d*,7*s*,7*p*-уровней спин-орбитальное расщепление составляет 1 эВ, но релятивистские эффекты определяют энергетические и пространственные характеристики этих состояний, а также порядок связей орбиталей каждого типа с O2*p* AO ближайших соседей.

Примесные Pu5*f*-уровни оказываются в запрещенной зоне ZrSiO₄, при этом, в отличие от урана, в данном случае щель между примесной зоной и краем валентных O2*p*-состояний составляет всего 1,2 эВ. Число электронов на этих уровнях зависит от рассматриваемой модели замещения Zr на Pu. В модели изовалентного замещения мы предполагали, что на место циркония со всеми его электронами приходит плутоний, также со всеми своими электронами, а далее электронная плотность с атома актинида смещается к ближайшим соседям в соответствии с наибольшей энергетической выгодой. В результате получено, что на примесных уровнях располагаются четыре электрона, занимающие орбитали Γ_5 -, Γ_6 -, Γ_7 - и Γ_8 -симметрии с близкой структурой: 84 % Pu5*f*, 8 % O₁2*p*, 4 % O₂2*p*, вклад Pu6*d* оказывается порядка 1 %, т.е. заметно меньше, чем в случае урана. Самый нижний вакантный уровень Γ_6 -типа (LUMO) имеет близкий состав и энергию на 0,3 эВ выше последнего заполненного Γ_7 -состояния (HOMO).

100 -ZrSiO₄ 80 60 40 20 0 80 60 40 20 0 80 60 40 20 0 80 60 40 20 0 + V_{O2} 80 60 40 20 0 -30 -25 -20 -15 -10 –5 *Е*, эВ Ś $\dot{20}$ 0 15 10

Рис. 1. Парциальные плотности состояний Pu5f, 6p,6d,7s,7p, O₁2s,2p, O₂2s,2p, Zr₂4p,4d,5s,5p и Si2s, 2p,3s,3p в кластере PuZr₂₂Si₃₀O₁₆₀ (Pu⁴⁺ \rightarrow Zr³⁺). Состояния p, d и f показаны сплошными линиями, s-типа — пунктиром

Рис. 2. Полные плотности состояний идеального циркона и циркона с примесью плутония с различными степенями окисления и вакансиями в ближайшем окружении

Число электронов на примесных уровнях может быть меньше, если на место Zr⁴⁺ приходит плутоний с большим зарядом (гипотетически, например, Pu⁵⁺), или больше, если приходит Pu³⁺. В последнем случае появляется еще одна заполненная орбиталь Г₅-типа, которая содержит основной вклад Pu5f-AO (90 %) и примеси O₁2p (1 %) и O₂2p (5 %). В случае простого замещения $Pu^{3+} \rightarrow Zr^{4+}$ разность энергий НОМО и LUMO оказывается менее 0,01 эВ. В расчетах с кислородными вакансиями на примесных 5*f*-уровнях также находятся 5 электронов, но в валентной О2р-зоне на 6 орбиталей меньше. В этих расчетах МО соответствуют неприводимым представлениям Γ_3 и Γ_4 двойной группы C_s . Получено, что четыре более глубоких примесных состояния содержат 87—90 % Pu5f-AO, пятая орбиталь (HOMO) — 80—82 % Pu5f, а в нижней вакантной МО вклад Pu5f-AO только 77—79 %. На рис. 2 приведены полные плотности состояний для всех четырех моделей замещения циркония на плутоний, для сравнения также показаны результаты расчета идеального циркона. Кроме отличий в деталях формы линий можно отметить относительные сдвиги основных зон. Как уже отмечалось выше, расщепление между О2ри Pu5*f*-состояниями в случае Pu^{4+} составляет 1,2 эВ, для Pu^{3+} эта щель заметно увеличивается до 2,2 эВ, для V₀₁ расщепление этих зон уменьшается до 1,1 эВ, а для вакансии в О2-окружении снова достигает 2,1 эВ. Тем не менее во всех случаях эта величина заметно меньше, чем для примеси урана (3,7 эВ) [10]. Зарядовое состояние примеси проявляется главным образом в увеличении разности энергий $Pu5f^{5/2}$ (по ним проходит E_F , взятый за нуль энергетической шкалы) и $Pu6p^{3/2}$ -состояний, которые на 0,5 эВ глубже во всех расчетах с Pu^{3+} . Отметим также, что

Таблица 2

Система	AO	$\begin{array}{c} \operatorname{Zr}_1\\ 4d 5s 5p \end{array}$	U, Pu 5f 6d 7s 7p	$\begin{array}{c} Zr_2\\ 4d 5s 5p \end{array}$	$\begin{array}{c} \mathrm{Si}_1\\ \mathrm{3s} \ \mathrm{3p}\end{array}$	$\begin{array}{c} \operatorname{Si}_2\\ 3s 3p \end{array}$
ZrSiO ₄	$O_1 2p$	144 54 12		208 64 72	214 394	1 -5
	$O_2 2p$	208 55 58		134 47 5	2 -1	212 392
$U^{4+} \rightarrow Zr^{4+}$	$O_1 2p$		49 153 50 -23	196 60 73	220 402	-2 -6
	$O_2 2p$		79 202 44 20	142 51 -6	1 -1	211 381
$Pu^{4+} \rightarrow Zr^{4+}$	$O_1 2p$		37 130 50 -22	250 66 72	203 386	-3 -8
	$O_2 2p$		100 221 47 16	114 46 -10	1 -2	203 375
$Pu^{3+} \rightarrow Zr^{4+}$	$O_1 2p$		23 128 46 -19	283 64 64	207 390	-2 -5
	$O_2 2p$		43 175 54 16	138 64 -18	2 -1	207 393
$(Pu^{3+}+V_{O1})\rightarrow Zr^{4+}$	$O_1 2p$		49 145 51 -18	211 58 65	221 441	-1 -5
	$O_2 2p$		62 197 53 22	160 49 -15	2 -2	214 380
$(Pu^{3+}+V_{O2})\rightarrow Zr^{4+}$	$O_1 2p$		38 154 55 -24	206 60 66	221 399	-1 -6
	$O_2 2p$		54 191 54 15	165 61 -10	1 –1	215 383

Заселенности перекрывания AO Zr₁, U, Pu, Zr₂, Si₁, Si₂ и O₁, O₂, полученные в РДВ расчетах кластеров ZrZr₂₂Si₃₀O₁₆₀, UZr₂₂Si₃₀O₁₆₀, PuZr₂₂Si₃₀O₁₆₀ и PuZr₂₂Si₃₀O₁₅₉ (в расчете на каждую пару взаимодействующих атомов, 10⁻³ e)

трансформация структуры кристалла в присутствии примеси влияет на положение орбиталей циркония, это можно заметить по трансформации $Zr4p^{3/2}$, $4p^{1/2}$ —Pu6 $p^{1/2}$ -пиков с энергиями ниже –25 эВ.

Как и в идеальном ZrSiO₄, где взаимодействие Zr—O носит ковалентный характер за счет гибридизации главным образом Zr4*d*- и O2*p*-состояний, для примесного атома плутония во всех рассмотренных состояниях имеет место значительное ковалентное смешивание не только Pu6*d*—O2*p*-, но и Pu5*f*—O2*p*-орбиталей (см. рис. 1). Таким образом, химическая связь плутония и урана с атомами кислорода в решетке циркона имеет ковалентную природу.

Более детальную структуру вкладов в химическую связь различных состояний дают заселенности перекрывания (n_{ij}) орбиталей Zr, Pu, Si с окружающими атомами кислорода. В табл. 2 приведены значения n_{ij} для внешних орбиталей Pu — O₁, O₂, Zr₂ — O₁, O₂, Si₁ — O₁, O₂, Si₂ — O₁, O₂. Для удобства сравнения они разделены на число связей каждого типа, т.е. даны в расчете на каждую пару взаимодействующих атомов. Для всех рассмотренных типов центров число связей равно четырем, а для кислородных вакансий число связей с соответствующим лигандом равно трем. Для сравнения также показаны результаты, полученные для идеального ZrSiO₄ и примеси урана.

Расстояние между атомом плутония и лигандами O₁ увеличивается по сравнению с U—O₁ на 0,04 Å, тогда как более короткие связи Pu—O₂ уменьшаются на 0,06 Å по сравнению с U—O₂. Поэтому вклады в химическое связывание взаимодействий Ac6*d*—O₁2*p* и Ac5*f*—O₁2*p* для плутония оказываются заметно меньше, чем для урана (см. табл. 2). С другой стороны, заселенности перекрывания Ac6*d*, 5*f*—O₂2*p*-AO для примеси Pu⁴⁺ оказываются больше, чем для U⁴⁺. Участие в химическом связывании виртуальных Pu7*p*-орбиталей, как и для U7*p*-AO, оказывается очень чувствительным к межатомным расстояниям, увеличение последних при переходе от O₂ к O₁ приводит к изменению характера Pu7*p*—O2*p*-взаимодействий со связывающего на антисвязывающий. Аналогичный результат получен и для виртуальных Zr₂5*p*-состояний (см. табл. 2). Примесь Pu³⁺ связана с окружающими лигандами заметно слабее, чем Pu⁴⁺, что согласуется с опытным фактом, что отжиг образцов переводит Pu³⁺ в состояние Pu⁴⁺ [4]. Сравнение простого замещения Pu³⁺ → Zr⁴⁺ на замещение с вакансиями показывает, что последнее приводит к увеличению заселенностей перекрывания примесного центра с окружением, и структура химического связывания в присутствии вакансий является промежуточной между систе-

Таблица 3

13

sumerican dup kontan na niymonau (o countadar e)								
Соединение	Q_{Zr_1}	$Q_{\mathrm{U,Pu}}$	Q_{O_1}	Q_{O_2}	$Q_{\rm Zr_2}$	Q_{Si_1}	Q_{Si_2}	
ZrSiO.	2 70		_1 26	_1 25	2 74	2 30	2 30	
$U^{4+} \rightarrow Zr^{4+}$		3.07	-1,29	-1.35	2,74	2,30	2,30	
$Pu^{4+} \rightarrow Zr^{4+}$	_	2,67	-1,27	-1,30	2,75	2,32	2,31	
$Pu^{3+} \rightarrow Zr^{4+}$		2,37	-1,29	-1,34	2,76	2,33	2,32	
$(Pu^{3+}+V_{O1})\rightarrow Zr^{4+}$	—	2,51	-1,30	-1,34	2,74	2,35	2,30	
			-1,22	-1,35	2,79	1,91*	2,34	
				-1,35	2,71*		2,33	
$(Pu^{3+}+V_{O2})\rightarrow Zr^{4+}$		2,42	-1,35	-1,31	2,74	2,30	2,29	
			-1,30	-1,35	2,76*	2,32	1,99*	
			-1.31		2,74		2,30	

Эффективные заряды на атомах в ZrSiO₄, U⁴⁺ — ZrSiO₄ и Pu — ZrSiO₄ в различных моделях замещения циркония на плутоний (в единицах е)

* Отмечены заряды атомов, ближайших к вакансиям.

мами с Pu⁴⁺ и Pu³⁺. Таким образом, расчеты показывают, что рассмотренные вакансии могут стабилизировать примеси плутония в цирконе.

В табл. 3 приведены эффективные заряды на атомах ($Q_{3\phi}$), полученные пространственным интегрированием электронной плотности внутри областей между точками минимума этой плотности. Для увеличения точности $Q_{3\phi}$ вычисляли для всех атомов основной части кластера индивидуально, а затем для кристаллографически эквивалентных центров их усредняли. Критерием достоверности вычислений служили коэффициенты вариации (среднеквадратичные отклонения, деленные на среднюю величину заряда ионов данного типа). В настоящих расчетах они не превышали 6 %. Заряды, полученные таким методом, в отличие от малликеновских и зарядов в М—Т-сферах [15], являются количественными характеристиками перераспределения электронной плотности между атомами. Для расчетов с вакансиями из-за понижения симетрии приведены несколько значений зарядов, соответствующих всем неэквивалентным атомам в каждой группе.

Из данных табл. 3 следует, что зарядовое состояние плутония гораздо ближе к замещаемому иону циркона, чем для примеси урана. Несмотря на то, что в модели $Pu^{3+} \rightarrow Zr^{4+}$ на примесных 5*f*-состояниях было на один электрон больше, чем в случае $Pu^{4+} \rightarrow Zr^{4+}$, заряд на ионе плутония уменьшился только на 0,3. Одновременно увеличились заряды на O₁ и O₂, однако это увеличение произошло частично и за счет смещения электронной плотности с атомов циркония и кремния, ближайших соседей данных лигандов. Появление вакансий стимулирует смещение электронной плотности с примесного центра на оставшиеся лиганды O₁ и O₂, однако для ионов кремния и в небольшой степени для циркония в случае V_{O1} имеет место обратная тенденция, заряды на Si₁ и Si₂ вблизи вакансий на 0,3—0,4 меньше, чем у остальных атомов этого типа. Заметные отличия эффективных зарядов всех атомов от их формальных степеней окисления указывает на ковалентный характер взаимодействия Zr—O, Si—O и Pu—O в данном соединении.

выводы

Выполненные нами расчеты показали, что замещение плутонием атома циркония в ZrSiO₄ является вероятным процессом, поскольку взаимодействие примеси с кислородным окружением имеет ряд близких черт к взаимодействию Zr—O в идеальной матрице. Подтверждено, что изовалентное замещение $Pu^{4+} \rightarrow Zr^{4+}$ является более стабильным, чем $Pu^{3+} \rightarrow Zr^{4+}$, однако в последнем случае вакансии в ближайшем окружении примеси могут играть положительную роль. Найдено, что эффективные заряды на примеси и ее связь с окружением в присутствии вакансий являются промежуточными по отношению к простым замещениям $Pu^{4+} \rightarrow Zr^{4+}$ и $Pu^{3+} \rightarrow Zr^{4+}$. Полученные результаты не дают основания считать, что увеличение числа 5*f* электронов у плутония по сравнению с ураном существенно изменит характер взаимодействия примеси с матрицей.

Работа выполнена в рамках программы РАН № 14 "Научные основы рационального природопользования" и междисциплинарного проекта УрО РАН "Состав, структура и физика радиационнотермических эффектов в фосфатных и силикатных минералах и стеклах как основа для геохронологических построений и создания материалов для утилизации высокоактивных долгоживущих радионуклидов", а также при поддержке Российского фонда фундаментальных исследований, проекты № 06-08-00808 и 09-05-00513.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ewing R.C. // Canad. Mineralog. 2001. 39. P. 697 715.
- 2. *Meldrum A., Boatner* ., *Weber W.J., Ewing R.C.* // Geochim. Cosmochim. Acta. 1998. **62**. P. 2509 2520.
- 3. Weber W.J., Rodney C., Ewing R.C., Wang Lu-Min // J. Mater. Res. 1994. 9. P. 688 698.
- 4. Begg B.D., Hess N.J., Weber W.J. et al. // J. Nucl. Mater. 2000. 278. P. 212 224.
- Burakov B.E., Anderson E.B., Zamoryanskaya M.V. et al.// Material Research Society Symp. Proc.: Scientific Basis for Nuclear Waste Management XXIV. 2001. 663. P. 307 313.
- 6. Burakov B.E., Hanchar J.M., Zamoryanskaya M.V. et al. // Radiochim. Acta. 2002. 89. P. 1 3.
- 7. Zhang M., Salje E.K.H, Ewing R.C. // J. Phys.: Condes. Matter. 2002. 14. P. 3333 3352.
- 8. Williford R.E., Begg B.D., Weber W.J., Hess N.J. // J. Nucl. Mater. 2000. 278. P. 207 211.
- 9. *Щапова Ю.В., Вотяков С.Л., Поротников А.В.* // Ежегодник ИГГ УрО РАН. 2005. Екатеринбург: Изд-во УрО РАН, 2006. С. 287 296.
- 10. Рыжков М.В., Ивановский А.Л., Поротников А.В. и др. // Журн. структур. химии. 2008. 49. С. 215 220.
- 11. Rosen A., Ellis D.E. // J. Chem. Phys. 1975. 62. P. 3039 3049.
- 12. Adachi H. // Technol. Rep. Osaka Univ. 1977. 27. P. 569 576.
- 13. *Pyykko P., Toivonen H.* Tables of representation and rotation matrices for the relativistic irreducible representations of 38 point groups. Acta Academ. Aboensis. Ser. B. 1983. N 2.
- 14. Gunnarsson O., Lundqvist B.I. // Phys. Rev. B. 1976. 13. P. 4274 4298.
- 15. *Рыжков М.В.* // Журн. структур. химии. 1998. **39**. С. 1134 1139.
- 16. *Gale J.D.* // J. Chem. Soc. Faraday Trans. 1997. 93(4). P. 629 637.
- Catlow C.R.A. library: http://www.ri.ac.uk/DFRL/research_pages/resources/Potential_database/O/index.html. – 1992.
- 18. Lewis G.V., Catlow C.R.A. // J. Phys. C: Solid State Phys. 1985. 18. P. 1149 1161.
- 19. Рыжков М.В., Денисова Т.А., Зубков В.Г., Максимова Л.Г. // Журн. структур. химии. 2000. **41**. С. 1123 1131.
- 20. Robinson K., Gibbs G.V., Ribbe P.H. // Amer. Miner. 1971. 56. P. 782 790.
- 21. Hess N.J., Weber W.J., Conradson S.D. // J. Alloys and Comp. 1998. 271-273. P. 240 243.