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Представлены результаты исследования влияния давления прессования на характе-
ристики радиационно-защитных композитов на основе полиэтилена и карбида бора
B4C. С использованием программного моделирования выбран температурный диапа-
зон нагрева пресс-формы заданного размера. Экспериментальным путем определено
необходимое время выдержки композита, выявлены дефекты, возникающие при раз-
личных отклонениях от оптимальных температурных параметров. Представлены ре-
зультаты испытаний на прочность образцов при различных режимах давления прес-
сования, найдена величина оптимального давления. Получен композит со следующими
механическими характеристиками при оптимальном режиме прессования: плотность
(1,09± 0,01) г/см3, предел прочности на изгиб (5,72± 0,18) МПа, скорость звука в ком-
позите (2050,00± 0,01) м/с.
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Введение. Перспективными материалами, используемыми для радиационной защи-
ты, являются полимерные композиты, характеризующиеся малым весом, простотой об-
работки и химической инертностью [1, 2]. Современные композиты содержат различные
полимерные матрицы, каждая из которых имеет преимущества и недостатки.

В зависимости от типа ионизирующего излучения требуются различные составы ком-
позитов. Так, полиэтилен используется для замедления быстрых нейтронов вследствие
большой концентрации водорода в его составе, а также образования поперечных сечений,
которые могут взаимодействовать с этими нейтронами. Для поглощения тепловых нейтро-
нов используются углеродные и борсодержащие вещества, например карбид бора B4C [3, 4].
Защитные свойства полиэтилена при гамма-излучении можно улучшить, введя в матри-
цу порошки тяжелых металлов и их соединения, такие как оксид висмута Bi2O3, оксид
кадмия Cd2O, оксид свинца PbO и др. [5–8].

Радиационно-защитные характеристики зависят не только от состава композита, но
и от технологии их производства.

Основными методами изготовления полимерных композитных материалов являют-
ся литье под давлением, компрессионное формование, экструзия, горячее прессование
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и др. [9–11]. Один из наиболее перспективных методов— горячее прессование— представ-
ляет собой пластическое деформирование материала при одновременном воздействии на

него температуры и давления с последующей фиксацией формы изделия. Прессование ком-
позитов проводится в пресс-формах, конфигурация полости которых соответствует конфи-
гурации будущего изделия. Несмотря на сложность, этот метод является оптимальным,
так как полученные с его помощью композиты имеют высокую плотность, однородность
и, соответственно, улучшенные механические характеристики. Кроме того, данный метод
может быть использован для получения не только полимерных композиционных матери-
алов, но и металлокерамических [12].

Недостатком метода горячего прессования является необходимость подбора темпера-
турных режимов, давления прессования и длительности температурной выдержки. Сово-
купность данных факторов влияет на механические и функциональные характеристики со-
здаваемых образцов [13, 14]. Требования к качеству композитных радиационно-защитных
материалов очень высоки. При наличии в композитном материале значительного коли-
чества пустот, а также дефектных структур частицы нейтронов и гамма-лучи проходят
через материал без потери энергии, что ухудшает его радиационно-защитные свойства.

Таким образом, необходимы разработка оптимальных режимов компактирования и

исследование механических свойств образцов.

В настоящей работе представлены данные о воздействии давления прессования на

характеристики радиационно-защитных композитов на основе полиэтилена и карбида бо-
ра B4C. Такие композиты должны обеспечить замедление быстрых нейтронов путем пре-
вращения их в тепловые, а затем поглощение тепловых нейтронов.

1. Используемые материалы и методы. Для синтеза материала использовал-
ся порошок полиэтилена высокого давления (ПВД) марки 15303-003 (размер частиц

120 ÷ 180 мкм, степень чистоты более 99 %, плотность 900 ÷ 930 кг/м3, температура
плавления 100÷ 115 ◦C) (ООО “Казаньоргсинтез”), в качестве наполнителя — карбид бо-
ра B4C марки F2500 (степень чистоты 99,8 %, плотность 2,52 г/см3, модальный диаметр
частиц 57,64 мкм, удельная площадь поверхности частиц 2957 см2/см3 (ООО “Платина”,
г. Королев).

Введение в композит карбида бора B4C (объемная доля ПВД — 89 %, B4C — 11 %)
должно уменьшить плотность потока тепловых нейтронов по толщине слоя полимера. В
работе [15] рекомендуется использовать в составе композита карбид бора B4C с объемной
долей 3–30 %.

Порошки ПВД и B4C в заданных пропорциях смешивались в шаровой мельнице в

течение 30 мин для достижения их равномерного распределения по объему. Для получе-
ния композитов использовалась стальная пресс-форма, конфигурация и размеры которой
представлены на рис. 1. Применение данной пресс-формы позволяет получать образцы в
виде пластин длиной 50 мм и шириной 25 мм. При этом высоту готовой пластины можно
варьировать в зависимости от массы загружаемого порошка.

Прогрев пресс-формы и формование композитов проводились при температуре 150 ◦C.
Для получения образцов материала толщиной 10 мм из защитного композита использова-
лась навеска массой 12,80÷12,96 г. Оптимальное давление прессования для данной навес-
ки подбиралось опытным путем. Процесс получения композитов проводился в следующей
последовательности:

1. Загрузка пресс-формы в печь.

2. Предварительный нагрев пресс-формы до температуры 150 ◦C.

3. Загрузка композитного материала в канал пресс-формы.
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Рис. 1. Изображения и геометрические размеры пресс-формы:
а — вид спереди, б — вид сбоку, в — вид сверху

4. Нагрев материала в пресс-форме с выдержкой в течение 60 мин.

5. Прессование композитного материала, выдержка под давлением до достижения ком-
натной температуры.

6. Извлечение готового композита.

Температурный режим для прогрева пресс-формы и материала в ней определялся

с помощью моделирования в программе COMSOL Multiphysics 6.0.0.318. Результаты мо-
делирования нагрева канала загрузки приведены на рис. 2.

Температура размягчения композита на полиэтиленовой матрице равна 150 ◦C. При
этом значении происходит ее переход в вязкотекучее состояние, что определяет темпера-
турный режим прогрева пресс-формы. В экспериментах было определено время нагрева
композита, которое составило 60 мин. В течение первых 2 мин температура формы воз-
растает до 40 ◦C, в момент времени t = 5 мин составляет 70 ◦C, а через 15 мин достигает
максимального значения, равного 150 ◦C. После предварительного прогрева пресс-формы
проводится загрузка композита.

При проведении исследования использовался сканирующий электронный микроскоп

Tescan MIRA четвертого поколения с катодом Шоттки, позволяющий получать высокока-
чественные изображения поверхностей материала и проводить тест элементного состава.

Испытания на изгиб проводились на испытательной универсальной машине РЭМ-100.
Предел прочности при изгибе определялся по стандартным методикам согласно ГОСТ Р

57749-2017 (ИСО 17138:2014). Нагружения проводились для испытаний на трехточечный
изгиб.

Плотность образцов вычислялась с использованием их линейных размеров. Масса
образца измерялась с помощью аналитических весов DA-224C. Контроль температуры
пресс-формы осуществлялся с использованием инфракрасного термометра (пирометра)
МЕГЕОН 16450. Для проведения дефектоскопии использовался прибор Пульсар-1.2. Гео-
метрические параметры образцов измерялись с помощью электронного штангенциркуля

ШЦЦ-I-250.
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Рис. 2. Распределение температуры в пустой пресс-форме в различные моменты
времени:
а — t = 2 мин, б — t = 5 мин, в — t = 10 мин, г — t = 15 мин

2. Определение механических свойств композитного материала. Образцы
из ПВД и композиты, полученные при различных режимах прессования, были испытаны
на изгиб. Полученные данные о прочностных характеристиках приведены на рис. 3. Фо-
тографии испытываемого на изгиб образца композита, полученного при давлении 20МПа,
представлены на рис. 4.

Анализ полученных данных показал, что при минимальном давлении прессования

2 МПа предел прочности на изгиб образца композиционного материала равен (1,10 ±
0,17) МПа, для образца ПВД данное значение равно (2,25 ± 0,18) МПа. При увеличении
давления до 20 МПа прочность композитного образца возрастает, аналогичные изменения
происходят для образца ПВД. При данном значении давления прессования прочность ком-
позита составляет (5,72± 0,18) МПа, прочность ПВД — (11,42± 0,25) МПа. При дальней-
шем увеличении давления прессования прочность композитного материала увеличивается

незначительно и при давлении 40 МПа равна (6,34±0,25) МПа. При увеличении давления
прессования до 30 МПа прочность ПВД продолжает увеличиваться, при давлении, боль-
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Рис. 3. Зависимость предела прочности на изгиб от давления прессования при
формовании образцов:
а — композиционный материал, б — ПВД; точки — экспериментальные данные, ли-
ния— аппроксимация экспериментальных данных y = A1 e−x/t1 +y0 (A1 = −6,63±0,21,
t1 = 9,01 ± 0,78, y0 = 6,42 ± 0,14); 1 — доверительный интервал 95 %, 2 — предсказа-
тельный интервал 95 %

à á

Рис. 4. Фотографии испытываемого на изгиб образца композита, полученного
при давлении 20 МПа:
а — исходный образец, б — образец после испытания
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Плотность образцов, полученных при L = (4,9± 0,1) см, B = (2,45± 0,10) см
и различных режимах прессования

Образец P , МПа H, см m, г ρ, г/см3

1 2 1,06± 0,10 12,85± 0,01 1,01± 0,01
2 4 1,05± 0,10 12,79± 0,01 1,10± 0,01
3 8 1,03± 0,10 12,84± 0,01 1,05± 0,01
4 12 1,02± 0,10 12,91± 0,01 1,09± 0,01
5 16 1,00± 0,10 12,96± 0,01 1,09± 0,01
6 20 0,99± 0,10 12,87± 0,01 1,09± 0,01
7 28 0,98± 0,10 12,84± 0,01 1,09± 0,01
8 40 0,98± 0,10 12,85± 0,01 1,00± 0,01

шем 30 МПа, увеличение прочности несущественно. Максимальное значение прочности
ПВД, равное (16,20± 0,28) МПа, достигается при давлении прессования 40 МПа.

Теоретически рассчитанная плотность рассматриваемого композита составляет

(1,103 ± 0,010) г/см3. Плотность полученных образцов вычислена с использованием ука-
занных в таблице линейных размеров. В таблице приведены значения плотности, массы
и геометрические размеры образцов, полученных при различных режимах прессования в
зависимости от давления.

При изменении давления прессования с 2 до 20МПа плотность образца изменяется пря-
мо пропорционально. Различие плотностей объясняется наличием в образцах воздушных
пор. Для получения теоретической плотности образцов достаточно использовать давление
прессования P = 20 МПа, при дальнейшем увеличении давления увеличения плотности
образцов практически не происходит, что свидетельствует о достижении оптимального
давления для формования образцов.

На рис. 5 показаны фотографии образцов композитов, полученных при давлении
P = 20 МПа. На представленных фотографиях видна мелкозернистая структура (светлые
области), которая нормально распределена по поверхности материала, а также нитевидные
включения полиэтилена (см. рис. 5,а). При большем увеличении заметны пластинчатые
участки полиэтилена и включения B4С (см. рис. 5,б). Некоторые частицы агрегируют-
ся, в структуре имеются небольшие полости, образовавшиеся вследствие выделения газов,
однако трещины в материале отсутствуют. На рис. 5,в,г наблюдается равномерно рас-
пределенная слоистая структура, без дефектов и полостей, что позволяет сделать вывод о
равномерном распределении карбида бора по толщине материала.

На рис. 6 приведены зависимости скорости звука в материале от давления и темпера-
туры формования образцов. Для измерения использовался прибор Пульсар-1.2, предназна-
ченный для выявления микротрещин, воздушных полостей и других дефектных структур
как на поверхности образцов, так и внутри них. При измерении скорости звука в матери-
але в зависимости от температуры композитные материалы прессовались при давлении

P = 20 МПа. При измерении скорости звука в материале в зависимости от давления тем-
пература прессования составляла 150 ◦C.

При начальной температуре 125 ◦C спекание композита было неполным, о чем сви-
детельствует наименьшая скорость звука в материале v = (1732,00 ± 0,01) м/с. При
повышении температуры до 140 ◦C значительного увеличения скорости звука не происхо-
дило, поскольку частицы полиэтилена не переходили в вязкотекучее состояние.Однако при
дальнейшем повышении температуры до 145 ◦C (граница текучести) наблюдаются зна-
чительное увеличение скорости звука и переход материала в вязкотекучее состояние. При
температуре 150 ◦C скорость звука в материале является максимальной, что свидетель-
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Рис. 6. Зависимости скорости звука v в материале от давления P (1) и темпе-
ратуры T (2) прессования
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ствует о достижении предельной температуры. При повышении температуры до 160 ◦C
происходит резкое уменьшение скорости звука, обусловленное тем, что при T > 150 ◦C
полиэтилен начинает выделять газы Н2, СО2, Н2О, СО и т. д., в результате чего внутри
композита образуются полости.

3. Выводы. В работе проведен анализ различных режимов прессования композит-
ного материала ПВД — карбид бора. При испытании на изгиб установлено, что опти-
мальное давление прессования составляет 20 МПа, так как при изменении давления прес-
сования от 2 до 20 МПа плотность образца изменяется прямо пропорционально. Для по-
лучения теоретического значения плотности достаточно использовать давление прессова-
ния P = 20 МПа. При повышении давления с 20 до 40 МПа прочность практически не
увеличивается. Установлено, что оптимальными параметрами для синтеза полимерного
композита являются давление прессования P = 20 МПа и время выдержки t = 60 мин при
температуре T = 150 ◦C. При таких значениях параметров композит имеет следующие
механические характеристики: плотность — (1,09 ± 0,01) г/см3, предел прочности на из-
гиб — (5,72 ± 0,18) МПа, скорость звука — (2050,00 ± 0,01) м/с. Использование данной
технологии позволит создать композит с равномерным распределением частиц в матри-
це, без дефектов и пустот, что улучшит его радиационно-защитные характеристики при
воздействии нейтронов и гамма-излучения.
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