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Затопление угледобывающих предприятий в различных масштабах осуществляется во всех 
угленосных районах Донбасса. Несмотря на десятилетнюю практику ликвидации шахт, отсут-
ствуют эффективные механизмы прогноза деформаций земной поверхности, имеющие достаточ-
ное экспериментальное обоснование. Нормативный документ [1] включает общие описания ме-
тодик прогноза, но недостаточно четко регламентирует граничные условия расчетов. Методоло-
гия, описанная в [2], подразумевает формирование ряда моделей, среди которых особую пози-
цию занимает геомеханическая модель. Заслуживают внимания подходы, представленные в [3], 
однако экспериментальный базис для формирования предлагаемых моделей крайне ограничен. 
Разработка моделей требует создания обширной базы лабораторных исследований свойств гор-
ных пород при их водонасыщении. Данные исследования могут быть положены в основу про-
гноза сдвижений и применяться для определения вероятности провалообразования [3 – 5].  
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Согласно [6], прогноз таких процессов входит в обязанности маркшейдерских служб, одна-
ко методики прогноза практически отсутствуют. Активизация сдвижений в результате затоп-
ления горного массива наблюдается как в условиях Донбасса, так и в других промышленных 
районах Российской Федерации, что делает актуальным вопрос качественного прогноза сдви-
жений земной поверхности при затоплении закрытых шахт, базисом для которых могут слу-
жить лабораторные исследования по водонасыщению горных пород. 

ПОСТАНОВКА ЗАДАЧИ И МЕТОДИКА ПРОВЕДЕНИЯ ИССЛЕДОВАНИЯ 

Для уточнения параметров сдвижения земной поверхности при затоплении углепородного 
массива следует основываться на экспериментальном определении изменения прочностных харак-
теристик и деформационных свойств образцов горных пород при их длительном водонасыщении.  

В экспериментах устанавливались параметры водонасыщения 150 образцов горных пород 
цилиндрической формы, изготовленных из штуфов породных материалов, отобранных из угле-
носного массива. Для водонасыщения горных пород использовалась шахтная вода. Водонасы-
щение образцов горных пород осуществлялось путем их полного погружения. Максимальная 
продолжительность водонасыщения образцов составила около 60 сут [7, 8]. 

Для определения зависимости напряженно-деформационного состояния породных слоев уг-
леносного массива от степени насыщения шахтной водой испытывались сухие и водонасыщен-
ные образцы горных пород различного литотипа на одноосное сжатие с постоянной регистраци-
ей нагрузки и деформации в процессе их нагружения до предельного состояния. 

Для сухих образцов песчаника минимальное зафиксированное давление при разрушении 
составило 42 МПа для образца № 14, максимальное — 101 МПа для образца № 16 (рис. 1а). 
Минимальное значение относительной деформации на момент разрушения — 0.0043 % для об-
разцов № 4 и № 19 (рис. 1а), максимальное — 0.014 % для образца № 17 (рис. 1б).  

 
Рис. 1. Усредненные зависимости “напряжение – деформация” образцов песчаника: а — № 16 
(ρ = 2.67 г/см3), № 14 (ρ = 2.3 г/см3), № 4 (ρ = 2.7 г/см3), № 3 (ρ = 2.3 г/см3); б — № 22 
(ρ = 2.55 г/см3), № 19 (ρ = 2.67 г/см3), № 17 (ρ = 2.66 г/см3), № 15 (ρ = 2.54 г/см3). Для водонасы-
щенных образцов — литера “в” 

Для водонасыщенных образцов песчаника минимальное давление при их разрушении соста-
вило 32 МПа для образца № 3в (рис. 1а), максимальное — 69 МПа для образцов № 15в и 22в 
(рис. 1б). Минимальное значение относительной деформации на момент разрушения составило 
0.0008 % для образца № 4в (рис. 1а), максимальное — 0.0102 % для образца № 17в (рис. 1б).  
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Установлено, что деформационное поведение сухих и водонасыщенных образцов песчани-
ка различается на всех стадиях их нагружения. В начальной стадии сжатия деформация εс су-
хих образцов песчаника оказалась выше, чем деформация εв водонасыщенных образцов при 
одной и той же нагрузке.  

При дальнейшем нагружении происходит существенное повышение скорости деформиро-
вания водонасыщенных образцов песчаника. Деформации водонасыщенных образцов песчани-
ка εв на заключительной стадии нагружения (вплоть до момента их разрушения) становятся 
выше (εв > εс), чем деформации соответствующих сухих образцов песчаника εс. 

Как показали исследования напряженно-деформированного состояния сухих и водонасы-
щенных образцов песчаника, при снижении плотности ρ песчаника с 2.7 до 2.3 г/см3 большин-
ство зависимостей нагрузки от деформации становятся пологими, но при этом более удлинен-
ными. С ростом плотности сухих и водонасыщенных образцов песчаника прослеживается тен-
денция к росту пределов прочности на сжатие. 

Усредненные зависимости испытания сухих и водонасыщенных образцов сланца песча-
ного приведены на рис. 2. Для сухих образцов сланца песчаного минимальное давление при 
разрушении составило 55 МПа для образца № 21 (рис. 2в), максимальное — 140 МПа для 
образца №28 (рис. 2а). Минимальное значение относительной деформации на момент раз-
рушения — 0.0042 % для образца № 21 (рис. 2в), максимальное — 0.011 % для образца № 13 
(рис. 2б).  

 

Рис. 2. Усредненные зависимости “напряжение – деформация” образцов сланца песчаного: 
а — № 8 (ρ = 2.70 г/см3), № 28 (ρ = 2.69 г/см3); б — № 6 (ρ = 2.72 г/см3), № 13 (ρ = 2.65 г/см3); 
в — № 20 (ρ = 2.69 г/см3), № 21 (ρ = 2.67 г/см3). Для водонасыщенных образцов — литера “в” 
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Для водонасыщенных образцов сланца песчаного минимальное давление при разрушении 
составило 32 МПа для образца № 21в (рис. 2в), максимальное — 98 МПа для образца № 28в 
(рис. 2а). Минимальное значение относительной деформации на момент разрушения составило 
0.003 % для образца № 8в (рис. 2а), максимальное — 0.092 % для образца № 20в (рис. 2в).  

Установлено, что деформационное поведение сухих и водонасыщенных образцов сланца 
песчаного различается на всех стадиях нагружения. При этом деформационное поведение об-
разцов сланцев песчаных СП-П, близких по своему строению и содержанию глинистого веще-
ства к образцам песчаников, отличается от деформационного поведения образцов сланцев пес-
чаных СП-СГ, близких по строению и количеству глинистого вещества к образцам сланца гли-
нистого. В начальной стадии сжатия деформации εс сухих образцов СП-П оказались выше, чем 
деформации водонасыщенных образцов εв при одной и той же нагрузке.  

При дальнейшем нагружении происходит существенное повышение скорости деформиро-
вания водонасыщенных образцов СП-П. Иными словами, деформации εв водонасыщенных об-
разцов СП-П на заключительной стадии нагружения (вплоть до момента их разрушения) ста-
новятся выше (εв > εс), чем деформации εс соответствующих сухих образцов СП-П. 

Для образцов СП-СГ такого деформационного поведения, как у образцов СП-П, в началь-
ной и последующих стадиях не наблюдается. Зафиксировано разупрочнение водонасыщенных 
образцов СП-СГ по сравнению с соответствующими сухими образцами. Следует также отме-
тить, что деформационное поведение водонасыщенных образцов СП-П аналогично деформа-
ционному поведению водонасыщенных образцов песчаника. 

Усредненные зависимости испытания сухих и водонасыщенных образцов сланца глинисто-
го приведены на рис. 3. 

 
Рис. 3. Усредненные зависимости “напряжение – деформация” образцов сланца глинистого: а — 
№ 2 (ρ = 2.63 г/см3), № 18 (ρ = 2. 66 г/см3); б — № 5 (ρ = 2.68 г/см3), № 7 (ρ = 2.82 г/см3), № 9-12 
(ρ = 2.67 г/см3); в — № 23-24 (ρ = 2.83 г/см3), № 25-26 (ρ = 2.68 г/см3), № 27 (ρ = 2.58 г/см3). Для 
водонасыщенных образцов — литера “в” 
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Для сухих образцов сланца глинистого минимальное давление при разрушении составило 
7 МПа для образца № 27 (рис. 3в), максимальное — 89 МПа для образца № 5 (рис. 3б). Мини-
мальное значение относительной деформации на момент разрушения — 0.0019 % для образца 
№ 27 (рис. 3в), максимальное — 0.0148 % для образцов № 25 и 26 (рис. 3в).  

Для водонасыщенных образцов сланца глинистого минимальное давление при разрушении со-
ставило 10 МПа для образца № 2в (рис. 3а), максимальное — 37 МПа для образца № 5в (рис. 3б). 
Минимальное значение относительной деформации на момент разрушения — 0.0052 % для образ-
цов № 9-12в (рис. 3б), максимальное — 0.0151 % для образца № 2в (рис. 3а).  

Установлено, что деформационное поведение сухих и водонасыщенных образцов сланцев 
глинистых (СГ-СП), близких по своему строению и содержанию глинистого вещества к образ-
цам сланцев песчаных (СП-СГ), отличается от деформационного поведения сухих и водона-
сыщенных образцов типичных сланцев глинистых (СГ).  

В начальной стадии сжатия деформации εс сухих образцов СГ-СП оказались близкими 
к деформациям водонасыщенных образцов εв при одной и той же нагрузке. При дальнейшем 
нагружении происходит повышение скорости деформирования водонасыщенных образцов  
СГ-СП, по сравнению со скоростью деформирования соответствующих сухих образцов 
(εв > εс). Зависимости напряжений водонасыщенных образцов СГ-СП от деформации имеют 
преимущественно линейный характер. 

Деформационное поведение под нарастающей нагрузкой сухих и водонасыщенных образ-
цов типичного сланца глинистого (СГ) характеризуется как обычное поведение горной породы, 
длительное водонасыщение которой приводит к значительному снижению ее прочности.  

Обобщая результаты проведенных исследований, следует отметить, что для песчаников 
и песчаных сланцев зафиксировано как снижение прочностных характеристик при их увлажне-
нии, так и увеличение прочности на начальном этапе нагружения.  

МЕТОДИКА МОДЕЛИРОВАНИЯ 

Горные породы в угленосных свитах Донбасса распределены крайне неравномерно, песча-
ные сланцы могут занимать от 8 до 55 % углепородного массива. Аналогичный перепад можно 
наблюдать и для песчаников, и для глинистых сланцев. Согласно данным рис. 1–3, прочностные 
характеристики глинистых сланцев могут снижаться в 2 – 10 раз, песчаных сланцев — в 2 – 3 раза, 
песчаников — в 1.2 раза. 

С учетом лабораторных данных о снижении прочностных характеристик горных пород 
в процессе водонасыщения разработана конечно-элементная модель массива горных пород 
[9, 10]. В качестве исходных данных для модели задавались следующие физико-механические 
показатели: модуль Юнга; коэффициент Пуассона; модуль сдвига; удельное сцепление; угол 
внутреннего трения; плотность.  

Для оптимизации вычислительной мощности компьютера и возможности решения задачи 
по построению объемной геомеханической модели конечно-элементная сетка формировалась 
неравномерно, со сгущениями в областях, расположенных над лавой и на верхнем слое модели, 
отображающем поверхность. Глубина отработки 500 м, параметры моделируемой лавы 
1000 × 200 м. 

Над лавой моделировалось три зоны деформирования пород: беспорядочных обрушений; 
упорядоченных обрушений; прогибов с разрывом сплошности. В пределах указанных зон, 
с учетом исследований [11], моделировалась зона водопроводящих трещин, форма которой 
определялась по углам полных сдвижений. В результате расчета получены схемы оседаний 
и горизонтальных сдвижений по простиранию и вкрест простирания пласта. 



 РАЗРУШЕНИЕ ГОРНЫХ ПОРОД ФТПРПИ, № 5, 2024 

 78 

Размеры зон влияния лавы на поверхность, параметры граничных углов и абсолютные зна-
чения оседаний свидетельствуют об адекватной работе модели. Подобный характер влияния 
подработки на деформации земной поверхности неоднократно фиксировался на грунтовых 
наблюдательных станциях и при помощи спутниковых снимков [12]. Это позволяет использо-
вать модель в качестве прогнозной для определения характера деформаций земной поверхно-
сти при затоплении.  

Для моделирования затопления изменялись свойства горного массива в зоне водопроводя-
щих трещин согласно закономерностям, приведенным на рис. 1 – 3а, б. В результате получены 
кривые оседаний земной поверхности, представленные на рис. 4. 

 
Рис. 4. Оседания земной поверхности в разрезе по простиранию лавы при подработке и затопле-
нии горных выработок с различным литотипом в кровле отработанного пласта 

ВЫВОДЫ  

Установлено, что в начальной стадии одноосного сжатия деформации образцов песчаника 
с естественной влажностью выше, чем деформации водонасыщенных образцов при одной 
и той же нагрузке. При повышении нагрузки происходит существенное повышение интенсив-
ности деформирования водонасыщенных образцов песчаника. 

По результатам моделирования сдвижений земной поверхности от затопления лавы с пес-
чаником и глинистым сланцем в кровле получены кривые оседаний, свидетельствующие о су-
щественном влиянии стратиграфии горного массива на характер сдвижения при затоплении 
горных выработок. При моделировании использовались деформационные параметры образцов, 
полученные в лабораторных условиях, прочностные характеристики которых снижались в ре-
зультате увлажнения.  

Учитывая изменчивость распределения горных пород в основных угольных свитах Донбас-
са, при расчете активизации сдвижений земной поверхности следует ввести поправочные ко-
эффициенты, зависящие от литологического состава подработанного массива горных пород. 
При расчетах сдвижений земной поверхности также необходимо учитывать влияние литологи-
ческого типа горной породы, залегающей в основной кровле. Этот фактор может оказывать 
влияние на процесс сдвижения как при подработке, так и при затоплении. 
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