УДК 536.46

О СТРУКТУРЕ АВТОМОДЕЛЬНЫХ ДЕТОНАЦИОННЫХ ВОЛН В ЗАРЯДАХ ТРОТИЛА

А. Л. Кул

Ливерморская национальная лаборатория им. Э. Лоуренса, 94551 Ливермор, Калифорния, США kuhl2@llnl.gov

Предложен метод фазовой плоскости для моделирования полей течения, связанных с детонационными волнами, распространяющимися с постоянной скоростью в зарядах тротила. Для формулировки задачи на фазовой плоскости переменных «безразмерная скорость звука Z — радиальная скорость F» использовались преобразования подобия. Получено два связанных обыкновенных дифференциальных уравнения, которые решаются совместно. Решение соответствует интегральной кривой Z(F) на фазовой плоскости, начинающейся из точки Чепмена — Жуге и заканчивающейся в особой точке А — звуковой точке за фронтом волны. Система замыкается соотношениями для термодинамических переменных вдоль изоэнтропы расширения, проходящей через точку Чепмена — Жуге. В результате формируется полное уравнение состояния термодинамической системы. Параметры в точке Чепмена — Жуге и на изоэнтропе рассчитаны с применением термодинамического кода Cheetah. Получены решения для плоской, цилиндрической и сферической детонационных волн. Рассчитаны профили концентраций компонентов продуктов взрыва, основным компонентом (≈10 моль/кг) оказался углерод в форме графита. Для инициализации одномерного газодинамического моделирования использовано автомодельное решение, которое описывает начальную стадию расширения продуктов детонации и формирование взрывной волны в воздухе. Подобное моделирование обеспечивает проникновение в суть термодинамических состояний и распределений компонентов продуктов взрыва, которые в начальный момент ответственны за оптическое излучение огненного шара при взрыве заряда тротила.

Ключевые слова: детонационные волны в тротиле, метод фазовой плоскости, автомодельное решение, условие Чепмена — Жуге, концентрация компонентов продуктов взрыва.

ВВЕДЕНИЕ

Применение методов подобия для моделирования взрывов имеет длинную и престижную историю. В 1941 г. Дж. Тэйлор использовал переменную подобия для преобразования уравнений газовой динамики в частных производных в систему обыкновенных дифференциальных уравнений теории взрывной волны [1, 2]. Он предположил, что скорость детонации в заряде тротила (THT) постоянна и, используя уравнение состояния для продуктов взрыва ТНТ, развитое Джонсом и Миллером [3], рассчитал профили давления и скорости плоской и сферической волн за фронтом детонации [1, 2]. Он впервые показал, что скорость обращается в нуль во внутренней половине детонационной волны. Продолжение этих исследований детонации ТНТ Тэйлор опубликовал в 1958 г. в Принстонской серии по высокоскоростной аэро-

динамике [2]. Подход подобия был формализован как метод фазового пространства Л. И. Седовым в 1958 г. в его монографии [4] и применен им для широкого ряда взрывных и сходящихся задач. В 1960 г. К. П. Станюкович использовал методы подобия для описания разлета продуктов детонации в вакууме [5], продукты моделировались изоэнтропическим степенным законом ($\Gamma = 3$). Г. И. Баренблатт развил методы масштабирования [6] и распространил метод подобия на промежуточный асимптотический режим [7]. Общее описание теории детонационных волн приведено в монографии Я. Б. Зельдовича и А. С. Компанейца [8]. Недавний исчерпывающий обзор представлен в книге Дж. Ли [9].

Методы подобия бо́льшую популярность приобрели при моделировании взрыва в газах, чем в твердых телах¹. Метод фазового про-

[©] Kuhl A. L., 2015.

Lawrence Livermore National Laboratory, Livermore, CA, USA.

¹Это обусловлено тем, что газы можно аккуратно описывать моделями с постоянным отношением удельных теплоемкостей γ , в то время как для описания продуктов детонации твердых ВВ требуются более слож-

странства был использован А. К. Оппенгеймом с коллегами для получения всех возможных решений, связанных с сильной ударной волной [10] или сильной детонацией [11], детонацией с переменным выделением энергии во фронте [12], волнами давления, генерируемыми установившимися пламенами [13].

В настоящей работе развита модель фазового пространства для детонационных волн в твердых телах, которая использует полную термодинамическую модель для продуктов детонации ТНТ, основанную на термодинамическом коде Cheetah в трактовке Л. Е. Фрейда [14].

ТЕРМОДИНАМИКА ДЕТОНАЦИИ ТРОТИЛА

Энергетика продуктов детонации ТНТ описывается как положение состояний (годограф) на плоскости Ле Шателье — зависимости удельной внутренней энергии и от температуры Т (рис. 1). Годограф начинается из точки Чепмена — Жуге (CJ) и расширяется по изоэнтропе до точки 300 К. Годограф и условия CJ предсказаны при помощи кода Cheetah. Расчетные точки приближены квадратичной функцией $u_i(T) = a_i T^2 + b_i T + c_i$ (кружки на рис. 1). Константы приближения приведены в табл. 1. На рис. 1 переменная глобальной энергии и представляет собой абсолютную удельную внутреннюю энергию, которая включает в себя энергию формирования молекул ТНТ. В используемом масштабе при T = 300 К энергия реагентов составляет $u_r^0 = -66.5 \text{ кал/г}$, энергия продуктов детонации $u_p^0 = -1079.3$ кал/г. Их разница и есть теплота детонации $\Delta H_d \equiv$ $u_r^0 - u_n^0 = 1\,012.8$ кал/г. Это значение находится в хорошем соответствии с теплотой реакции ТНТ 1093 \pm 11 кал/г (при ρ_0 = $1.533 \ r/cm^3$), измеренной в калориметрической бомбе [15]. Энергия при нулевой температуре

Рис. 1. Диаграмма Ле Шателье, иллюстрирующая расширение продуктов детонации ТНТ из точки СЈ до точки, в которой T = 0:

шкалы для абсолютной и относительной энергии связаны соотношением $e \equiv u + 1\,131$ кал/г; решение иллюстрирует условие скачка энергии при переходе через детонационный фронт: $e_{\rm CJ} \equiv e_0 + |\Delta H_d| + \Omega$, здесь $\Omega = W_{\rm CJ}^2/2(\Gamma + 1)^2$ — поток кинетической энергии через фронт

 $u = -1\,131$ кал/г показывает, что энергия газообразных продуктов детонации при комнатной температуре равна $e_0 = 52$ кал/г. Рис. 1 имеет дополнительную ось по энергии e (e = 0при T = 0). Она связана с абсолютной энергией соотношением $e \equiv u + 1\,131$. Точка UVна рис. 1 соответствует детонации при постоянных значениях энергии и объема. По энер-

Таблица 1

Приближение	T, K	a_i	b_i	c_i
4	300 < T < 2357	$6.9982 \cdot 10^{-5}$	0.16051	-1.131
5	2118 < T < 3700	$35.227 \cdot 10^{-5}$	-1.2316	579

Константы в квадратичной функции $u_i(T) = a_i T^2 + b_i T + c_i$ для THT

ные уравнения состояния (например, JWL-модель), которые выходят за рамки формулировок большинства методов подобия.

Состояния в точках СЈ и UV для ТНТ $(ho_0=1.654~{ m r/cm}^3)$						
Переменная	Состояние в точке CJ	Состояние в точке UV				
p, кбар	197.59759	90.13				
$ ho$, г/см 3	2.1616	1.654				
e, кал/г*	1352.46	1064.8				
u, кал/г	273.16	-66.5				
T, K	3237.875	2866.9				
s, кал/(г · K)	1.58447	1.623				
u_r , км/с	1.68595	0				
W, км/с	7.18	0				
а, км/с	5.4939	4.0593				
$\Gamma = W_{\rm CJ}/u_{r,\rm CJ} - 1$	3.2586					

Таблица 2 Состояния в точках СЈ и UV для ТНТ $(\alpha = 1.654 \text{ с} (\alpha^3)$

 $*e \equiv u + 1\,131$ кал/г.

гетической шкале е теплота детонации равна $\Delta H_d \equiv e_{UV} - e_0 = 1012.8 \text{ кал/г. Увели$ чение параметров при переходе от точки UVк точке CJ обусловлено потоком кинетической $энергии, пересекающей фронт детонации, <math>\Omega = W_{\rm CJ}^2/2(\Gamma+1)^2 = 340 \text{ кал/г, где } W_{\rm CJ}$ — скорость детонационной волны, $\Gamma = W_{\rm CJ}/u_{r,\rm CJ} - 1$ показатель изоэнтропы. Видно, что энергия в точке CJ равна 273.2 и 1 404.8 кал/г по шкалам абсолютной и дополнительной энергии соответственно. Таким образом, энергетические характеристики газообразных продуктов детонации тротила полностью характеризуются диаграммой Ле Шателье, приведенной на рис. 1.

Другие термодинамические величины также были рассчитаны вдоль изоэнтропы СЈ и обезразмерены на их значения в точке СЈ: температура $\Theta = T/T_{\rm CJ}$, давление $P = p/p_{\rm CJ}$, энергия $E = e/e_{\rm CJ}$, плотность $R = \rho/\rho_{\rm CJ}$, скорость звука $A = (a/a_{\rm CJ})^2$, показатель изоэнтропы $G = \Gamma/\Gamma_{\rm CJ}$ (см. в табл. 2 значения в точке CJ). Их зависимости вдоль изоэнтропы CJ от отношения² плотностей R приведены на рис. 2. Подчеркнем, что это термодинамическое решение является общим (например, сво-

Рис. 2. Соотношения между безразмерными термодинамическими переменными вдоль изо-энтропы CJ для THT ($S_{\rm CJ} = 1.58 \text{ кал}/(\text{r}\cdot\text{K})$)

бодным от любых ограничений на постоянную Γ и пр.). Оно получено минимизацией свободной энергии Гиббса термодинамической системы для ТНТ и автоматически удовлетворяет первому закону термодинамики вдоль изоэнтропы СЈ. При подобных обстоятельствах использование закона сохранения энергии для газовой динамики становится излишним (избыточным).

Соответствующие концентрации компонентов продуктов детонации ТНТ приведены на рис. 3 как функции температуры. Преобладает углерод в форме графита, далее следуют оксид и диоксид углерода, двухатомный азот, вода и метан. Это решение $C_i = f_i(T, S_{\rm CJ})$, скомбинированное с автомодельным решением, используется далее при анализе детонационной волны.

МЕТОД ФАЗОВОЙ ПЛОСКОСТИ

Мы принимаем, что заряд инициируется в точке r = t = 0, процесс распространяется с постоянной скоростью детонации $W_{\rm CJ}$ и удовлетворяет условию CJ. Тогда траектория детонационного фронта описывается линейным соотношением

$$r_{\rm CJ} = W_{\rm CJ} t_{\rm CJ},\tag{1}$$

а время и пространственные координаты связаны как

 $^{^{2}}$ Выбор безразмерной переменной R как ординаты предпочтителен, потому что R является одной из двух зависимых переменных в представленной ниже формулировке модели фазовой плоскости.

Рис. 3. Концентрация компонентов в продуктах взрыва ТНТ вдоль изоэнтропы CJ

$$dt = dr/W_{\rm CJ}.$$
 (2)

Таким образом, можно определить переменную подобия [10, 11]:

$$x = r/r_{\rm CJ}.\tag{3}$$

Затем уравнения газовой динамики в частных производных можно преобразовать в систему обыкновенных дифференциальных уравнений теории взрывной волны, которые являются функцией переменной подобия x [16]. Полезно определить следующие переменные на фазовой плоскости:

$$F \equiv \frac{u}{xW_{\rm CJ}}, \quad Z \equiv \frac{a^2}{x^2W_{\rm CJ}^2}.$$
 (4)

Как показано в приложении, основные уравнения могут быть преобразованы в систему двух связанных обыкновенных дифференциальных уравнений для зависимых переменных x и Rкак функции независимой переменной F:

$$\frac{d\ln x}{dF} = \frac{-1}{F} \frac{x^{-2}A(R)Z_{\rm CJ} - (1-F)^2}{(j+1)x^{-2}A(R)Z_{\rm CJ} - (1-F)^2},$$
 (5)
$$\frac{d\ln R}{d\ln R} = \frac{j(1-F)}{(j+1)x^{-2}A(R)Z_{\rm CJ} - (1-F)^2},$$
 (6)

 $\overline{dF} = \overline{(j+1)x^{-2}A(R)Z_{\rm CJ} - (1-F)^2}.$ (6) Здесь j = 0 соответствует случаю плоского течения, j = 1 — цилиндрического, j = 2 — сферически-симметричного. Эти уравнения дополняются функцией уравнения состояния A(R), показанной на рис. 2.

Приведенные выше уравнения интегрируются на фазовой плоскости от точки CJ с координатами $\{F_{CJ} = 1/(\Gamma+1), Z_{CJ} = [\Gamma/(\Gamma+1)]^2\}$, где x = R = 1, до точки сингулярности A с координатами $\{F = 0; Z = 1\}$. Профили решения x(F) и R(F) для плоского, цилиндрического и сферически-симметричного течений показаны на рис. 4,a, их интегральные кривые на фазовой плоскости Z-F — на рис. 4, 6. Плоский случай представляет сингулярное решение $Z = (1 - F)^2$, лежащее на кривой D = 0; это решение было найдено в [11].

РЕШЕНИЕ

Преобразуя решение (5) для получения F(x) и комбинируя с решением (6), получаем

$$u/u_{\rm CJ} \equiv U(x) = xF(x)/F_{\rm CJ},$$
 (7)

$$\rho/\rho_{\rm CJ} = R(F(x)). \tag{8}$$

Таким образом, профили скорости и плотности следуют прямо из кривых решения x(F) и R(F) соответственно. Профили термодинамических величин вытекают из решений, которые выражаются через соотношения P = P(R), $\Theta =$

Рис. 4. Автомодельные решения для плоской (j = 0), цилиндрической (j = 1) и сферической (j = 2) детонационных волн Чепмена — Жуге в ТНТ

 $\Theta(R), E = E(R), A = A(R), G = G(R)$ из уравнения состояния, представленные на рис. 2. Профили характеристик течения за плоской, цилиндрической и сферической детонационными волнами Чепмена — Жуге в зарядах ТНТ приведены на рис. 5. Видно, что поле скоростей

Рис. 5. Профили характеристик течения для плоской (j = 0), цилиндрической (j = 1) и сферической (j = 2) детонационных волн Чепмена — Жуге в ТНТ (автомодельные решение)

стремится к нулю при $x = r/r_{\rm CJ} \approx 0.5$ (положение особой точки A); внутри состояния в точке A поток неподвижен³ и термодинамические величины постоянны. Для сферического и цилиндрического случаев наклон профилей характеристик течения становится бесконечным по мере приближения к фронту. Это является следствием того, что граничное условие CJ лежит вблизи (на) линии сингулярности $D = 0^4$. Отметим также, что показатель изоэнтропы изменяется, он уменьшается до $G(x < 0.5) \approx 0.8$ за фронтом волны.

Используя температурное поле T(x) и функции концентраций $C_i(T)$, можно рассчитать поля концентраций компонентов $C_i(x)$; результаты для случая сферической детонации представлены на рис. 6. Концентрации компонентов изменяются за фронтом в соответствии с уменьшением температуры. Отметим также профиль концентрации электронов, он был рассчитан исходя из концентрации углерода в форме графита и температуры в соответствии с моделью Ершова [17].

³Предсказано впервые Дж. Тейлором в 1941 и 1950 гг. [1].

 $^{{}^{4}}$ Как показано в приложении, $d\ln F/d\ln x = -(jZ+D)/D \to \infty$ приD=0.

Рис. 6. Профили концентраций компонентов в газообразных продуктах сферической детонации Чепмена — Жуге для ТНТ

ОБСУЖДЕНИЕ

Интегралы массы и энергии

Важно проверить, что в полученном решении (см. рис. 5) действительно сохраняются масса и энергия. Для того чтобы это сделать, определим массу M и полную энергию E следующим образом:

$$M_j \equiv k_j \int_0^{R_c} \rho_j(r) r^j dr, \qquad (9)$$

$$E_j \equiv k_j \int_0^{R_c} [e_j(r) + u_{r,j}^2(r)/2] \,\rho_j(r) \, r^j dr, \quad (10)$$

где R_c — радиус заряда, $k_j = 4\pi$, 2π и 1 для *j* = 2, 1 и 0. Интегралы были рассчитаны квадратурным методом второго порядка. Исследования с измельчением сетки показали сходимость при числе расчетных точек 10^4 . Результаты для заряда ТНТ массой 1 кг (R_c = $5.24556 \text{ см/кг}^{1/3}$) приведены в табл. 3. Погрешность измерения массы варьирует от -0.05~%до $+0.009 \% (-0.5 \div +0.06 г)$, энергии — от 0.14до 0.18 % (или 1.5÷1.9 кал/г). Мы полагаем, что достигнутая точность адекватна решаемой задаче и функции решения должны рассчитываться на конечной сетке, при этом наклоны профилей бесконечны на фронте. В табл. 3 также показаны пиковые значения e, T и ρ (на расчетной сетке) в сравнении с состоянием в точке СЈ. Построенное поле течения используется для инициализации одномерного расчета взрывной волны.

Решение с постоянным показателем Γ

В отличие от настоящей работы, в предыдущих исследованиях [10] предполагалось, что газ — совершенный, с постоянным отношением удельных теплоемкостей γ ; энтропия изменяется во взрывной волне, так что приближение изоэнтропичности неприменимо; сохраняется полная энергия газовой динамики. В этих условиях метод фазового пространства приводит к одному обыкновенному дифференциальному уравнению [18]

$$\frac{d\log Z}{d\log F} = \frac{2D + j(\gamma - 1)(1 - F)F}{jZ + D}.$$
 (11)

Его решение дает интегральную кривую на фазовой плоскости Z-F, которая выражается

Переменная	Теория	Автомодельное решение			$\Gamma = 3.25$
		j = 0	j = 1	j = 2	j = 2
$M_0,$ кг	1.0000	1.00006	0.99947	1.00009	1.01165
$E_0,$ кал/г	1064.8	1063.3	1062.3	1062.9	1085.5
$e_{\max}, \kappa a \pi / r$	1 404.8	1402.5	1391.3	1386.9	1387.6
$T_{\rm max},{ m K}$	3237.9	3227.4	3216.5	3212.3	3213.0
$ ho_{ m max}, { m r/cm}^3$	2.1616	2.1612	2.1485	2.1405	2.1415

 $T \, a \, б \, \pi \, u \, u \, a \, \, 3$ Точность решения в сравнении с теорией для детонационных волн в THT

уравнением

$$\frac{d\log x}{d\log F} = \frac{-D}{jZ+D},\tag{12}$$

в котором квадратура производит дополнительную функцию x(F) [18]. Эти уравнения дополняются определениями

$$\frac{u}{u_{\rm CJ}} = \frac{xF}{F_{\rm CJ}}, \quad \frac{T}{T_{\rm CJ}} = \frac{x^2Z}{Z_{\rm CJ}} \tag{13}$$

и соотношениями с постоянным значением γ

$$\frac{\rho}{\rho_{\rm CJ}} = \left(\frac{T}{T_{\rm CJ}}\right)^{1/(\gamma-1)}, \quad \frac{p}{p_{\rm CJ}} = \left(\frac{\rho}{\rho_{\rm CJ}}\right)^{\gamma}. \tag{14}$$

Уравнения (11), (12) были проинтегрированы от точки СЈ до особой точки A при $\gamma = \Gamma_{\rm CJ} = 3.2586$ и j = 2. Результирующие профили решения представлены на рис. 7 в сравнении с решением с переменным значением Γ из предыдущей части (см. рис. 5). Эти два решения похожи, но имеются и различия: все профили для случая с $\Gamma = {\rm const}$ лежат выше профилей с переменным Γ . Это результат неустранимых погрешностей в глобальных интегралах массы и энергии. Из табл. 3 видно, что погрешность по массе составляет 1.1 %, по энергии —1.9 % для решения с $\Gamma = {\rm const}$.

Рис. 7. Сравнение решения с $\Gamma=3.2586$ с изоэнтропическим решением СЈ ($S=1.58~{\rm kan}/({\rm r\cdot K}))$ для сферического случая (j=2)

Рис. 8. Распределение температуры и концентраций компонентов в газообразных продуктах взрыва ТНТ за фронтом сферической детонационной волны СЈ при t = 0 и 2.5 мкс

Профили параметров взрывной волны, генерируемой при взрыве заряда ТНТ в воздухе

Автомодельное решение с переменным показателем Γ для сферической детонационной волны CJ было использовано для инициализации одномерного газодинамического расчета. Распределения температуры и концентраций компонентов в газообразных продуктах взрыва THT при t = 0 и 2.5 мкс за фронтом сферической детонационной волны CJ приведены на рис. 8. Доминирует углерод в виде графита (9.9 моль/кг); оксиды CO₂ (8.9 моль/кг) и CO (7.5 моль/кг) преобладают над CH₄ (4.5 моль/кг), H₂ (1 моль/кг) и H₂O (1 моль/кг) на начальных стадиях расширения газообразных продуктов детонации при t = 2.5 мкс.

ЗАКЛЮЧЕНИЕ

Предложена модель фазовой плоскости для описания параметров течения, связанных с детонационными волнами в сферической, цилиндрической и плоской геометрии. Модель основана на двух связанных обыкновенных дифференциальных уравнениях для $d \ln x/dF$ и $d \ln R/dF$. Система замыкается термодинамическими соотношениями P(R), $\Theta(R)$, E(R), A(R), G(R) и $C_i(T)$, соответствующими равновесному решению вдоль изоэнтропы СЈ для рассматриваемой термодинамической системы. В действительности, эти соотношения способствуют сохранению энергии вдоль изоэнтропы, исключая необходимость применения уравнения сохранения энергии газовой динамики для этой отдельной задачи. Результатом решения системы обыкновенных дифференциальных уравнений являются функции x(F) и R(F), из которых следуют профили скорости U(x) и плотности R(x) за фронтом волны. Совместно с термодинамическими соотношениями они позволяют построить профили термодинамических величин P(x), $\Theta(x)$, E(x), A(x) и $C_i(x)$ за фронтом волны. В предсказываемом решении сохраняются вся масса (с погрешностью 0.05 %) и вся глобальная энергия (с погрешностью 0.2 %) при мелкой расчетной сетке интегралов (10^4 ячеек).

В предложенной формулировке задачи центральную роль играет годограф внутренней энергии u(T) на плоскости Ле Шателье (см. рис. 1). Он дает не только уникальную связь внутренней энергии и температуры, но и полностью характеризует калорические свойства системы. Кроме того, точка Чепмена — Жуге сама обладает почти магическими свойствами: (i) определяет условия на скачке при переходе через фронт детонации, (ii) контролирует сохранение массы и энергии за фронтом, (iii) сама по себе является особой точкой для системы обыкновенных дифференциальных уравнений, приводя к бесконечному наклону профилей характеристик течения за фронтом волны.

Подобное моделирование обеспечивает уникальное проникновение в суть термодинамических состояний и распределений компонентов продуктов взрыва, которые обусловливают появление оптического излучения огненного шара при взрыве ТНТ. Этот подход может быть полезным при изучении структуры и излучательных свойств детонационных волн и других зарядов мощных BB.

Работа выполнена в Ливерморской национальной лаборатории им. Э. Лоуренса при поддержке Департамента энергетики США (контракт DE-AC52-07NA27344) и Департамента отечественной безопасности S&T (контракт HSHQPM-10-X-00070).

ЛИТЕРАТУРА

1. **Taylor G. I.** The dynamics of the combustion products behind plane and spherical detonation

fronts in explosives // Proc. Roy. Soc. A. — 1950. — V. 200. — P. 235–247.

- Taylor G. I., Tankin R. S. Chapter 3: Gas dynamical aspects of detonation // Fundamentals of Gas Dynamics. V. III: High Speed Aerodynamics and Jet Propulsion. Princeton: Princeton Univ. Press, 1958. P. 622–686.
- Jones H., Miller A. R. The detonation of solid explosives: the equilibrium conditions in the detonation wave-front and the adiabatic expansion of the products of detonation // Proc. Roy. Soc. A. — 1948. — V. 194, N 1039. — P. 480–507.
- Седов Л. И. Методы подобия и размерности в механике. — М.; Л.: Гостехиздат, 1944.
- 5. Stanyukovich K. P. Unsteady Motion of Continuous Media. — London: Pergamon Press, 1960.
- 6. Barenblatt G. I. Scaling. Cambridge: Cambridge Univ. Press, 2003.
- Barenblatt G. I. Scaling, Self-Similarity and Intermediate Asymptotics. — Cambridge: Cambridge Univ. Press, 1996.
- 8. Zel'dovich Ya. B., Kompaneets A. S. Theory of Detonation. New York: Academic Press, 1960.
- 9. Lee J. H. S. The Detonation Phenomenon. Cambridge: Cambridge Univ. Press, 2008.
- Oppenheim A. K., Kuhl A. L., Lundstrom E. A., Kamel M. M. A parametric study of selfsimilar blast waves // J. Fluid Mech. — 1972. — V. 52, Pt A. — P. 657–682.
- Oppenheim A. K., Kuhl A. L., Kamel M. M. On self-similar blast waves headed by the Chapmann — Jouguet detonation // J. Fluid Mech. — 1972. — V. 55, N 2. — P. 257–270.
- Barenblatt G. I., Guirguis R. H., Kamel M. M., Kuhl A. L., Oppenheim A. K., Zeldovich Ya. B. Self-similar explosion waves of variable energy at the front // J. Fluid Mech. — 1980. — V. 99, Pt 4. — P. 841–858.
- Kuhl A. L., Kamel M. M., Oppenheim A. K. Pressure waves generated by steady flames // Fourteenth Symp. (Intern.) on Combustion. — Pittsburgh: The Combustion Inst., 1973. — P. 1201–1215.
- 14. Fried L. E. CHEETAH 1.22 User's manual // Report N UCRL-MA-117541, LLNL. — 1995.
- 15. Ornellas D. L. Calorimetric determination of the heat and products of detonation for explosives: october 1961 to april 1982 // Report N UCRL-52821, LLNL. — 1982.
- Oppenheim A. K., Lundstrom E. A., Kuhl A. L., Kamel M. M. A systematic exposition of the conservation equations for blast waves // J. Appl. Mech. — December 1971. — P. 783–794.
- Ершов А. П. Ионизация при детонации конденсированных ВВ // Физика горения и взрыва. — 1975. — Т. 11, № 6. — С. 938–945.
- Kuhl A. L., Seizew M. R. Analysis of ideal, strong, Chapman — Jouguet detonations // TRW Report 78.4735.9-13. — Redondo Beach, CA, 1978.

ПРИЛОЖЕНИЕ

Из нашей предыдущей работы по систематическому исследованию уравнений сохранения для взрывных волн [14] следует

$$-D\frac{d\ln F}{d\ln x} = D + jZ = (j+1)Z - (1-F)^2, (A1)$$

где $Z \equiv x^{-2} \Gamma g / h$ и $D = Z - (1 - F)^2$. Можно показать, что

$$-D\frac{d\ln h}{d\ln x} = \frac{F}{1-F} \left[D + jZ - (j+1)D \right] = jF(1-F).$$
(A2)

Переписывая уравнения в терминах F как независимой переменной и заменяя $h = \rho/\rho_a$ на $R \equiv \rho/\rho_{\rm CJ}$, находим

$$\frac{d\ln x}{dF} = \frac{-1}{F} \frac{Z - (1 - F)^2}{(j+1)Z - (1 - F)^2},$$
 (A3)

$$\frac{d\ln R}{dF} = \frac{j(1-F)}{(j+1)Z - (1-F)^2}.$$
 (A4)

Выразим Z в виде $Z = x^{-2}AZ_{\rm CJ}$, где $A \equiv (a/a_{\rm CJ})^2$ — безразмерная скорость звука, являющаяся функцией R из термодинамического решения вдоль изоэнтропы CJ (т. е. A = A(R),

как показано на рис. 2). После этого получаем два связанных обыкновенных дифференциальных уравнения:

$$\frac{d\ln x}{dF} = \frac{-1}{F} \frac{x^{-2}A(R)Z_{\rm CJ} - (1-F)^2}{(j+1)x^{-2}A(R)Z_{\rm CJ} - (1-F)^2},$$
(A5)

 $\frac{d\ln R}{dF} =$

$$=\frac{j(1-F)}{(j+1)x^{-2}A(R)Z_{\rm CJ}-(1-F)^2}.$$
 (A6)

Они должны быть проинтегрированы по области $0 < F \leq F_{CJ}$. Плоский случай (j = 0) имеет особенность (т. е. $d \ln R/dF = 0$) и требует иного подхода. В этом случае мы используем инвариант Римана. В переменных фазовой плоскости он принимает форму

$$F(R) = F_{\rm CJ} - \sqrt{Z_{\rm CJ}} \int_{r}^{1} \sqrt{A(R)} d\ln R.$$
 (A7)

Уравнение (А7) обеспечивает необходимое соотношение между F и R и заменяет (А6) для плоского случая.

Поступила в редакцию 29/V 2014 г.