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The vibration-rotation energy level spacings of homo- and heteronuclear rare gas dimers are 

calculated for some more common analytical intermolecular potential energy functions in  

a unified way by employing the discrete variable representation (DVR) method.  
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INTRODUCTION

The dispersion interaction is the only contributor to intermolecular attractions in all spherically 

symmetric neutral species [ 1 ], such as rare gas dimers X Y, where X, Y = He, Ne, Ar, Kr, Xe, Rn. 

The extremely shallow well (with a depth much smaller than the thermal energies at room tempera-

ture) in the potential curve V(R) (where R is the intermolecular distance) at a relatively large intermo-

lecular separation produced by the dipersion attractions is deep enough to allow the existence of 

dimers at low temperatures. Since the dispersion attraction increases as the atomic size increases, the 

well becomes deeper as the dimer size increases. 

The detailed quantum mechanical calculations show that the dispersion interactions between two 

non-overlapping species vary as R–2n, where n = 3, 4, 5, … corresponds to induced dipole-induced di-

pole, induced dipole-induced quadrupole, induced quardrupole-induced quadrupole, …, interactions 

respectively [ 2 ]. An accurate ab initio calculation of the dispersion interaction is rather complicated 

in such large basis sets and also high-level electron correlation treatments are required to reproduce 

the experimental data. 

Suppose that the entire potential energy between two rare gas atoms is approximated as 
2

rep 2
3

( ) ( ) ,n
n

n

V R V R C R  (1) 

where C6, C8, C10, … are the dispersion coefficients and Vrep(R) is the repulsive contribution to the po-

tential that in the simplest form can be represented by a Born-Mayer repulsive potential: Aexp(-bR), in 

which A and b are the Born-Mayer parameters. However, the attractive part of this potential has an 

improper behavior in that it goes to –  as R  0. This is due to the asymptotic nature of the dispersion 

expansion, which is only valid for the distances where charge distributions do not overlap, and thus 

lack of a term that accounts for the overlapping region. Furthermore, the entire potential shows an un-

physical maximum at short internuclear distances. To eliminate these unrealistic behaviors we may 

either define a piecewise function by restricting the range of validity of the potential or introduce  

a damping function in the attractive part of the potential. 

In the following we shall briefly describe some more common potential functions devised, by tak-

ing equation (1) as the starting point, for the inert gas dimers from experimental data or theoretical 

calculations.

                                                                

* E-mail: islampour@tmu.ac.ir 



A COMPARATIVE STUDY OF INTERMOLECULAR POTENTIAL ENERGY FUNCTIONS PROPOSED FOR THE RARE GAS DIMERS  687

i. (Hartree-Fock-dispersion) HFD-B potential function [ 3—5 ] 
5

2 2
2

3

( ) exp( ) ( ) n
n

n

V R A R R F R C R  (2a) 

with a piecewise damping function of the type first used in the Buckingham-Corner potential [ 1 ] 
1 2( ) exp[ ( 1) ]F R DR  (2b) 

for R < D and F(R) = 1 for R D (where D is the damping parameter), has been parameterized for 

Ar2, Kr2, and Xe2 dimers [ 6 ]. The parameters were determined by fitting V(R) to the most accurate ab 

initio data points at the CCSD(T) level of theory using aug-cc-pV6Z basis set+(3s3p2d2f 1g) bond 

functions + core correction for Ar2, and ECP+aug-cc-pVQZ basis set+(3s3p2d2f 1g) bond functions 

for Kr2 and Xe2. Also, the parameterization of HFD and HFD-B potentials has been carried out for the 

dimers HeKr, ArKr [ 4 ]; HeXe, HeAr [ 7 ]; and NeKr, NeXe [ 8 ].  

ii. Murrell et al. potential function [ 9 ] 
5

2 3 2
1 2 3 4 2

3

( ) (1 )exp( ) ( ) n
n

n

V R A a R a R a R a R f R C R  (3a) 

with

( ) tanh( / 2),ef R R R  (3b) 

where the repulsive part is an extended Rydberg (ER) type potential, has been proposed for the ground 

state of 39 van der Waals dimers, including all homo- and heteronuclear inert gas dimers of He, Ne, 

Ar, Kr, and Xe, and for a few excited states. Using the available dispersion constants C2n, the parame-

ters of the ER repulsive potential were adjusted by a least squares fitting to the data points (in a given 

range) obtained from the best literature potentials. The function f (R) for R > Re/2, where Re is the equi-

librium internuclear distance, acts as a damping function and for R > Re/2 contributes to the repulsive 

part of the potential. All constants in the potential given in this equation have been tabulated for all 39 

dimers. 

iii. Tang-Toennies(TT) potential function [ 10 ] 
5

2
2 2

3

( ) exp( ) ( ) n
n n

n

V R A bR f bR C R  (4a) 

with the damping function  
2

2
0

( )
( ) 1 exp( )

!

jn

n
j

bR
f bR bR

j
 (4b) 

has been parameterized for all the possible 21 homo-and heteronuclear rare gas dimers [ 11 ]. Using 

the available dispersion coefficients C2n and the available (or estimated from the combining rules) well 

parameters, Re and the depth, the Born-Mayer repulsive parameters A and b were determined by a fit-

ting procedure. The dispersion constants as well as the well parameters for the heteronuclear Rn 

dimers were estimated from the combining rules. For Rn2 the C6 and C8 were available and C10 was 

estimated from the empirical relation 2
10 8 61.21 / .C C C  The whole set of parameters have been tabu-

lated for all 21 dimers.  

iv. Eggenberger et al. potential function [ 12 ] 
5

12 2
2

3

( ) exp( ) ,n
n

n

V R A bR aR C R  (5) 

where the repulsive part is the sum of Born—Mayer and the Lennard—Jones repulsive potentials, has 

been parameterized for the Ne—Ne interaction. All parameters were obtained by fitting V(R) to the 

data points obtained from the MP4 [ 12 ], MP4 (SDTQ) [ 13 ] calculations, as well as to the experimen-

tally determined values [ 14 ].  

v. Korona et al. potential function [ 15 ] 
8

2 2
2 2

3
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where f2n(bR) is the TT damping function, has been parameterized for all homo- and heteronuclear 

dimers of He, Ne, Ar, and Kr [ 16, 17 ]. For the most suitable set of dispersion constants, in which the 

higher constants C12, C14, and C16 were found from extrapolation formulas, the parameters , , A, b
were determined by fitting the V(R) to the most accurate ab initio calculated points at the CCDS (T) 

level of theory using the (aug-cc-pV5Z) basis set supplemented with a set of (3s3p2d2f 1g) bond func-

tions, and counterpoise corrections. Another parameterization has been performed for heteronuclear 

dimers HeNe, HeAr, and NeAr using ab initio results at the CCSD (T) level of theory with aug-cc-

pV6Z basis set+(3s3p2d1f 1g) bond functions [ 18 ]. 

The goal of this paper is to compare the spectroscopic data predictions of the various potential 

functions in equations (2)—(6) by performing a unified calculation of the vibration-rotation energy 

levels of homo- and heteronuclear rare gas dimers for each potential. To that end, the energy levels are 

found by diagonalizing the matrix of the Hamiltonian operator for the nuclear motion in the ground 

electronic state 
11

or(X X )
g

 of a dimer 

2 2 2 2 2

2 2 2

( 1)
Ĥ ( ) ( )

2 22

d J J d
V R U R

dR R dR
 (7) 

in the so-called discrete variable representation (DVR) basis [ 19—23 ]. Here  is the reduced mass 

and J is the rotational quantum number (ignoring the nuclear spin angular momentum if it is present). 

The DVR methodology for one-dimensional problems is described in the following section, and the 

results and discussion are presented further on. 

DVR METHODOLOGY 

Let ˆ ˆ( ) ( )H T x U x  be the Hamiltonian operator for a one-dimensional system (where x stands 

for a Cartesian or generalized coordinate) whose corresponding Schrödinger equation cannot be solved 

analytically. 

A computationally efficient method to obtain good estimates for the eigenvalues (and the eigen-

vectors) of Ĥ  is the diagonalization of the Hamiltonian matrix in so-called DVR basis functions.  

A DVR basis set is constructed from a set of the orthonormal basis functions { 0(x), 1(x), …, N–1(x)}

as follows. Suppose there is a Gaussian quadrature with points {x1, x2, …, xN} and weights {w1, w2, …, 

wN} such that the orthonormality relations of the basis functions on the interval [a, b] are given exactly 

†

1

( ) ( ) ( ) ( ) ( ) ,
N

b

kl k l k l kla
x x dx w x x* *

SS  (8) 

where the N N unitary matrix S is defined by 1/2 ( ).k kS w x*  The unitarity of S implies that the 

quadrature points {x1, x2, …, xN} and weights {w1, w2, …, wN} have to fulfill the following relation: 
1

1

0

( ) ( ) ,
N

k k
k

x x w*  (9) 

Furthermore, the orthonormal functions defined by 
1 1

1/2

0 0

( ) ( ) ( ) ( ).
N N

k k k k
k k

x S x w x x*  (10) 

also called the Lagrange functions [ 23 ], form a DVR basis satisfying 1/2( ) / ,x w  = 1, 2, 

…, N.

Now suppose that the basis functions k(x) can be defined as ( ) ( ) ( ),k kx w x P x  where {Pk(x)}, 

k = 0, 1, …, N–1 is a set of orthonormal polynomials (such as Hermite, Laguerre, Legendre, etc.) on 

the interval [a, b] with respect to a weight function w(x). These functions satisfy the Christoffel-

Darboux indentity [ 24 ] 
1

1 1 1

0

( ) ( ) ( ) ( )
( ) ( ) ,

N
N N N N N

k k
k N

k x y x y
x y

k x y
 (11a) 
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where kn is the coefficient of xn in Pn(x). In the limit y x, this identity becomes 
1

1
1 1

0

( ) ( ) [ ( ) ( ) ( ) ( )]
N

N
k k NN N N N

k N

k
x x x x x x

k
 (11b) 

Using these identities, it is readily verified that: 

i. Equation (9) is fulfilled if the DVR points {x } are taken as the zeros of N(x). We then have 
1

1
1

0

( ) ( ) ( ) ( ) ,
N

N
k k N N

k N

k
x x x x

k
 (12) 

so that the weights are obtained as 

1 1
1( ) ( ),N

N N
N

k
w x x

k
 (13) 

ii. The DVR basis functions { (x)} satisfy 
1

1/2 1/2

0

( )
( ) ( ) ( ) ,

( ) ( )

N
N

k k
k N

x
x w x x w

x x x
 (14) 

iii. The matrix Sk  diagonalizes the position matrix Xkl,
1 1

† 1/2

0 0

2 2
1/2 1

1 1

( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ,

( )( )

N N
b

k k l la
k l

bN N
N N a

N

w w dxx x x x x

k x
w w x x dxx x

k x x x x

S XS

 (15) 

so that the eigenvalues and eigenvectors of the position matrix are nothing but the DVR points and the 

DVR basis functions respectively. The last equality is due to the fact that the Gaussian quadrature 

formula is exact for all polynomials of degree 2N – 1. As a result, we can either diagonalize the posi-

tion matrix X in { k(x)}, k = 0, 1, …, N – 1 or find the zeros of N(x) to obtain the DVR points, and in 

turn the weights from equation (13). For instance, for Hermite polynomials equation (13) gives 
2 1 2 2

1exp( )2 ! / ( ).N
Nw x N N H x

In the DVR basis, the matrix elements of the kinetic energy operator ˆ( ) ( )
b

a
T x T x dx*

can be integrated analytically and the potential energy matrix elements are approximately diagonal and 

equal to the values of the potential energy function at the DVR points 

( ) ( ) ( ) ( ) .
b

a
U x U x x dx U x*  (16) 

For illustrations, we shall now consider the sine orthonormal trigonometric basis functions. 

The orthonormal sine basis functions on the interval [a, b] are defined as 
1/2

2 ( )
( ) sin , 1, 2, , .k

k x a
x k N

b a b a
 (17) 

Here equation (9) is satisfied if the DVR points are simply taken as the zeros of N +1(x), which are 

equally spaced points 

( )
, 1, 2, , .

1

b a
x a N

N
 (18) 

The corresponding weights are in turn found to be all the same 
1

2

1

2
sin ,

1 1

N

k

k b a
w

b a N N
 (19) 

where use is made of the trigonometric identity (A.3) to obtain the last result. In this case, the kinetic 

energy matrix elements in the DVR basis { (x)},  = 1, 2, …, N are easily calculated using identities 

(A.2) and (A.4). The results are 



R. ISLAMPOUR, M. GHARIBI, A. KHAVANINZADEH 690

2 2 2

2 2

2( 1) 1 1

2 32( ) sin / ( 1)

N
T

b a N
 (20a) 

for diagonal elements and  
2 2

2 2 2

( 1) 1 1

2 2( ) sin ( ) / 2( 1) sin ( ) / 2( 1)
T

b a N N
 (20b) 

for off-diagonal elements . Two limiting cases for equations (20a) and (20b) are as follows: 

(i) a  – , b , and N  such that w  remains finite we then have 
2 2

2
,

2 3
T

w
 (21a) 

2

2 2

( 1) 2
.

2 ( )
T

w
 (21b) 

(ii) a  0, b , and N  such that w  remains finite, then  
2 2

2 2

1 1
,

2 3 2
T

w
 (22a) 

2

2 2 2

( 1) 2 2
.

2 ( ) ( )
T

w
 (22b) 

RESULTS AND DISCUSSION 

A convenient and direct way to test the quality of the devised potential functions introduced in 

equations (2)—(6) for the description of the interactions in homo- and heretonuclear rare gas dimers is 

to calculate the vibration-rotation energy level spacings and to compare them with the available ex-

perimental results. This section is devoted to the results of such calculations. 

The vibration-rotation energy levels of each rare gas dimer based on the five potential functions 

are obtained as the eigenvalues of the matrix of the Hamiltonian operator given in equation (7) in the 

DVR basis constructed from the sine basis functions in equation (17). The diagonal and off-diagonal 

matrix elements of the kinetic energy operator in the DVR constructed from the sine basis functions 

are given in equations (20a)—(20b). The matrix elements of the potential energy operator are calcu-

lated from equation (16). Depending on the size of the dimers, the dimension N of the Hamiltonian 

matrix being diagonalized varies between 1200—2000, and for N 1200 the asymptotic forms of the 

kinetic energy matrix elements in equations (21a)—(21b) may be employed in the calculations.

The vibration-rotation energy levels of a diatomic system (in 1 -electronic states) can be conven-

iently expressed as 

1
( ) [ ( 1)] ,

2

k l
vJ kl

kl

E Y v J J  (23) 

in which the coefficients Ykl are calculated from the coefficients cj in power series expansion of the 

diatomic potential function: V(z) = c0z
2(1 + j=1cjz

j), where z = (R – Re)/2 and 2(R – Re)/(R + Re) corre-

spond to the Dunham [ 26 ] and Ogilvie-Wang [ 27 ] expansions respectively. For both cases the ana-

lytical equations expressing the coefficients Ykl in terms of the potential energy coefficients cj have

been reported. The potential expansion of Dunham diverges as R , however, that of Ogilvie—

Wang remains finite (within the range –2 < z < 2 corresponding to the entire range of internuclear dis-

tances 0 < R < ) and converges faster. 

The Ogilvie—Wang potential energy coefficients cj, obtained by fitting V(z) (truncated at the c10

term) to the discrete points from the best available empirical potential functions, were tabulated for 

each of the homo- and heteronuclear rare gas dimers [ 28 ]. The vibrational level spacings were subse-

quently calculated using equation (23) and the known relations between the coefficients Ykl and the 

potential energy coefficients cj along with the value of Re [ 28 ]. The DVR vibrational spacings calcul- 
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T a b l e  1  

Comparison of the experimental and DVR-calculated vibrational spacings Gv+1/2 (cm–1) based on various  
potential functions for rare gas dimers 

DVR-calculated Gv+1/2Molecules 
Transition  

v v

Experimental

Gv+1/2 Ogilvie et al.† HFD-B ‡ Murrell et al. TT Korona et al.£ L-J §

1 2 3 4 5 6 7 8 9 

Ne2 0-1 13.70 0.5 a 13.972  

(13.84 0.03) 

 11.026 13.001 13.502  

(13.46) 

10.442 

Ar2 0-1 25.69 0.01 b 25.808  

(25.641) 

25.503 

(25.58)

20.793 23.184 25.247  

(25.69) 

19.277 

1-2 20.58 0.02 20.759  

(20.484) 

20.378 

(20.44)

17.638 19.463 20.506  

(20.58) 

16.356 

2-3 15.58 0.02 15.633  

(15.546 0.012)

15.602 

(15.46)

14.566 15.742 15.388  

(15.58) 

13.633 

3-4 10.91 0.03 10.313  

(10.927 0.029)

10.691 

(10.78)

11.620 12.022 10.553 11.118 

4-5 6.84 0.07 6.645  

(6.743 0.061) 

6.674 

(6.74) 

8.856 8.301 6.275 8.824 

5-6  8.626 4.001 6.350 4.580 3.921 6.763 

Kr2 0-1 21.56 0.54 c 22.008  

(21.413) 

21.906 

(21.02)

23.707 21.471 21.098  

(21.39) 

21.704 

1-2 19.09 0.57 19.461  

(19.271) 

18.891 

(18.86)

20.940 19.307 19.420  

(19.25) 

19.106 

2-3 16.76 0.60 17.222  

(17.141) 

16.705 

(16.73)

18.220 17.144 16.981  

(17.11)  

16.642 

3-4 14.76 0.75 15.340  

(15.031 0.002)

14.647 

(14.62)

15.563 14.980 15.232   14.318 

4-5 12.23 0.51 12.891  

(12.948 0.004)

12.235 

(12.56)

12.996 12.817 12.447  12.142 

5-6 10.49 0.50 10.556  

(10.904 0.004)

10.825 

(10.56)

10.554 10.653 10.201 10.120 

6-7 8.92 0.44 8.372  

(8.910 0.011) 

8.797 

(8.65) 

8.276 8.490 8.734 8.258 

7-8 6.92 0.63 6.373  

(6.977 0.018) 

6.682 

(6.86) 

6.210 6.327 6.560 6.565 

8-9 5.54 0.30 4.652  

(5.121 0.028) 

5.268 

(5.19) 

4.401 4.163 5.103 5.047 

Xe2 0-1 19.90 0.3 d 20.225  

(19.617) 

19.025 

(18.65)

20.911 19.643  21.488 

1-2 18.55 0.3 18.971  

(18.419) 

18.390 

(17.5) 

18.856 18.358  19.370 

2-3 17.20 0.3 17.436  

(17.220) 

17.127 

(16.35)

16.845 17.092  17.343 

3-4 16.17 0.3 15.997  

(16.020) 

15.869 

(15.2) 

15.101 15.849  15.408 

4-5 14.63 0.3 14.594  

(14.825) 

14.003 

(14.05)

14.868 14.629  13.570 

5-6 13.70 0.3 13.594  

(13.634) 

13.391 

(12.92)

12.922 13.435  11.830 

6-7 12.63 0.3 12.537  

(12.451) 

12.189 

(11.79)

11.004 12.271  10.194 
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T a b l e  1  ( c o n t i n u e d )

1 2 3 4 5 6 7 8 9 

7-8 11.33 0.3 11.332  

(11.278 0.001)

11.601 

(10.68)

9.123 11.141  8.664 

8-9 10.15 0.3 9.210  

(10.120 0.015)

10.463 

(9.59) 

7.297 10.045  7.244 

9-10 8.95 0.3 7.253  

(8.979 0.02) 

8.880 

(8.52) 

5.563 8.990  5.939 

10-11 7.83 0.30  7.507 

(7.49) 

    

11-12 6.79 0.30  6.742 

(6.49) 

    

12-13 5.83 0.30 
(5.54) 

    

HeNe 0-1    2.388 2.431  

(2.581*)

2.823 

HeAr 0-1  5.025  

(5.76 0.32) 

 6.779 5.375 5.151  

(7.031*)

4.660 

HeKr 0-1  6.894  

(6.81 0.22) 

 7.435 6.444 7.206 7.293 

HeXe 0-1  6.506  

(6.96 0.27) 

 7.816 6.786  7.022 

NeAr 0-1 18.79 e 19.557  

(19.103 0.01)

18.846 16.478 19.202 18.722  

(18.88) 

16.588 

 1-2  10.529  

(10.27 0.058) 

11.106 9.781 10.542 10.153  

(10.34) 

11.324 

 2-3  2.761  

(2.44 0.22) 

2.316 4.781 2.552 3.630  

(3.80) 

3.914 

NeKr 0-1 18.61 f 18.247  

(18.384 0.028)

16.692 15.908 19.141 17.955  

(18.32) 

17.514 

1-2 11.67 11.264  

(11.52 0.18) 

11.090 11.661 11.209 11.821  

(11.58) 

12.529 

2-3 5.82 6.300  

(6.81 0.64) 

7.689 8.885 6.574 6.153  

(5.87)  

8.296 

NeXe 0-1  17.412  

(17.96) 

16.372 15.892 17.317  17.204 

1-2  11.670  

(11.916 0.032)

11.157 10.348 12.075  12.686 

2-3  6.834  

(6.86 0.12) 

8.080 7.049 6.594  8.781 

ArKr 0-1 24.21 f 25.008  

(24.112 0.001)

 22.009 24.418 24.256  

(24.35) 

20.638 

1-2 20.49 20.319  

(20.416 0.005)

 19.048 20.907 20.810  

(20.71) 

17.853 

2-3 16.90 16.361  

(16.909 0.018)

 16.158 17.502 17.084  

(17.15)  

15.232 

3-4 13.50 13.720  

(13.652 0.045)

 13.365 12.981 13.124  12.785 

4-5 10.34 11.215  

(10.71 0.089) 

 10.708 10.280 10.009  10.520 

5-6  8.835  

(8.16 0.17) 

 8.235 8.357 8.575 8.447 
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T a b l e  1  ( c o n t i n u e d )

1 2 3 4 5 6 7 8 9 

6-7  6.753  

(6.08 0.29) 

  5.862 6.050 6.576 

ArXe 0-1 23.678  

(23.807) 

 25.349 23.179  21.143 

1-2 20.892  

(20.650) 

 20.502 20.077  18.588 

 2-3  18.0  

(17.676 0.021)

 16.015 17.062  16.167 

 3-4  14.747 

(14.934 0.05)

 13.927 14.160  13.885 

 4-5  12.382  

(12.47 0.1) 

 11.422 12.761  11.750 

 5-6 10.126  

(10.35 0.19) 

 9.080 10.096  9.768 

 6-7  8.931  

(8.62 0.31) 

 6.935 8.841  7.946 

 7-8 6.761  

(7.35 0.49) 

 5.026 7.646  6.291 

KrXe 0-1  21.161  

(20.789) 

 22.472 21.295  23.234 

1-2  19.755  

(18.957 0.002)

 19.826 19.863  20.788 

2-3  17.494  

(17.187 0.005)

 17.257 17.064  18.451 

3-4  15.304  

(15.489 0.012)

 14.784 15.701  16.231 

4-5  13.185  

(13.876 0.024)

 13.002 14.367  14.128 

5-6  12.109  

(12.359 0.042)

 12.425 12.799  12.150 

6-7  10.051  

(10.953 0.07)

 10.204 10.574  10.299 

7-8  9.023  

(9.67 0.11) 

 8.145 9.394  8.582 

8-9  8.229  

(8.53 0.16) 

 6.274 8.265  7.005 

 9-10  7.178  

(7.54 0.23) 

 4.618 7.191  5.572 

10-11  6.418  

(6.72 0.32) 

 3.199 6.178  4.290 

11-12  5.253  

(6.09 0.43) 

 2.035 5.731  3.165 

a Reference [ 29 ];  b Reference [ 30 ];  c Reference [ 31 ];  d Reference [ 32 ];  e Reference [ 33 ];  f Reference [ 17 ]. 

† In parentheses are Ogilvie and Wang results, reference [ 28 ]. 

‡ In parentheses are the calculated values from reference [ 6 ]. 

£ In parentheses are the calculated values from references [ 16, 17 ]. 

§ The well parameters De and Re are all taken from reference [ 11 ]. 

* Reference [ 18 ]. 
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ated using Ogilvie-Wang potential V(z) are listed in the fourth column of Table 1; the values in paren-

theses in the same column are the corresponding vibrational spacings calculated based on equation 

(23). It is seen that the agreement between the two sets of spacings is quite satisfactory. 

Table 1 also compares the available experimental vibrational spacings and the DVR-calculated 

spacings based on HFD-B (equation (2a, b)), Murrell et al. (equation (3a, b)), TT (equation (4a, b)), 

and Korona et al. (equation (6)) potential functions. The Eggenberger et al. potential (equation (5)) has 

been parameterized for the Ne2 dimer only. Using this potential, the DVR calculation predicts two 

bound vibrational states for the dimer with a spacing of 12.8740 cm–1, compared with the experimental 

value of 13.70 0.5 cm–1. In addition, Table 1 includes the DVR vibrational spacings calculated for the 

rare gas dimers using a traditional potential function, the Lennard—Jones potential function 

V(R) = De[(Re/R)12 – (Re/R)6], in which the well parameters (depth De and position Re) are all taken 

from [ 11 ]. Compared with the available experimental vibrational spacings, the spacings predicted by 

the Murrell et al. and Lennard—Jones potential functions are not as satisfactory as those predicted by 

other potentials. The Lennard—Jones potential cannot be improved further due to the lack of flexibi-

lity; however, the Murrell et al. potential function has several parameters that can be updated for im- 

T a b l e  2  

Comparison of the experimental and DVR-calculated rotational spacings FJ (cm–1) in  

the ground vibrational state of rare gas dimers based on various potential functions 

DVR-calculated FJ
Molecules 

Transition

J J
Experimental FJ

HFD-B † TT Korona et al. ‡

Ar2 0-1 0.115 a 0.119 0.118 0.118 (0.115) 

 1-2 0.231 0.238 0.236 0.235 (0.231) 

 2-3 0.346 0.356 0.351 0.353 (0.347) 

 3-4 0.462 0.475 0.472 0.470 

 0-2 0.35 0.356 (0.34) 0.354 0.352 

 2-4 0.81 0.732 (0.80) 0.726 0.723 

Kr2 0-1 0.049 b, 0.049 c 0.046 0.046 0.046 (0.050) 

 1-2 0.097,  0.098 0.092 0.092 0.091 (0.097) 

 2-3 0.146,  0.147 0.149 0.148 0.147 (0.146) 

 3-4 0.195,  0.196 0.194 0.194 0.193 

 4-5  0.241 0.240 0.239 

ArKr 0-1 0.080 d  0.077 0.076 (0.080) 

 1-2 0.160  0.154 0.153 (0.160) 

 2-3 0.240  0.231 0.230 (0.240) 

 3-4 0.320  0.308 0.307 

NeAr 0-1 0.194e 0.215 0.194 0.194 (0.194) 

 1-2 0.389 0.410 0.384 0.384 (0.389) 

 2-3 0.582 0.619 0.564 0.569 (0.582) 

ArXe 2-3 0.193 f  0.194  

 3-4 0.257  0.246  

 4-5 0.321  0.323  

 5-6 0.385  0.383  

KrXe 3-4 0.147 f  0.144  

 4-5 0.184  0.180  

 5-6 0.221  0.214  

a Reference [ 30 ]; b Reference [ 17 ]; c Reference [ 34 ]; d Reference [ 35 ]; e Reference [ 33 ]; f Reference [ 36 ].

† In parentheses are the calculated values from reference [ 6 ]. 

‡ In parentheses are the calculated values from reference [ 17 ]. 
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provement. The HFD-B and Korona et al. potentials that have been parameterized at a higher level of 

ab initio calculations exhibits better results. 

Finally, Table 2 compares the experimental and DVR-calculated rotational spacings in the ground 

vibrational state of the indicated rare gas dimers for the HFD-B, TT, and Korona et al. potential func-

tions. Again, the good agreement between the DVR and experimental rotational spacings is in evi-

dence.

APPENDIX 

Some useful trigonometric identities [ 25 ] 

1

1
sin sin sin csc

2 2 2

n

k

n nx x
kx x  (A.1) 

0

1 1 2 1
cos sin cos csc 1 sin / sin

2 2 2 2 2 2

n

k

n nx x n x
kx x x  (A.2) 

2

1

1
sin [(2 1)sin sin(2 1) ]csc

4

n

k

kx n x n x x  (A.3) 

2
2

2
1 1

cos cos .
n n

k k

k kx kx
x

 (A.4) 
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