ВОЛНОВЫЕ ТРАНСФОРМАНТЫ НЕСТАЦИОНАРНОГО ЭЛЕКТРОМАГНИТНОГО ПОЛЯ В ПРОВОДЯЩИХ СРЕДАХ Г.А. Грецков¹, М.И. Эпов^{1,2}, Е.Ю. Антонов¹

¹Институт нефтегазовой геологии и геофизики им. А.А. Трофимука, СО РАН, 630090, Новосибирск, просп. Академика Коптюга, 3, Россия

² Новосибирский государственный университет, 630090, Новосибирск, ул. Пирогова, 2, Россия

Статья посвящена разработке устойчивых процедур преобразования данных нестационарных электромагнитных зондирований в волновую область. Рассмотрены два способа их трансформации: на основе методов сингулярного разложения и регуляризации по А.Н. Тихонову. Выполнены трансформации электромагнитных откликов от проводящего полупространства, проводящей *S*-плоскости, а также серии горизонтально-слоистых моделей. Рассмотрены примеры построения годографов полученных волновых трансформант и определения скоростей их распространения.

Зондирование становлением поля, волновая трансформанта, регуляризация.

WAVE TRANSFORMS OF TRANSIENT ELECTROMAGNETIC FIELD IN CONDUCTIVE EARTH

G.A. Gretskov, M.I. Epov, and E.Yu. Antonov

The study aims at finding a stable method for transformation of time-domain electromagnetic diffusion field to an electromagnetic wavefield. Two ways of transformation are considered: singular-value decomposition (SVD) and Tikhonov's regularizations. Transformation is applied to TEM responses of a conductive half-space, a conductive *S* film, and to a series of horizontally layered models. The wave transforms are used to plot travel-time curves and to estimate the velocity of EM field propagation.

TEM soundings, wave transform, regularization

введение

Широкое развитие геоэлектрики во многом обусловлено появлением в конце 50-х — начале 60-х годов прошлого века метода зондирования становлением поля (3С) сначала в дальней [Ваньян, 1963], а затем в ближней [Кауфман, Морозова, 1970] зонах. Немного раньше в рудной геофизике появился их аналог — метод переходных процессов [Каменецкий, 1997]. Основы теории неустановившихся электромагнитных полей содержатся во многих работах [Ваньян, 1965; Шейнманн, 1969]. В качестве источника нестационарного электромагнитного поля наиболее часто используются расположенные на дневной поверхности замкнутый токовый контур или заземленная линия (в дальнейшем не рассматривается). В заданный момент времени текущий в источнике постоянный электрический ток выключается. В квазистационарном приближении [Кауфман, Морозова, 1970] после этого, согласно закону индукции Фарадея, в электропроводящей среде появляются вихревые токи. С течением времени они диффундируют вглубь от дневной поверхности, разделяющей непроводящее и проводящее полупространства. Скорость их затухания, определяемая джоулевыми потерями, зависит от удельного электрического сопротивления (УЭС) среды. На дневной поверхности обычно регистрируется электродвижущая сила (ЭДС), наведенная в приемной петле, или разность потенциалов электрического поля между сближенными приемными электродами (в дальнейшем не рассматривается). Таким образом, наиболее часто применяемая установка состоит из генераторной и набора приемных петель. Одна из последних соосна с генераторной, а другие могут располагаться как внутри, так и вне токового контура. В каждой из приемных петель регистрируется временная развертка ЭДС, называемая кривой зондирования. Для удобства анализа измеренные величины трансформируются в кажущиеся сопротивления р., кажущиеся продольные проводимости S_r и кажущиеся глубины h_r [Сидоров, 1985]. Для интерпретации полученных данных обычно используется инверсия. Однако даже в рамках горизонтально-слоистой модели решение обратной задачи становится очень ресурсоемким, особенно при использовании множества источников и приемников.

© Г.А. Грецков[⊠], М.И. Эпов, Е.Ю. Антонов, 2017

[™]e-mail: greckov.gleb@gmail.com

Уже накопленный опыт обработки и интерпретации данных зондирований становлением поля, а также успехи сейсморазведки показали, что для достоверного восстановления геоэлектрических разрезов необходимо существенно наращивать число приемных каналов при общем увеличении числа токовых контуров. Поэтому целесообразно обратиться к системам наблюдения, применяемым в сейсморазведке, где от одного пункта взрыва сигналы регистрируются в целом наборе упорядоченно расположенных приемников. В дальнейшем рассмотрена аналогичная система наблюдений: квадратная генераторная петля и множество приемных контуров, расположенных вдоль одной линии на одинаковом расстоянии друг от друга. Будем считать, что центр первого приемного контура совпадает с центром генераторной петли. Тогда одним их новых направлений развития интерпретации является использование сейсмических методов обработки [Nekut, 1994; Virieux et al., 1994; Yu, Edwards, 1997]. Как известно, распространяющиеся в среде возмущения от сейсмических источников описываются решениями волнового уравнения. В то же время распространение электромагнитного отклика в проводящей среде при выполнении условий квазистационарности [Кауфман, Морозова, 1970] описывается решениями уравнения диффузии или теплопроводности. Следовательно, чтобы применять методы обработки, аналогичные сейсмическим, необходимо модифицировать сигналы, измеряемые при зондированиях становлением поля [Zhdanov, Frenkel, 1983; Lee et al., 1989].

Для преобразования электромагнитных данных воспользуемся отображением пространства решений уравнения диффузии в пространство решений волнового уравнения. Это можно выполнить, используя преобразование Лапласа [Kunetz, 1972; Weidelt, 1972; Резницкая, 1974]. Однако при численной реализации возникают значительные осложнения, связанные с его неустойчивостью и некорректностью. Первая из них обусловлена экспоненциальным ядром преобразования. Для обеспечения его устойчивости используются различные методы регуляризации. В работе [Lee, Xie, 1993] для данных электромагнитных зондирований с контролируемым источником (CSEM-Controlled Source ElectroMagnetic) применено сингулярное разложение, и полученное «недиффузионное» решение использовано для томографической инверсии. Хотя такой подход приводит к некоторым полезным результатам, полученные волновые импульсы сильно осциллируют и непригодны для методов сейсмической обработки. В работе [Levy et al., 1988] показан способ стабилизации преобразования путем минимизации его L_1 — нормы с использованием линейного программирования. Другие попытки стабилизации с отображением пространства решений диффузионного уравнения в пространство решений волнового были предприняты в работах [Gilbert, Virieux, 1991; Wilson, 1994; Slob et al., 1995; Gershenson, 1997]. В них в основном использовались методы разложения поля на базисные функции, которые могут быть преобразованы аналитически. Все эти методы базируются только на критерии вычислительной стабильности и не учитывают желаемые физические свойства результирующих волновых трансформант. Проблемы регуляризации интегрального преобразования подробно описаны в диссертационной работе [Swidinsky, 2011]. Он обосновал и применил для данных CSEM SVD-регуляризацию и регуляризацию А.Н. Тихонова [Тихонов, Арсенин, 1979] с различными параметрами. Методы обработки данных CSEM, аналогичные сейсмическим, описаны в [Mittet, 2015]. Регуляризация для отображения решения уравнения диффузии в решения волнового уравнения для данных ЗС была предложена в работе [Xie et al., 2012].

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ

Рассмотрим распространение электромагнитного поля в пространственно-однородной и изотропной проводящей среде, характеризуемой материальными постоянными ε_0 (диэлектрическая проницаемость), μ_0 (магнитная проницаемость) и σ (электропроводность) при отсутствии дополнительных источников. Векторы напряженности электрического поля **E** и магнитной индукции **B** являются функциями, зависящими от времени *t* и пространственных координат *x*, *y*, *z*. Они описываются системой уравнений Максвелла:

$$\nabla \times \mathbf{B} = \mu_0 \sigma \mathbf{E} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t},\tag{1}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \qquad (2)$$

$$\nabla \cdot \mathbf{E} = 0, \tag{3}$$

$$\nabla \cdot \mathbf{B} = 0 \,. \tag{4}$$

Первое слагаемое в правой части уравнения (1) отвечает за токи проводимости, второе — за токи смещения. В дальнейшем будем считать, что второе слагаемое в правой части (1) существенно меньше первого (условие квазистационарности [Кауфман, Морозова, 1970]) и его влиянием можно пренебречь.

Применим ротор к уравнениям (1) и (2). Пренебрегая токами смещения и используя формулу векторного анализа $\nabla \times \nabla \times A = \nabla (\nabla A \cdot A) - \nabla^2 A$, получим уравнения диффузии, которые в декартовой системе координат *x*, *y*, *z* записываются следующим образом:

$$\nabla^2 \mathbf{B} = \mu_0 \sigma \frac{\partial \mathbf{B}}{\partial t}, \qquad (5)$$

$$\nabla^2 \mathbf{E} = \mu_0 \sigma \frac{\partial \mathbf{E}}{\partial t} \,. \tag{6}$$

Рассмотрим далее некоторые векторные поля **F** и **G**. Предположим, что они зависят от переменной q, а также от тех же пространственных координат x, y, z. Выберем их так, чтобы они удовлетворяли следующей системе уравнений:

$$\nabla \times \mathbf{F} = \frac{1}{\psi^2} \frac{\partial \mathbf{G}}{\partial q} \,, \tag{7}$$

$$\nabla \times \mathbf{G} = -\frac{\partial \mathbf{F}}{\partial q},\tag{8}$$

$$\nabla \cdot \mathbf{F} = 0 , \qquad (9)$$

$$\nabla \cdot \mathbf{G} = 0. \tag{10}$$

Применив операцию ротора к уравнениям (7) и (8) и используя векторное равенство, приведенное выше, приходим к следующим уравнениям:

$$\nabla^2 \mathbf{F} = \frac{1}{\Psi^2} \frac{\partial^2 \mathbf{F}}{\partial q^2} \,, \tag{11}$$

$$\nabla^2 \mathbf{G} = \frac{1}{\Psi^2} \frac{\partial^2 \mathbf{G}}{\partial q^2} \,. \tag{12}$$

Уравнения (11) и (12) являются волновыми для полей F и G в среде со скоростью Ψ . К любым полям, которые удовлетворяют уравнениям (11) и (12), могут быть применены методы обработки волновых сейсмических сигналов.

Преобразования электромагнитных полей Е и В, удовлетворяющих системе (1)—(4), в волновые поля F и G, удовлетворяющие системе, аналогичной (7)—(8), описаны в теоретических работах [De Hoop, 1996; Swidinsky, 2011]. Преобразование в волновую область может быть получено из уравнений (1) и (2) с добавлением слагаемого M, отвечающего за сторонние токи в источнике:

$$\nabla \times \mathbf{B} = \mu_0 \sigma(x, y, z) \mathbf{E} + \mathbf{M}, \qquad (13)$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \,. \tag{14}$$

Рассмотрим также уравнения для волновых полей F и G. Для этого добавим к уравнениям (7) и (8) функцию источника, описываемую слагаемым K:

$$\nabla \times \mathbf{F} = \frac{1}{\psi(x, y, z)^2} \frac{\partial \mathbf{G}}{\partial q} + \mathbf{K}, \qquad (15)$$

$$\nabla \times \mathbf{G} = -\frac{\partial \mathbf{F}}{\partial q} \,. \tag{16}$$

В работе [Swidinsky, 2011] приведено преобразование решения системы (1)—(4) в решение системы, аналогичной (7)—(8). Формальный вывод дан в статье [De Hoop, 1996] для симметризованной системы уравнений Максвелла полей с добавлением в качестве источника фиктивного магнитного заряда.

Используя преобразование Лапласа, можно получить пару преобразований из диффузионной области в волновую:

$$\mathbf{B}(t) = \int_{0}^{\infty} W_{1}(t,q) \mathbf{F}(q) dq$$
(17)

И

$$\mathbf{E}(t) = \int_{0}^{\infty} W_{2}(t,q) \mathbf{G}(q) dq , \qquad (18)$$

где

$$W_1(t,q) = \frac{1}{\sqrt{4\pi t^3}} \sqrt{\alpha} q \exp\left(-\frac{\alpha q^2}{4t}\right),$$
$$W_2(t,q) = \frac{1}{\sqrt{4\pi \alpha t}} \left[\frac{\alpha q^2}{2t} - 1\right] \exp\left(-\frac{\alpha q^2}{4t}\right).$$

В выражениях для W_1 и W_2 параметр α является коэффициентом масштабирования переменной с размерностью времени (далее некалиброванное время).

В некоторых частных случаях преобразования (17), (18) можно выполнить аналитически. Однако чаще всего и, конечно, при работе с реальными данными необходимо использовать численные методы.

Выберем дискретизацию с равномерным шагом Δt по времени и равномерным шагом Δq по псевдовремени. Тогда электромагнитное поле запишется в виде векторов **E** и **B** длины *N*, элементы которых представляют собой электрическое и магнитное поля, вычисленные на заданном отсчете времени. Аналогично, псевдоволновые поля запишутся в виде векторов **F** и **G** длины **M** с элементами, вычисленными для заданного значения *q*. Из уравнений (16), (17) ясно, что интегрирование ведется на полубесконечном интервале, однако для численной реализации необходимо выбрать конечные значения длин векторов **M** и **N**.

После дискретизации интегральные уравнения (17) и (18) относительно функций **F** и **G** могут быть записаны в матричном виде:

$$\widehat{A}_{1}\mathbf{F} = \mathbf{B},\tag{19}$$

$$\hat{A}_2 \mathbf{G} = \mathbf{E} \,. \tag{20}$$

Численное решение уравнений осложнено экспоненциально затухающим ядром преобразования в $W_1(t,q)$ при достаточно больших значениях аргумента q и малых значениях аргумента t. Таким образом, сингулярные числа \hat{A}_1 будут экспоненциально стремиться к нулю. Подобные матрицы с большим числом почти нулевых элементов являются квазивырожденными. Следовательно, обратные преобразования из диффузионной области в волновую являются неустойчивыми. Для решения таких некорректных задач используют различные методы регуляризации.

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ

Одним из подходов к решению уравнения (19) для вектора F является сингулярное разложение (SVD) матрицы \hat{A}_1 [Swidinsky, 2011]. Как известно, в результате SVD-разложения получается произведение трех матриц:

$$\widehat{A}_1 = \widehat{U}\widehat{L}\widehat{V}^T$$
,
где $\widehat{U}^T\widehat{U} = \widehat{V}^T\widehat{V} = \widehat{V}\widehat{V}^T = \widehat{I}$

Здесь \hat{I} — единичная матрица. Матрица \hat{L} содержит на своей главной диагонали сингулярные значения матрицы \hat{A}_1 . Тогда нерегуляризованное решение **F** может быть записано в следующем виде:

$$\mathbf{F} = \hat{V} \hat{L}^{-1} \hat{U}^{T} \mathbf{B} \,. \tag{21}$$

Решение уравнения (21) все еще является численно неустойчивым, поскольку сингулярные значения квазивырожденной матрицы \hat{A}_1 бесконечно малые. Однако можно стабилизировать решение, добавив к сингулярным значениям регуляризационный параметр k:

$$\mathbf{F} = \hat{V}(\hat{L}^2 + k\hat{I})^{-1}\hat{L}\hat{U}^T \mathbf{B}.$$
(22)

Другой способ стабилизировать решение уравнения (19) — это использовать регуляризацию А.Н. Тихонова [Тихонов, Арсенин, 1979]. Определив матрицу регуляризации Г, можно представить решение в виде:

$$\mathbf{F} = (\widehat{A}_{1}^{T}\widehat{W}\widehat{A}_{1} + \lambda\widehat{\Gamma}^{T}\widehat{\Gamma})^{-1}\widehat{A}_{1}^{T}\widehat{W}\mathbf{B}, \qquad (23)$$

где λ — параметр регуляризации, а \widehat{W} — диагональная матрица, содержащая погрешности вычислений.

Для численной реализации преобразования в волновую область рассмотрим модель слоистого проводящего полупространства с двумя плоскопараллельными границами (модель 1: $\rho_1 = 10$ Ом·м, $h_1 = 1000$ м, $\rho_2 = 200$ Ом·м, $h_2 = 2500$ м, $\rho_3 = 1000$ Ом·м, $\rho - УЭС$ слоев, h - их мощности). Будем считать верхнее полупространство непроводящим. В качестве источника рассмотрим квадратную петлю с единичным током, лежащую на плоской поверхности проводящего полупространства. В момент времени t = 0 ток в источнике мгновенно выключается:

$$J(t) = \begin{cases} 1, & t < 0\\ 0, & t \ge 0 \end{cases}.$$
 (24)

На профиле, являющимся продолжением одной из осей генераторной петли, через равные промежутки расположены квадратные петли, в которых измеряется наведенная ЭДС переходного процесса. На рис. 1 приведены кривые спада ЭДС в зависимости от времени. Для набора разносов (расстояние между центрами генераторной и приемной петель) в различных точках профиля получим кривые спада $\varepsilon(t)$, которые описываются как решение уравнения диффузии.

Используем два вышеописанных численных алгоритма преобразования набора $\varepsilon(t)$ на различных разносах в волновое поле F (17). Количество отсчетов по времени N = 3200, время t задано с равномерным шагом от 0.0001 с до 10 с. M = 2400, q меняется с равномерным шагом от 0.01 с до 100 с. Коэффициент масштабирования $\alpha = 0.5$. Значение параметра k для SVD-регуляризации после ряда численных экспериментов выбрано равным 10^{-4} . Для регуляризации А.Н. Тихонова выберем единичную матрицу $\hat{\Gamma}_{norm}$, а регуляризационный параметр λ также положим равным 10^{-4} . В результате численного решения

Рис. 1. Переходные ЭДС многоразносной установки.

Рис. 2. Волновая трансформанта, полученная с использованием SVD-регуляризации (r = 4400 м) (a) и регуляризации А.Н. Тихонова (r = 4400 м) (δ).

Рис. 3. Сравнение волновых трансформант, полученных с использованием SVD-регуляризации (1) и регуляризации А.Н. Тихонова (2).

уравнений (22) и (23) для набора кривых $\varepsilon(t)$ получим волновые поля **F**. Полученная методом SVDрегуляризации волновая трансформанта (разнос, r = 4400 м) показана на рис. 2, *a*, а волновая трансформанта, полученная методом регуляризации А.Н. Тихонова, приведена на рис. 2, δ .

Волновые трансформанты, получаемые при различных методах регуляризации для всего набора разносов, показаны на рис. 3. Используя полученные трансформанты, построен в виде годографов график зависимости времени ее появления от разноса установки (рис. 4, *a*).

Построим годографы для некоторых типичных геологических разрезов. Различия между годографами для SVD-регуляризации и регуляризация А.Н. Тихонова не столь существенны (см. рис. 4, *a*). На втором из них более отчетливо проявляется влияние границы в диапазоне расстояний 1600—2400 м, а первый более гладкий. Подбором параметров регуляризации можно достичь совпадения годографов, но реализация SVD-регуляризации проще. Поэтому в дальнейшем будем использовать SVD-регуляризацию

Рис. 4. Годографы (*a*) и график скорости (*б*), построенные по волновым трансформантам для трехслойной среды.

для решения уравнения (17). По годографам можно вычислить скорость волновой трансформанты $v = 1/(\partial t / \partial r)$. На рис. 4, *б* показана зависимость изменения скорости, вычисленной по годографам.

Для того, чтобы протестировать процедуру трансформации сигналов в область решения волнового уравнения, подставим волновую трансформанту (разнос, r = 200 м) в правую часть уравнения (17). Полученная кривая зондирования незначительно отличается от развертки исходной ЭДС (рис. 5). На интервале времени до 0.01 с относительное отклонение не превышает 1.5 %. Далее с ростом времени отклонение возрастает. «Хвост» кривой (для времен, превышающих 0.1 с) восстановить не удается.

Годографы для проводящего полупространства с разными УЭС изображены на рис. 6, *a*. Видно, что с увеличением УЭС уменьшается угол наклона годографа. На рис. 6, *б* показаны соответствующие скорости. Для всех УЭС скорости остаются постоянными при всех разносах. Величина скорости при $\rho = 10 \text{ Ом} \cdot \text{м}$ равна 2230 м/с и возрастает при увеличении УЭС. При $\rho = 50 \text{ Ом} \cdot \text{м}$ она составляет 4973 м/с. Отношение скоростей $v_1 / v_2 = \sqrt{\rho_1 / \rho_2}$.

В качестве следующего примера рассмотрим ЭДС от вертикального магнитного диполя с моментом M над бесконечно тонкой горизонтальной пластиной с продольной проводимостью $S = \lim_{h \to 0, \rho \to 0} h/\rho$, находящейся на глубине z в непроводящем однородном пространстве (здесь h, ρ — мощность и УЭС одиночного проводящего пласта в непроводящей среде). Известно [Сидоров, 1985], что для проводящей пластины временная развертка ЭДС записывается в следующем виде:

$$\frac{\partial B_z}{\partial t} = \frac{Mq}{\pi S} \frac{m[3r^2 - 8m^2]}{[r^2 + 4m^2]^{7/2}},$$

где $m = z + t / \mu S$; q — момент приемной рамки, равный произведению ее площади на число витков; r — расстояние от источника до центра приемной рамки (разнос).

Для численной реализации преобразования сигнала в волновую область рассмотрим проводящий слой в непроводящей среде (мощность 10 м, продольная проводимость *S* (10, 20, 50, 100 См/м)). Кровля пласта расположена на глубине $z_1 = 10$ м. Источник и 30 приемников находятся на одной линии с разносами от 150 до 400 м. Построенные по-

Рис. 5. Тест взаимной однозначности процедуры волнового преобразования:

исходная кривая ЭДС (сплошная линия); ЭДС, восстановленная из волновой трансформанты (белые круги).

Рис. 6. Годографы волновых трансформант для проводящего полупространства (*a*), графики скорости, построенные по волновым трансформантам проводящего полупространства (*б*).

Шифр кривых — УЭС среды, Ом · м.

сле преобразования скорости изображены на рис. 7. Видно, что с ростом S скорость уменьшается, а отношение скоростей v_1/v_2 выражается как $\sqrt{S_2/S_1}$.

На рис. 8, *а* показаны годографы при изменяющимся (от 10 до 60 Ом·м) УЭС первого слоя для описанной выше трехслойной модели. При небольших разносах все годографы сходятся в одной точке. Наклон годографа тем больше, чем ниже УЭС первого слоя. На больших расстояниях временная разница растет и при r = 10000 м достигает 1.58 с. На рис. 8, *б* приведены графики скоростей в зависимости от УЭС первого слоя. С возрастанием УЭС увеличивается и соответствующая скорость волновой трансформанты. На малых разносах скорости изменяются от 2000 до 5000 м/с, тогда как на больших разносах они лежат в диапазоне 4900—9500 м/с.

Шифр кривых — продольная электропроводность *S*-пленки, См/м.

Рис. 8. Зависимость годографов от изменения УЭС первого слоя (*a*), зависимость скоростей, полученных из волновых трансформант, от изменения УЭС первого слоя в трехслойной (б) геоэлектрической среде — модель 1.

Шифр кривых — $\rho_1 = 10, 20, 30, 40, 50 \text{ Ом} \cdot \text{м}.$

Рис. 9. Зависимость годографов от изменения УЭС второго слоя (*a*), зависимость скоростей, полученных из волновых трансформант, от изменения УЭС второго слоя (*б*) в трехслойной геоэлектрической среде — модель 1.

Шифр кривых — $\rho_2 = 50, 500 \text{ Ом} \cdot \text{м}.$

Зависимость годографа от УЭС второго слоя показана на рис. 9, *а*. Видно, что увеличение ρ_2 в 10 раз приводит к возрастанию времени прихода фиктивной волны $\Delta t = 0.22$ с (разнос, r = 10000 м). Для разносов, меньших 2200 м, времена прихода практически не зависят от УЭС второго слоя. На рис. 9, *б* показаны соответствующие скорости волновой трансформанты. Для разносов, больших 2200 м, скорость возрастает с увеличением УЭС второго слоя.

На рис. 10, *а* показаны годографы в зависимости от мощности первого слоя. При разносах, меньших 3200 м, годографы практически совпадают между собой. Далее с увеличением мощности слоя увеличивается и время появления волновой трансформанты. На разносе 10000 м разница Δt достигает значения 1.59 с. Построенные по годографам распределения скоростей изображены на рис. 10, *б*. Для больших значений h_1 скорость практически не зависит от разноса и равна примерно 2095—2230 м/с. С уменьшением h_1 скорость начинает изменятся в существенно больших пределах: 2230—3560 м/с при $h_1 = 2000$ м; 2230—4900 м/с при $h_1 = 1000$ м.

Рис. 10. Зависимость годографов от изменения мощности первого слоя (*a*), зависимость скоростей, полученных из волновых трансформант, от изменения мощности первого слоя в трехслойной (δ) геоэлектрической среде — модель 1.

Шифр кривых — $h_1 = 1000, 2000, 4000$ м.

ЗАКЛЮЧЕНИЕ

Выполнены преобразования сигналов зондирований становлением поля в пространство решений волнового уравнения на основе SVD-регуляризации и регуляризации А.Н. Тихонова. Разработаны процедуры расчета годографов и скоростей полученных волновых трансформант. Исследован представительный класс моделей геоэлектрической среды: полупространство, тонкий проводящий слой в непроводящем полупространстве (*S*-плоскость), слоистое полупространство с двумя плоскопараллельными границами; на примере моделей однородного проводящего полупространства и проводящего тонкого слоя получены соотношения скоростей и значений УЭС, которые описываются формулой $v_1 / v_2 = \sqrt{\rho_1 / \rho_2}$.

ЛИТЕРАТУРА

Ваньян Л.Л. Электроразведка по методу становления магнитного поля. М., Госгеолтехиздат, 1963, 184 с.

Ваньян Л.Л. Основы электромагнитных зондирований. М., Недра, 1965, 108 с.

Каменецкий Ф.М. Электромагнитные геофизические исследования методом переходных процессов. М., ГЕОС, 1997, 162 с.

Кауфман А.А., Морозова Г.М. Теоретические основы метода зондирований становлением поля в ближней зоне. Новосибирск, Наука, 1970, 123 с.

Резницкая К.Г. Связь между решениями задачи Коши для уравнений различных типов и обратные задачи // Математические проблемы геофизики. Новосибирск, ВЦ СО АН СССР, 1974, вып. 5, ч. I, с. 55—62.

Сидоров В.А. Импульсная индуктивная электроразведка. М., Недра, 1985, 192 с.

Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач, 2-е изд. М., Наука, 1979, 285 с. Шейнманн С.М. Современные физические основы теории электроразведки. М., Недра, 1969, 224 с.

De Hoop A.T. A general correspondence principle for time-domain electromagnetic wave and diffusion fields // Geophys. J. Int., 1996, v. 127, p. 757—761.

Gershenson M. Simple interpretation of time-domain electromagnetic sounding using similarities between wave and diffusion propagation // Geophysics, 1997, v. 62, p. 763—774.

Gibert D. Virieux J. Electromagnetic imaging and simulated annealing // J. Geophys. Res., 1991, v. 96, p. 8057—8067.

Kunetz G. Processing and interpretation of magnetotelluric soundings // Geophysics, 1972, v. 37, p. 1005—1021.

Lee K.H., Xie G. A new approach to imaging with low-frequency electromagnetic fields // Geophysics, 1993, v. 58, p. 780–796.

Lee K.H., Liu G., Morrison H.F. A new approach to modeling the electromagnetic response of conductive media // Geophysics, 1989, v. 54, p. 1180—1192.

Levy S., Oldenburg D., Wang J. Subsurface imaging using magnetotelluric data // Geophysics, 1988, v. 53, p. 104–117.

Mittet R. Seismic wave propagation concepts applied to the interpretaion of marine controlled-source electromagnetics // Geophysics, 2015, v. 80, p. 63—81

Nekut A.G. Electromagnetic ray-trace tomography // Geophysics, 1994, v. 59, p. 371—377.

Slob E.C., Habashy T.M., Torres-Verdin. C. A new stable numerical procedure for computing the q-transform of TEM data // EAGE 57th Conference and Technical Exhibition, Glasgow, Scotland, 1995, p. 221–223.

Swidinsky A. Transient electromagnetic modelling and imaging of thin resistive structures: Applications for gas hydrate assessment. A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Physics University of Toronto, 2011, 255 p.

Virieux J., Flores-Luna C., Gilbert D. Asymptotic theory for diffusive electromagnetic imaging // Geophys. J. Int., 1994, v. 119, p. 857—868.

Weidelt P. The inverse problem of geomagnetic induction // Zeit. fur Geophys., 1972, v. 38, p. 257–298.

Wilson A.J.S. Seismic processing of multichannel transient electromagnetic (MTEM) data // EAGE 56th Conference and Technical Exhibition, Vienna, Austria, 1994, p. 123–124.

Xie G., Bai C., Li X. Extracting the virtual reflected wavelet from TEM data based on regularizing method // Pure Appl. Geophys., 2012, v. 169, p. 1269–1282.

Yu L., Edwards R.N. On crosswell diffusive time-domain electromagnetic tomography // Geophys. J. Int., 1997, v. 130, p. 449—459.

Zhdanov M.S., Frenkel M.A. The solution of the inverse problems on the basis of the analytical continuation of the transient electromagnetic field in reverse time // J. Geomag. Geoelectr., 1983, v. 35, p. 747—765.

Рекомендована к печати 1 сентября 2016 г. А.Д. Дучковым Поступила в редакцию 19 апреля 2016 г.