2011. Том 52, № 1

Январь – февраль

C. 197 – 200

КРАТКИЕ СООБЩЕНИЯ

УДК 547.554:548.737

КЛАТРАТЫ ГОССИПОЛА. СТРОЕНИЕ И ТЕРМИЧЕСКОЕ ПОВЕДЕНИЕ КОМПЛЕКСА ГОССИПОЛА С АКРИДИНОМ

© 2011 М.Т. Хонкелдиева, С.А. Талипов*, Л.Ю. Изотова, З.Г. Тиляков, Б.Т. Ибрагимов, Э.Н. Курталиев

Институт биоорганической химии им. А.С. Садыкова АН РУз, Ташкент, Узбекистан

Статья поступила 7 апреля 2010 г.

С доработки — 9 июля 2010 г.

Природное соединение госсипол образует с акридином стабильный клатрат состава $C_{30}H_{30}O_8 \cdot 0.5C_{13}H_9N$. Элементарная ячейка клатрата моноклинная, пр. гр. C2/c, a = 11,3213(3), b = 30,5957(13), c = 17,0824(4) Å, $\gamma = 94,153(2)^\circ$, V = 5901,5(3) Å³, M = 1153,24, Z = 8, $d_{\text{выч}} = 1,369$ г/см³, R = 0.0413 для 4726 отражений. По своему строению клатрат можно отнести к этилацетатной изоморфной группе хозяин—гость комплексов госсипола.

Ключевые слова: госсипол, акридин, клатратообразование, кристаллическая структура.

На сегодняшний день известно только три комплекса госсипола хозяин—гость [1] с твердыми, т.е. находящимися в твердом (при обычных условиях) состоянии соединениями — трополоном [2], пиразином [3] и циклододеканоном [4]. С целью дальнейшего изучения особенностей формирования такого рода комплексов нами была предпринята попытка получения клатрата госсипола с акридином, твердым ($T_{nn} = 107 \text{ °C}$) азотсодержащим веществом, известным как обладающий биологической активностью краситель [5]. При кристаллизации смеси госсипола с акридином (1:1) из раствора в хлористом метилене был получен клатрат с мольным соотношением хозяин—гость 2:1. Методами РСА и ТГ-ДСК изучены его кристаллическая структура и термическая стабильность.

Экспериментальная часть. Кристаллы изученного клатрата госсипола с акридином были выращены при комнатной температуре из раствора в дихлорметане с мольным соотношением госсипола и гостевого вещества 1:1. Кристаллографические параметры монокристаллов определены и уточнены на ССД-дифрактометре Xcalibur Oxford Diffraction (CuK_{α} -излучение, графитовый монохроматор, при комнатной температуре). Стратегия сбора экспериментальных данных осуществлялась с помощью программы CrysAlisPro [6]. Интегральные интенсивности были измерены методом ω -сканирования, монохроматизированного отражением от графитового кристалла. После усреднения эквивалентных и удаления слабых отражений с $I < 2\sigma(I)$ полу-

^{*} E-mail: samat talipov@yahoo.com

Рис. 1. Нумерация атомов молекул госсипола и акридина в структуре клатрата госсипола с акридином. Эллипсоиды тепловых колебаний составляют 50 % от реальной величины

чен рабочий массив, состоящий из 4726 отражений. Поправка на поглощение производилась методом "multiscan", в пакете программ CrysAlisPro [6]. Структура расшифрована прямым методом с помощью комплекса программ SHELXS-97 [7] и уточнена

полноматричным методом наименьших квадратов программой SHELXL-97 [8]. Все неводородные атомы уточнялись анизотропно. Атомы водорода устанавливались из разностного синтеза и уточнялись изотропно. Окончательное значение *R*-фактора: R = 0,0413, (wR2 = 0,1298). Построение молекулярной графики осуществляли программой XP в пакете программ SHELXTL-Plus [9].

Структура зарегистрирована в Кембриджском банке структурных данных (http://www.ccdc.cam.ac.uk, e-mail: deposit@ccdc.cam.ac.uk; номер депозита CCDC 768416).

Термическую устойчивость изученных клатратов определяли на приборе Netzsch Simultaneous Analyzer STA 409 PG. Все измерения были проведены в инертной азотной атмосфере со скоростью потока азота 50 мл/мин. Температурный диапазон измерений составлял 25—350 °C, скорость нагрева — 5 К/мин. Количество образца на одно измерение — 5—6 мг.

Обсуждение результатов. Кристаллы клатрата госсипол:акридин имеют следующие кристаллографические параметры: кристаллы моноклинные, $C_{30}H_{30}O_8 \cdot 0.5C_{13}H_9N$ (соотношение хозяин:гость m:n = 2:1), a = 11,3213(3), b = 30,5957(13), c = 17,0824(4) Å, $\gamma = 94,153(2)^\circ$, V = 5901,5(3) Å³, M = 1153,24, Z = 8, $d_{\text{выч}} = 1,369$ г/см³ и кристаллизуются в пространственной группе C2/c. Молекула госсипола располагается в общей позиции, а гостевая молекула локализована на оси второго порядка. По расположению хозяйских молекул данная структура изоструктурна с так называемой этилацетатной изоморфной группой [10], куда относятся десятки клатратов госсипола.

Молекулы госсипола в клатрате с акридином (рис. 1) находятся в альдегидной таутомерной форме. Значения валентных углов и межатомных расстояний в молекулах мало отличаются от стандартных величин [11]. Система внутримолекулярных H-связей в молекуле госсипола имеет некоторую особенность — она несимметрична. Изопропильные группы молекулы госсипола могут находиться в двух устойчивых состояниях, отличающихся друг от друга поворотом вокруг связей C(5)—C(23) (C(15)—C(28)) на 180°. H(23)—(H(28)) может быть обращена в сторону атома C(4) (C(14)) или в сторону ближайшей гидроксильной группы [10]. В рассматриваемых клатратах осуществляются обе ориентации, и поэтому в одной половинке молекулы водородная связь C28—H...O8 присутствует, а в другой ее нет (табл. 2).

Плоскостность нафтильных ядер молекул госсипола идентична, отклонение от среднеквадратичной плоскости не превышает 0,03 Å. Значение двугранного угла между среднеквадратичными плоскостями нафтильных ядер составляет 103,2°.

Строение клатрата характеризуется отсутствием типичных центросимметричных димеров, которые наблюдались во многих кристаллических структурах с участием молекул госсипола (рис. 2) [10—12]. В межмолекулярных Н-связях типа хозяин—хозяин участвуют всего две гидроксильные группы (O(4)—Н и O(8)—Н) из восьми полярных функциональных групп молекулы госсипола, способных к Н-связыванию (см. табл. 1). Молекулы госсипола посредством четырех водородных связей (формирующих цикл R_4^4 (8)) объединяются в бислои, параллельные плоскости *ab*. Особенностью рассматриваемых клатратов является то, что каждый бислой со-

198

Рис. 2. Кристаллическая структура клатрата госсипола с акридином

стоит из молекул одинаковой хиральности (R или S). При укладке в кристаллическую структуру слои различной хиральности чередуются между собой.

При упаковке молекул госсипола в бислои в них образуются полости с осями симметрии второго порядка, для которых полом и потолком служат нафтильные ядра C(1)—C(10) молекул A(x, y, z) и B(1-x, y, 0, 5-z), а боковыми стенками — нафтильные ядра C11— C20 молекул C(1-x, y, 0, 5-z) и D(1-x, y, y)

0,5–*z*). В полостях располагаются гостевые молекулы акридина. Атом азота гостевой молекулы является бифуркатным (двойным) акцептором протонов гидроксильных групп O(5)—H двух молекул госсипола. Данная водородная связь является довольно слабой (3,175(2) Å, 140(2)°), однако дополнительная стабилизация гостевой молекулы в полости клатрата осуществляется за счет стекинг-взаимодействия между нафтильными ядрами молекул госсипола и акридина (расстояние между центроидами циклов C5—C10 и C31—C36—C37—N1 — 3,670 Å), а также по-

Таблица 1

Водородные связи в структуре комплекса госсипола с акридином: расстояния (Å) и углы (град.)

Н-связь	D—H	НА	DA	D—HA	Операция симметрии для атома А			
Внутримолекулярные водородные связи								
O3—HO2	0,99(3)	1,55(3)	2,487(2)	156(2)				
O4—HO3	0,89(2)	2,07(2)	2,595(2)	117(2)				
O7—HO6	0,99(3)	1,58(3)	2,501(2)	153(2)				
O8—HO7	0,84(2)	2,07(2)	2,622(2)	123(2)				
С22—НО1	0,98(2	2,07(2)	2,750(2)	125,0(16)				
С27—НО5	0,96(2)	2,06(2)	2,712(2)	123,8(17)				
С28—НО8	0,98(2)	2,19(2)	2,777(2)	117(1)				
Межмолекулярные водородные связи								
O5—HN1	0,86(3)	2,47(3)	3,175(2)	140(2)				
O4—HO8	0,89(2)	2,16(2)	2,947(2)	148(2)	3/2-x, $1/2+y$, $1/2-z$			
O8—HO4	0,84(2)	2,39(2)	2,971(2)	127(2)	-1/2+x, -1/2+y, z			

Таблица 2

Геометрия контактов С—Н..., наблюдаемых в структуре комплекса госсипола с акридином: расстояния (Å) и углы (град.)

Coga D H A		Расстояние		Угол
Связь D—11А	Операция симметрии	DA	HA	D—H…A
С33—Нπ (центроид цикла С11—С19)	x, -y, -1/2+z	3,8096(18)	2,97(2)	144,3(16)
C34—Hπ (центроид цикла C15—C20)	x, -y, -1/2+z	3,4714(18)	2,65(2)	139,3(18)

Рис. 3. ТГ/ДСК диаграмма, показывающая изменения, происходящие в кристаллах клатрата госсипола с акридином в интервале температур 25—325 °C

средством С—Н...*п*-взаимодействия атомов СЗЗ и СЗ4 с нафтильным ядром С11— С20 (см. табл. 2). Поверхность бислоев гидрофобна, и поэтому взаимодействие между соседними бислоями имеет чисто ван-дерваальсовый характер (см. рис. 2).

Анализ кривых ТГ-ДСК показал, что данный комплекс является стабильным до 100 °С (рис. 3). В температурном интервале

100—200 °С наблюдается уменьшение массы образца (~12 %). Эндотермический пик, соответствующий этому процессу, имеет плечо при температуре 149 °С и минимум при температуре 166 °С. Он характеризует два процесса — отщепление от молекулы госсипола двух молекул воды с образованием ангидрогоссипола и выход гостевой компоненты — акридина ($T_{пл}$ = 110 °С). Образование ангидрогоссипола подтверждается экзотермическим пиком (max 192 °С), характерным для ДСК-кривой данного соединения [13]. Уменьшение массы исследуемого вещества выше ~200 °С связано с сублимацией акридина. Расчетные значения потери веса образца с уходом акридина равны 13,55, воды — 6,21 %, сумма этих значений равна 19,76 %. Известно, что акридин — легко возгоняющееся вещество, причем процесс испарения идет в температурном диапазоне 150—250 °С. Таким образом, на первом этапе 100—200 °С идет отщепление от молекулы госсипола двух молекул воды и начало сублимации акридина (потеря массы ~12 %), на втором этапе 200—330 °С испарение акридина продолжается и поэтому ТГ-кривая не выходит на плато.

Работа выполнена в рамках проекта ФА-А6-Т156 Академии наук Республики Узбекистан.

Авторы выражают благодарность Российскому фонду фундаментальных исследований за лицензию на пользование Кембриджским банком структурных данных.

СПИСОК ЛИТЕРАТУРЫ

- 1. Маркман А.Л., Ржехин В.П. / Госсипол и его производные. М.: Пищ. пром-сть, 1965.
- 2. *Талипов С.А., Ибрагимов Б.Т., Охаши Ю. и др.* // Кристаллография. 2002. **47**, № 3. С. 488 493. Crystallography Reports. 2002. **47**, N 3. Р. 443 448.
- 3. Talipov S.A., Tojimukhamedov P.Kh., Hulliger J. et al. // Cryst. Engineer. 2003. 6. P. 137 144.
- 4. Dowd M.K., Stevens E.D. // Acta Crystallogr., Sect C. Cryst. Struct. Comm. 2003. 59. P. o397.
- а) Степанов Б.И. Введение в химию и технологию органических красителей. 2-е изд. М., 1977.
 С. 166 168. б) Keiser J., Utzinger J., Premji Z. et al. // Ann. Trop. Med. Parasitol. 2002. 96. Р. 643 654.
- 6. CrysAlisPro, Version 1.171.33.40, 2007. Oxford Diffraction, UK.
- 7. Sheldrick G.M. // Acta Crystallogr. 1990. A46. P. 467.
- 8. *Sheldrick G.M.* SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany, 1997.
- 9. Siemens; XP. Molecular Graphics Program. Version 5.03. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA, 1994.
- Gdaniec M., Ibragimov B.T., Talipov S.A. Gossypol. Comprahensive Supramolecular Chemistry, V.6, Solid State Supramolecular Chemistry: Crystal Engineering / Eds. D.D. MacNicol, F. Toda, R. Bishop. – Oxford: Elsevier, 1996. – P. 117 – 146.
- 11. *Ibragimov B.T., Talipov S.A.* Gossypol. in Encyclopedia of Supramolecular Chemistry // Eds. J.L. Atwood &J.W. Steed. New York: Dekker, 2004. P. 606 614.
- 12. Ибрагимов Б.Т., Талипов С.А. // Журн. структур. химии. 1999. 40, № 5. С. 849 871.
- 13. Хонкелдиева М., Талипов С.А., Ибрагимов Б.Т. // Докл. АН РУз. 2010. С. 59 63.