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Проведено расчетно-экспериментальное исследование границ проскока пламени при горении
предварительно подготовленного метановодородного топлива в вихревом горелочном устройстве

с закруткой потока, а также в модельной камере сгорания, являющейся прототипом использу-
емых малоэмиссионных камер сгорания с предварительной подготовкой смеси. В результате

проведенных исследований выработаны рекомендации, применение которых позволяет опреде-
лить проскок пламени с погрешностью, не превышающей ±5 %. Эти результаты могут быть
использованы для повышения точности определения границ проскока пламени при горении ме-
тановодородного топлива на этапе предварительного проектирования камер сгорания авиацион-
ных газотурбинных двигателей и энергетических установок.
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ВВЕДЕНИЕ

Одной из глобальных мировых проблем

является изменение климата, вызванное уве-
личением доли парниковых газов в атмосфе-
ре Земли. В связи с этим в последнее время

большое внимание уделяется вопросу снижения

выбросов углекислого газа авиационными газо-
турбинными двигателями (ГТД) и созданными
на их базе наземными газотурбинными уста-
новками, а также промышленными энергетиче-
скими установками. Международной организа-
цией гражданской авиации (ИКАО) в 2016 г.
утверждена схема сокращения выбросов угле-
рода в авиации [1, 2]. Использование альтер-
нативных видов топлива, в частности водоро-
да и метановодородных смесей, позволит су-
щественно уменьшить выбросы СО2, которые
сейчас составляют в среднем 500 г СО2 на

1 кВт ·ч. В обозримом будущем планируется

снизить эмиссию СО2 до 340 г, а в перспекти-
ве до 100 г на 1 кВт · ч [3, 4].

В соответствии со стандартами ИКАО
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основными нормируемыми компонентами вы-
бросов в атмосферу являются оксиды азота,
оксиды углерода, несгоревшие углеводороды
и сажа. Мероприятия по снижению образова-
ния вредных выбросов в основном сводятся к

разработке малоэмиссионных камер сгорания

(КС), в которых используется метод сжига-
ния предварительно подготовленных бедных

смесей. Однако при этом возникают проблемы
устойчивого горения, а именно сужаются гра-
ницы по бедному срыву пламени [5, 6].

Использование добавок водорода в топли-
во позволяет решить проблему устойчивого го-
рения бедных смесей. Но при этом возникают
другие сложности, в частности риск проско-
ка пламени в зону подготовки топливовоздуш-
ной смеси [7]. Поэтому для проектирования но-
вых малоэмиссионных КС, стабильно работа-
ющих на метановодородных топливах, необхо-
димо достоверно определять границы устойчи-
вой работы КС, в частности условия возникно-
вения проскока пламени в горелочном устрой-
стве.

Целью данной работы является повыше-
ние точности определения границ проскока
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пламени при горении метановодородного топ-
лива на этапе предварительного проектирова-
ния камер сгорания авиационных газотурбин-
ных двигателей и энергетических установок.

ЭКСПЕРИМЕНТАЛЬНЫЕ УСТАНОВКИ

Для исследования границ проскока пла-
мени в вихревом горелочном устройстве ис-
пользовалась установка с закруткой потока и

предварительной подготовкой топливовоздуш-
ной смеси. Данное горелочное устройство явля-
ется упрощенной моделью типового элемента

фронтового устройства КС авиационных ГТД

и созданных на их основе газотурбинных уста-
новок. Опыты проводились при атмосферном

давлении и температуре смеси на входе в го-
релку Tк = 373 K. Расход воздуха изменялся
в диапазоне Gв = 6 ÷ 9 г/с, что обеспечива-
ло приведенную среднерасходную скорость на

срезе сопла горелки λк = 0.06 ÷ 0.09. Объем-
ная доля водорода в метановодородном топливе

изменялась в диапазоне RH = 40 ÷ 100 %. По-
дробнее данная установка описана в работе [8].

Также была создана модельная КС для

работы на метановодородном топливе. Дан-
ная камера является прототипом малоэмисси-
онных КС с предварительной подготовкой сме-
си, используемых в перспективных авиацион-
ных ГТД и энергетических установках. В со-
став модельной КС (рис. 1) входят участок

подвода и распределения топлива по трем кон-
турам 1, горелочное устройство 2, цилиндри-
ческая жаровая труба с конвективной систе-
мой охлаждения 3, выходной участок 4. Пилот-

Рис. 1. Схема модельной камеры сгорания

ная зона формируется за счет центрального те-
ла, которое выступает в роли форсунки. В ос-
новной зоне горения предусмотрено два кон-
тура подачи топлива: выше по потоку от за-
вихрителя (Gт,осн1) и в следе за завихрителем
(Gт,осн2) [9].

Данный объект исследования позволяет

проводить испытания с использованием как

чистых, так и смесевых газообразных топлив
(CH4/H2) с температурой подогрева до 650 ◦C
и расходом рабочего тела через основной кон-
тур до 0.1 кг/с.

Конструктивное исполнение предусматри-
вает подачу газа по трем контурам: пилот-
ный Gт,пилот (диффузионный), предваритель-
ного смешения Gт,осн1 (гомогенный) и втулоч-
ный Gт,осн2. Пилотный контур позволяет пода-
вать метановодородную смесь в концентрации

0 ÷ 100 %, основной контур — до 60 ÷ 100 %
в зависимости от режима работы, с точностью
до 1 %.

Система измерения спроектирована таким

образом, что при необходимости одновременно
можно записывать сигналы с датчика пульса-
ций давления и показания термопар, располо-
женных на жаровой трубе, а также проводить
измерения состава газа на выходе. Подвод воз-
духа в контур охлаждения жаровой трубы вы-
полнен независимой линией, что позволяет ва-
рьировать степень охлаждения стенки.

ЧИСЛЕННЫЕ МЕТОДЫ

Геометрические модели исследуемых горе-
лочных устройств были созданы на основе ре-
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Рис. 2. Сеточная модель расчетной области для определения проскока пламени в горелочном
устройстве

Рис. 3. Сеточная модель камеры сгорания

альной конструкции экспериментальной уста-
новки.

В сеточной модели горелочного устройства

с закруткой потока (рис. 2) применено разбие-
ние расчетной области на два типа элементов:
в центре потока элементы представляют со-
бой гексаэдры (6 граней), в пристеночном слое
область состоит из полиэдрических 8-гранных
элементов. Так как в данной задаче необходи-
мо достаточно точно отслеживать положение

фронта пламени, в предполагаемой зоне тепло-
выделения, а также в области плохообтекаемо-
го тела предусмотрено локальное измельчение

элементов. В результате построения конечно-
объемной модели максимальное значение пара-
метра скошенности составило 0.93. Размер эле-
ментов в предполагаемой области формирова-
ния фронта пламени — 0.8 мм. Суммарное ко-
личество элементов в модели порядка 6 млн

элементов.
Для моделирования процессов в КС бы-

ла сгенерирована сеточная конечно-элементная
модель проточной части КС со следующими па-
раметрами:

максимальное значение параметра ско-
шенности — 0.89647;

общее количество элементов — 11 375 600;
количество призматических элементов в

пограничном слое — 3.

Конечно-элементная модель имеет загуще-
ние элементов в области подачи топлива че-
рез основной контур и в области зоны горения

(рис. 3).
При численном исследовании в данной

работе использована модель горения FGM
(flamelet generated manifold) с кинетическим
механизмом, наиболее подходящим для иссле-
дования горения метановодородного топлива

Wang 2018 [10, 11], в который дополнитель-
но включены четыре элементарные реакции

(8–10, табл. 1) и уточнены константы скоро-
стей реакций, наиболее сильно влияющих на
нормальную скорость распространения пламе-
ни (1–7, табл. 1) [12–16].

Для достоверного определения проскока

пламени при численном моделировании ис-
пользовались также зависимости нормальной

скорости распространения пламени от коэффи-
циента избытка топлива φ, давления, темпе-
ратуры и вида используемого топлива (SL =
f(φ, Pк, Tк)) [7, 18]. Пример зависимостей пред-
ставлен в табл. 2.

Моделирование проскока пламени в горе-
лочном устройстве с предварительной подго-
товкой метановодородовоздушной смеси и за-
круткой потока проводилось при различной

объемной доле водорода в топливе RH. Исход-
ные режимные параметры работы горелочного
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Та блиц а 1

Новые реакции и обновленные константы скорости
в базовом кинетическом механизме Wang 2018

№ п/п Реакция A B Ea,
ккал/моль

Источник

данных

1 H2 +OH = H+H2O 8.03 · 107 1.642 3.2793 [12]

2 O2 +H = O+OH 1.10 · 1015 −0.286 1.60 · 101 [12]

3 H + HO2 = 2OH 1.36 · 1013 0.212 −9.20 · 10−3 [12]

4 O + H2 = OH+H 5.08 · 104 2.67 6.292 [13]

5 OH + HO2 = O2 +H2O
7.00 · 1012 0 −1.09296 [14]

4.50 · 1014 0 10.9296 [14]

6 H2 +O2 = H+HO2 7.40 · 105 2.43 53.5 [15]

7 O + HO2 = O2 +OH 4.51 · 1011 0.659 −0.4619 [12]

8 H + O2 +H = H2 +O2 8.80 · 1022 −1.835 0.8 [16]

9 H + O2 +H = OH+OH 4.00 · 1022 −1.835 0.8 [16]

10 H + O2 +O = OH+O2 7.35 · 1022 −1.835 0.8 [16]

11 H + O2 +OH = H2O+O2 2.56 · 1022 −1.835 0.8 [16]

Та блиц а 2
Функции для SL, α, β при RH = 30, 80 %

RH = 30 % RH = 80 %

SL = 66.44φ3 − 289.1φ2 + 373φ− 115.4 SL = 70.69φ3 − 379.3φ2 + 580.9φ− 175.6

α = −0.9016φ+ 0.6209φ2 + 2.398 α = −0.5987φ+ 0.3147φ2 + 2.395

β = 2.357φ− 1.109φ2 − 1.86 β = 2.028φ− 0.8329φ2 − 1.496

устройства для расчета: температура на вхо-
де в горелочное устройство Tк = 373 К, рас-
ход воздуха Gв = 7.6 г/с, давление атмосфер-
ное, коэффициент избытка воздуха α изменялся
в зависимости от режима устойчивого горения

до фиксации проскока пламени.
При моделировании КС перепад давления

во всех расчетах выдерживался постоянным и

равным 5 %. Постоянными параметрами так-
же были температура на входе (Tк), давление
(Pк) в КС и предполагаемая температура про-
дуктов на выходе (Tг) из КС (для сохранения
режима работы условного двигателя). Для под-
держания постоянного значения Tг = 1 990 К
(что соответствует α = 1.6 при сжигании чи-
стого метана) были рассчитаны значения необ-
ходимого в КС коэффициента избытка воздуха

с учетом соответствующего стехиометрическо-
го коэффициента для каждого значения RH в

применяемом метановодородном топливе.
Численное моделирование выполнено с

использованием расчетного модуля ANSYS
Fluent 21.R2.

РЕЗУЛЬТАТЫ

Для валидации математической модели

горения метановодородного топлива и опреде-
ления границ проскока пламени были прове-
дены экспериментальные исследования в го-
релочном устройстве с закруткой потока и

предварительной подготовкой топливовоздуш-
ной смеси (рис. 4). Граница проскока пламени
(αпроскок) характеризуется величиной коэффи-
циента избытка воздуха (α), при которой фик-
сируется проскок при заданных параметрах ра-
бочего процесса в КС.

При моделировании проскока пламени в

горелочном устройстве коэффициент избытка
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Рис. 4. Влияние режимных параметров горелочного устройства на проскок пламени

Рис. 5. Поля температуры потока в горелочном устройстве:

а — поле стабильного пламени, б — поле с проскоком пламени

воздуха α изменялся путем повышения расхо-
да топлива при заданном фиксированном зна-
чении RH. Критериями сходимости были сум-
марный расход, восстановленная концентрация
топлива и температура на выходе. Проскок
фиксировался по наличию тепловыделения и

изменению полноты сгорания внутри горелоч-
ного устройства между лопатками завихрителя

и выходным соплом (рис. 5).
Сравнение расчетных и эксперименталь-

ных данных, полученных в результате иссле-
дования, представлено на рис. 6. При прове-
дении расчетов в постановке RANS (осреднен-
ные по Рейнольдсу уравнения Навье — Сток-
са) с использованием базовых алгоритмов, за-
ложенных в стандартные коммерческие про-
граммные продукты (ANSYS Fluent и др.), по-
лученные значения αпроскок отличаются от экс-

периментальных данных на 40 % во всем диа-
пазоне добавок водорода. Эти результаты не

могут быть приемлемыми даже для предвари-
тельных инженерных расчетов. Модернизация
математической модели с учетом использова-
ния разработанных зависимостей для скорости

пламени SL = f(φ, Pк, Tк) позволяет в два ра-
за сократить отклонение от эксперимента (до
20 %). Проскок пламени относится к нестаци-
онарным явлениям и чувствителен к крупно-
масштабным пульсациям турбулентного пото-
ка, которые не описываются при стационар-
ных подходах (RANS). Поэтому для адекватно-
го описания нестационарных явлений должно

использоваться моделирование методом круп-
ных вихрей (LES), что и подтверждают ре-
зультаты, приведенные на рис. 6. Погрешность
данного метода при использовании нового ки-
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Рис. 6. Границы проскока пламени в зависи-
мости от величины добавки водорода в мета-
новодородное топливо при Tк = 373 К и атмо-
сферном давлении

Рис. 7. Поле температуры при RH = 40 %:

а — RANS, α = 1.3; б — RANS, α = 1.2; в — LES, α = 1.65

нетического механизма и разработанных зави-
симостей для скорости пламени дает отклоне-
ние не более 5 %. Однако в инженерной практи-
ке подход LES применять нецелесообразно, так
как при проектировании новых изделий необхо-
димо выполнять множество расчетных иссле-
дований вариантов конструкций КС. Поэтому в
данной работе предлагается использовать раз-
работанную математическую модель в стацио-
нарной постановке на этапе предварительного

проектирования с введением коэффициента за-
паса K = 1.25, который обеспечивает область
стабильной работы.

Разработанный метод определения границ

проскока пламени был апробирован с целью

выработки рекомендаций по использованию

метановодородных топлив с различным содер-
жанием H2 в смеси в реальных КС газотурбин-
ных двигателей и энергетических установок

без риска возникновения проскока пла-
мени в горелочное устройство. Исследования
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проведены на модельной КС (см. рис. 1), кото-
рая является прототипом используемых мало-
эмиссионных КС с предварительной подготов-
кой смеси в перспективных авиационных ГТД

и энергетических установках.
Для проведения экспериментальных иссле-

дований по влиянию добавок водорода в ис-
ходное топливо на основные характеристики

модельной КС с целью обеспечения безопас-
ных условий работы установки были выполне-
ны расчеты по определению границы проско-
ка пламени в заданных режимах работы КС.
На рис. 7 представлены полученные поля рас-
пределения температуры при стабильной рабо-
те в стационарной (рис. 7,а) и нестационарной
(рис. 7,в) постановках и при проскоке пламени
(рис. 7,б) вдоль пограничного слоя.

В соответствии с разработанным методом

определения границ проскока пламени при ис-
пользовании метановодородного топлива по ре-
зультатам численного моделирования в стаци-
онарной постановке (RANS) определена грани-
ца предварительного проскока пламени, а так-
же граница предполагаемого проскока с учетом

рекомендованного коэффициента запаса K =
1.25 (рис. 8). Установленные согласно изложен-
ному выше алгоритму границы предполагаемо-
го проскока были верифицированы с использо-
ванием нестационарного численного моделиро-
вания методом LES, в результате чего опреде-
лена точка стабильной работы КС (без проско-
ка пламени) в режиме испытаний с RH = 40 %.

Рис. 8. Границы проскока пламени в модель-
ной камере сгорания

Полученные при нестационарном моделирова-
нии (LES) результаты подтвердили правиль-
ность оценки границы предполагаемого про-
скока пламени, выполненной на основе стаци-
онарного моделирования (RANS) с рекомендо-
ванным коэффициентом запаса K = 1.25 (см.
рис. 8).

По результатам расчетно-эксперимен-
тального исследования процесса горения

метановодородного топлива с различными

значениями RH в модельной КС на основе раз-
работанного метода была определена граница

проскока пламени, а соответственно, и зона

устойчивой работы по коэффициенту избытка

воздуха в КС. Результаты моделирования

подтверждены опытными данными при работе

КС в устойчивой зоне без проскока пламени

внутрь горелочного устройства при добавках

водорода до RH = 60 % включительно (см.
рис. 8). В целях безопасной эксплуатации

установки модельная КС не вводилась в режим

работы с проскоком пламени.

ЗАКЛЮЧЕНИЕ

В работе экспериментально доказано, что
для типовых горелочных устройств камер сго-
рания ГТД и энергетических установок с за-
круткой потока при использовании предвари-
тельно подготовленной смеси метановодород-
ного топлива с воздухом границы проскока

пламени в значительной степени определяются

долей водорода в топливе (RH), а также режим-
ными параметрами, такими как среднерасход-
ная скорость на срезе сопла горелки и харак-
теристики закрученного потока на выходе из

горелки.
Показано, что разработанная математи-

ческая модель, учитывающая новый кинети-
ческий механизм окисления метановодород-
ных топлив WangUPD и новые зависимости

SL = f(φ, Pк, Tк), при прогнозировании гра-
ниц проскока пламени в исследуемом горелоч-
ном устройстве на основе численного модели-
рования в стационарной постановке (RANS)
позволяет в два раза сократить отклонение

от экспериментальных данных и улучшить

точность моделирования проскока пламени на

этапе предварительного проектирования. Реко-
мендовано в этом случае применять корректи-
ровочный коэффициент K = 1.25 для увели-
чения предполагаемого значения коэффициен-
та избытка воздуха при проскоке пламени.
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Прогнозирование границ проскока пламе-
ни при моделировании в трехмерной нестаци-
онарной постановке методом крупных вихрей

(LES) с использованием разработанной мате-
матической модели позволяет качественно и

количественно определить проскок пламени с

погрешностью, не превышающей ±5 %.
По результатам расчетно-эксперимен-

тального исследования определена граница

устойчивой работы модельной камеры сго-
рания, которая подтверждена опытными

данными при работе камеры без проскока

пламени внутрь горелочного устройства при

добавке водорода до 60 %.
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