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Экспериментально изучались состояния жидких капель альбумина, сидящих на гори-
зонтальной эластичной циклично растягиваемой, а затем ослабляемой несмачиваемой
подложке. Обнаружен многоветвевой гистерезис состояний капли. Число ветвей гисте-
резиса можно регулировать за счет изменения закона движения подложки.
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Введение. Гистерезис состояний жидкостей при смачивании— важное гидродинами-
ческое явление, возникающее в зонах контакта жидкостей с твердыми поверхностями [1–4].
Наиболее известным является гистерезис краевых углов смачивания жидкой капли, нахо-
дящейся на подложке [5–10], проявляющийся в неравенстве краевого угла натекания и
краевого угла оттока жидкости на поверхности. В работе [11] отмечено, что указанное
явление может играть важную роль в процессах формирования порошковых покрытий,
струйной печати, а также в процессах осаждения малых частиц припоя при монтаже эле-
ментов микроэлектроники.

В процессе исследования смачиваемости поверхностей появилось новое направление—
эластокапиллярность [12–14]. В рамках этого направления изучается взаимодействие по-
верхностных сил в жидкостях и сил упругости в эластичной подложке. Процесс смачи-
вания жидкостей в каплях, находящихся на эластичных растянутых подложках, исследо-
вался в работах [15, 16], причем в [16] измерялась величина гистерезиса краевых углов
смачивания в каплях.

В данной работе экспериментально изучаются состояния жидких капель, находящих-
ся на горизонтальной эластичной растягиваемой подложке. Под состоянием капли будем
понимать длину ее основания вдоль направления растяжения подложки и краевой угол

смачивания.
1. Оборудование и материалы. Для проведения экспериментов было создано спе-

циальное механическое устройство, схема которого показана на рис. 1. На горизонтальном
гладком столе размещалась длинная эластичная подложка, один край которой закреплялся
механическим зажимом, а другой оставался свободным.
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Рис. 1. Схема экспериментального устройства:
1 — зажим, 2 — резиновая лента, 3 — стол, 4 — линейка, 5 — исследуемая капля, 6 —
маркер

В качестве эластичной подложки была выбрана резиновая лента (использовался из-
вестный в медицине бинт Мартенса из 100 %-й резины, из которого нарезались ленты
необходимых размеров). Для каждой ленты были выбраны следующие размеры: шири-
на — 1,5 см, длина — до 15 см, толщина — 0,5 мм. Лента имела достаточно гладкую
рабочую поверхность с неровностями, высота которых существенно меньше 100 мкм. На
ленту наносился специальный маркер, что позволяло отслеживать относительное удлине-
ние ленты при растяжении.

В экспериментах использовался 10 %-й водный раствор альбумина человека с добав-
ками CH(CH2)6COONa (2,8÷ 3,4 г/л) и NaCl (90÷ 160 моль/л). Раствор произведен НПО
“Микроген”. Для визуализации жидкость была подкрашена чернилами. Согласно [17, 18]
раствор имеет поверхностное натяжение, равное 49,2 мН/м. Следует отметить, что альбу-
мин не смачивает резину (измеренный контактный угол неподкрашенного раствора аль-
бумина на резине — 118◦, подкрашенного — 99◦) и является слаболетучей жидкостью,
поэтому уменьшением объема капли вследствие испарения можно пренебречь.

2. Методика экспериментов. Состояния капли регистрировались в боковом ракур-
се с помощью цифрового микроскопа Celestron (модель 44302-A) в режиме видеозаписи [19].
Видеозаписи разделялись на отдельные кадры, по которым определялись значения отно-
сительного удлинения ленты δ, длина области контакта капли с поверхностью ленты d
(длина основания капли) и контактный угол смачивания θ.

Эксперименты проводились при температуре 22 ◦C и давлении окружающего возду-
ха 100 кПа, измеренном барометром, по следующей программе цикличного растяжения-
ослабления ленты. Сначала лента растягивалась за свободный конец до достижения от-
носительного удлинения δ0. В этом положении на ленту наносилась капля альбумина.
Далее лента растягивалась до достижения относительного удлинения δ1, а затем, после
небольшой паузы, натяжение ленты уменьшалось до величины δ2. В следующих циклах
осуществлялось удлинение до величины δ3 и последующее ослабление до δ4, удлинение
до величины δ5 и последующее ослабление до δ6 и, наконец, удлинение до величины δ7 и

последующее уменьшение натяжения до значения δ8 ≈ 1,1. Заметим, что движение лен-
ты осуществлялось с малой скоростью (dδ/dt < 0,1 с−1), смена цикла происходила после
паузы длительностью несколько секунд.

3. Результаты экспериментов. Было проведено более 10 экспериментов, в кото-
рых наблюдались увеличение и уменьшение длины основания капли синхронно с циклами

растяжения и ослабления натяжения ленты. Более детальное исследование динамики ве-
личины d показало, что при одних и тех же значениях δ величина d принимает различные
значения в зависимости от предыстории, т. е. наблюдается гистерезис состояний капли.
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Рис. 2. Кадры видеозаписи движения капли:
0 — начальное положение капли, 1–8 — моменты смены цикла
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Рис. 3. Экспериментальная зависимость d(δ):
0 — начальное положение капли, 1–8 — моменты смены цикла

На рис. 2 представлены кадры видеосъемки положения капли, полученные в одном
из экспериментов в моменты времени, соответствующие смене цикла. Для данного экспе-
римента были выбраны следующие значения относительного удлинения ленты при смене

цикла: δ0 = 1,8, δ1,3,5,7 ≈ 2, δ2 = 1,6, δ4 = 1,4, δ6 = 1,2. На рис. 2 видно, что состояния
капли в моменты смены цикла 1, 3, 5, 7 при одном и том же значении δ существенно раз-
личаются. В то же время в моменты смены цикла 2, 4, 6, 8 при различных значениях δ
значения величины d приближенно равны: d2 ≈ d4 ≈ d6 ≈ d8.

После оцифровки видеозаписи строился график зависимости d(δ) (рис. 3). На рис. 3
видно, что состояние капли описывается многоветвевым гистерезисом с числом ветвей,
равным числу циклов растяжения и ослабления натяжения ленты.

На рис. 4 представлен график зависимости контактного угла смачивания θ от относи-
тельного удлинения δ, на котором наблюдается многоветвевой гистерезис. Следует отме-
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Рис. 4. Экспериментальная зависимость θ(δ):
0 — начальное положение капли, 1–8 — моменты смены цикла; I — область смачива-
емости, II — область несмачиваемости

тить, что кривая зависимости несколько раз пересекает границу областей смачиваемости
и несмачиваемости, причем эти пересечения происходят при различных значениях δ.

Ясно, что число ветвей многоветвевого гистерезиса можно увеличить. Для этого необ-
ходимо, чтобы значения относительного удлинения при смене циклов с четными номерами
2, 4, 6, 8, . . . уменьшались в каждом последующем цикле: δ2 > δ4 > δ6 > δ8 > . . . .

4. Обсуждение результатов. Поведение капли при многоцикловом растяжении и
ослаблении натяжения ленты можно объяснить следующим образом. В соответствии с

представлениями [2] о характере движения капли по подложке выделяются два предель-
ных режима поведения капли при растяжении ленты: режим идеального проскальзывания
и режим идеального пиннинга. Первый режим характеризуется тем, что растягиваемая
лента не захватывает основание капли, при этом размер и форма капли не меняются.
В этом случае графики зависимостей d(δ) и θ(δ) представляют собой горизонтальные пря-
мые. Второй режим характеризуется тем, что капля полностью закреплена на ленте, рас-
ширяется и меняет форму по мере растяжения ленты. Графики зависимостей d(δ) и θ(δ)
в режиме пиннинга представляют собой наклонные прямые с максимально возможным

углом наклона.
В действительности характер движения капли на растягиваемой, а затем ослабля-

емой ленте отличается от характера движения, соответствующего идеальным режимам:
графики зависимостей d(δ) и θ(δ) представляют собой набор отрезков почти прямых линий
с углами наклонов θ = 0÷θmax (значение θmax достигается при идеальном пиннинге). В [2]
такие режимы называются сильным или слабым пиннингом. Чем больше угол наклона,
тем сильнее пиннинг.

На рис. 3, 4 видно, что графики зависимостей d(δ) и θ(δ) представляют собой набор
линий с разными углами наклона. При этом переход с одного отрезка на другой отрезок
с иным углом наклона означает переход от режима слабого пиннинга (проскальзывания)
к режиму сильного пиннинга или наоборот. В результате происходит переход с одной

ветви гистерезиса на другую.
Существует большое количество работ, в которых изучается гистерезис с несколь-

кими ветвями (см., например, [20–24]). Каждая такая ветвь обычно называется частной
ветвью гистерезиса [25]. Все частные ветви гистерезиса охватываются предельной пет-
лей гистерезиса, минимальное и максимальное значения координаты которой определя-
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ют величину гистерезиса. При этом размерность величины гистерезиса совпадает с раз-
мерностью управляющего параметра (входная величина гистерезиса) или размерностью
управляемой величины (выходная величина гистерезиса). В рассматриваемом случае вход-
ная величина гистерезиса безразмерная, так как управляющая величина — относительное

удлинение подложки, а выходная величина гистерезиса может иметь размерность длины
(миллиметр) или угла (градус).

Фактически в данной работе зарегистрированы частные ветви гистерезиса состояний

капли на эластичной циклично растягиваемой подложке, в то время как предельная петля
гистерезиса не была получена.

Можно предположить, что входная величина гистерезиса соответствует растяжению,
при котором высота капли становится меньше критической величины [1], задаваемой фор-
мулой [26, 27]

hcr = 2
√

γ/(ρg) sin (θ/2).

Здесь γ — коэффициент поверхностного натяжения жидкости; ρ — плотность жидкости;
θ — контактный угол для жидкости на твердом основании; g — ускорение свободного

падения.
Заключение. Таким образом, в работе экспериментально обнаружен новый много-

ветвевой гистерезис состояний капли на эластичной циклично растягиваемой подложке.
Число ветвей гистерезиса можно регулировать за счет изменения закона движения под-
ложки.
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