УДК 544.032.736+546.742 DOI: 10.15372/KhUR20150210

Влияние углеродной матрицы на размеры кристаллитов Ni(OH)₂, синтезированного из [Ni(NH₃)₆]Cl₂

Ю. А. ЗАХАРОВ^{1,2}, А. Н. ВОРОПАЙ², В. М. ПУГАЧЕВ¹, В. Г. ДОДОНОВ¹, А. В. САМАРОВ², З. Р. ИСМАГИЛОВ^{2,3}

¹Кемеровский государственный университет, ул. Красная, 6, Кемерово 650043 (Россия)

E-mail: zaharov@kemsu.ru

²Институт углехимии и химического материаловедения Сибирского отделения РАН, проспект Советский, 18, Кемерово 650000 (Россия)

E-mail: aleksvorop@mail.ru

³Кемеровский научный центр Сибирского отделения РАН, ул. Рукавишникова, 21, Кемерово 650025 (Россия)

E-mail: sozinov71@mail.ru

Аннотация

В результате разложения аммиаката никеля при температуре 90 °С в реакторе открытого типа при интенсивном перемешивании реакционной среды на поверхности пористой углеродной матрицы формируется гидроксид никеля. В качестве матрицы использован пористый углеродный материал, полученный методом высокотемпературной карбонизации смеси гидрохинон – фурфурол. В результате образуется наноструктурированный композит, наполненный кристаллитами безводного Ni(OH)₂. Исследования, проведенные методами рентгеновской дифракции и малоуглового рассеяния рентгеновского излучения, показали, что кристаллиты гидроксида никеля, сформированные на поверхности углеродной матрицы, имеют меньшие размеры по сравнению с кристаллитами, сформированными в растворе без матрицы.

Ключевые слова: гидроксид никеля, пористый углерод, кристаллиты, наноструктурированные композиты

введение

Получение наноразмерных гидроксидов (или оксидов) переходных металлов на поверхности различных органических и неорганических матриц представляет собой одно из перспективных направлений синтеза наноструктурированных композитов (НК). Такие НК находят широкое применение в качестве электродов суперконденсаторов (СК) [1] или прекурсоров для получения ансамблей магнитынх частиц [2]. В этом случае необходимо получить как можно более мелкие частицы гидроксида (или оксида) металла на проводящей подложке, которая препятствует их агломерации и способствует уменьшению удельного сопротивления получаемого композита. Как отмечалось в работе [3], гидроксид ни-

келя (ГН) обладает хорошими электрохимическими свойствами; возможно уменьшение размеров его частиц (до наноразмерного состояния) для достижения высоких электродных характеристик. В этом направлении выполнено значительное количество работ, которые можно условно разделить на две группы. В первой используется подложка с высокой удельной поверхностью (например, графен [4]); в работах второй группы применяется подложка с большим объемом пор и развитой 3Dструктурой, но сравнительно невысокой удельной поверхностью (например, пенографит [5] или пеноникель [6]). В первом случае получают нанотолщинные (до 10 нм) покрытия кристаллитами ГН поверхности подложки; во втором - систему с хорошим транспортом электролита к поверхности активного вещества. Использование подложек, сочетающих в себе свойства этих двух видов носителей (высокая удельная поверхность и развитая пористая структура), открывает перспективы для получения электродных материалов для СК с высокими эксплуатационными характеристиками.

Используемые в настоящей работе углеродные матрицы обладают сложной структурой (широкое распределение пор по размерам), поэтому на их основе трудно получить "идеальные" композитные материалы для СК. С другой стороны, они отличаются низкой стоимостью, поэтому целесообразно исследовать возможность формирования на поверхности таких матриц нанокристаллитов ГН.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовались реактивы квалификации "ч. д. а.": $\rm NiCl_2\cdot 6H_2O$ и 20 % водный раствор аммиака.

В качестве углеродной матрицы использовался пористый углеродный материал, полученный методом высокотемпературной карбонизации смеси гидрохинон – фурфурол [7] ($V_{\rm nop} = 3.68 \ {\rm cm}^3/{\rm r}, \ V_{\mu} = 0.31 \ {\rm cm}^3/{\rm r}, \ S_{\rm yg} = 2850 \ {\rm m}^2/{\rm r}$ по методу БЭТ; прибор Місгоmeritics ASAP-2020). Осаждение гидроксида никеля проводили в щелочной ванне [8] из аммиаката никеля, который получали растворением хлорида никеля (II) в водном растворе аммиака. Концентрация аммиака на 20 % превышала стехиометрически необходимую для образования комплекса по уравнению NiCl₂ + 6NH₄OH \rightarrow [Ni(NH₃)₆]Cl₂ + 6H₂O (1)

Затем объем раствора доводили до 10 мл дистиллированной водой.

Навеску матрицы (100 мг) помещали в водный раствор (10 мл) аммиаката никеля (из расчета содержания металла в конечном композите 67 и 80 мас. %) при интенсивном перемешивании. Температуру реакционной среды доводили до 90 °С и выдерживали на протяжении 1 ч до полного испарения аммиака согласно реации [9]

 $[\mathrm{Ni}(\mathrm{NH}_3)_6]\mathrm{Cl}_2 + 2\mathrm{H}_2\mathrm{O} \to \mathrm{Ni}(\mathrm{OH})_2 \downarrow + 2\mathrm{NH}_4\mathrm{Cl} + 4\mathrm{NH}_3 \uparrow$ (2)

Далее образец промывали дистиллированной водой до получения нейтральной реакции промывных вод и высушивали в термошкафу до постоянной массы. Образцы с содержанием ГН 67 и 80 мас. % обозначены как ГН/С-1 и ГН/С-2 соответственно.

Для сравнения синтезирован чистый гидроксид никеля (ЧГН) в тех же условиях, что и образец ГН/С-1, но без добавления углеродной матрицы.

Дифрактограммы регистрировали в железном излучении (дифрактометр ДИФРЕЙ 401), установочные углы трубки и детектора по 30° (режим геометрии 30/30) соответственно. В этом режиме доступны рефлексы 100, 101, 102 и 110 ГН. Размеры кристаллитов оценивались по FWHM рефлексов (соотношение Шеррера – Селякова [10]) при аппроксимации профилей функцией Копи.

Измерения интенсивности малоуглового рассеяния (МУР) выполнены на установке КРМ-1 "на просвет" в железном характеристическом излучении ($\lambda_{\rm Fe\ \alpha-\beta} = 1.89$ Å) подсчетом импульсов в точках в интервале 0.002– 0.35 Å⁻¹. Для измерения малоуглового рассеяния порошкообразные образцы насыпали в кювету с лавсановыми окошками слоем толщиной примерно 0.5 мм без уплотнения.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Гидроксид никеля (II) формируется в виде уплощенных кристаллитов бруситовой структуры. Синтезированный на матрице и индивидуальный ГН является безводным, о чем свидетельствует соответствие рефлексов на рентгенограмме (рис. 1) стандарту PDF 140117 (β-Ni(OH)2 [11]).

Размер кристаллитов ГН вдоль направления, перпендикулярного плоскости 100, оце-

Рис. 1. Ренттенограмма образца ГН/С-2. Отмечены основные рефлексы ГН по стандарту PDF 140117.

ТАБЛИЦА 1

Оценка размеров D(hkl) вдоль направлений, перпендикулярных плоскостям 001 и 100 (выполнена по рефлексам 100, 101, 102)

D_{100} , нм	D_{001} , нм	
100	101	102
64	14.0	13.8
38	7.7	7.5
44	8.2	8.4
	D ₁₀₀ , нм 100 64 38 44	D_{100} , нм D_{001} , нм 100 101 64 14.0 38 7.7 44 8.2

нивался непосредственно по FWHM соответствующего рефлекса. Оценка толщины кристаллитов (вдоль направления, перпендикулярного плоскости 001) по FWHM рефлекса 001 может давать большую погрешность, поскольку калибровка спектров производилась по эталонам ZnO и Al₂O₃, у которых отсутствуют рефлексы в области углов, соответствующих рефлексу 001 (24.27°) ГН. По этой причине размеры кристаллитов ГН вдоль направления 001 (D(001)) оценивались не по рефлексу 001, а по рефлексам 101 и 102, с учетом уменьшения получаемого размера из геометрических соображений в 1.97 и 1.31 раза соответственно. Полученные результаты по величине близки между собой (табл. 1), что говорит о корректности данной оценки.

Данные табл. 1 демонстрируют влияние матрицы на размеры кристаллитов ГН. Даже при содержании ГН 80 мас. % (отношение массы ГН к массе углеродной матрицы равно 4 : 1) размеры кристаллитов вдоль направлений 100 и 001 в 1.5 и 1.7 раза соответственно меньше размеров кристаллитов ГН, сформированных в растворе аммиаката никеля без матрицы.

Видно, что увеличение содержания ГН в НК приводит к увеличению размеров кристаллитов. Такую картину мы наблюдали ранее при формировании ГН из хлорида в растворе щелочи (гидроксида натрия) [12].

Влияние матрицы на размеры кристаллитов ГН можно наблюдать и на спектрах МУР (рис. 2). Видно, что неоднородности в ЧГН имеют большие размеры и выходят за минимальную область ($s < 0.002 \text{ Å}^{-1}$) длины векторов рассеяния. Напротив, для образца ГН/С-1 заметно возрастает интенсивность спектра в области больших и средних значений длины векторов ($s < 0.1 \text{ Å}^{-1}$), что логично отнести к частицам гидроксида, сформированным на поверхности углеродной матрицы. Также следует отметить, что даже при высоком содержании ГН (67 мас. %) на спектрах МУР отсутствует область, в которой интенсивность МУР композита меньше интенсивности рассеяния "чистой" матрицей, что мы наблюдали в случае осаждения ГН щелочью [13]. Это свидетельствует о том, что полученный из аммиаката гидроксид формируется в виде "сотовой" (пористой) структуры [11], которая слабо экранирует углерод. Уменьшение интенсивности сигнала от НК обусловлено тем, что поглощение рентгеновского излучения на неоднородностях пропорционально квадрату градиента электронной плотности, и для границы углерод – воздух он выше, чем для границы углерод – ГН.

Уменьшение размеров кристаллитов при осаждении ГН на матрице, скорее всего, связано с увеличением количества центров кристаллизации. Оценить количество центров кристаллизации в первом приближении можно исходя из оценки числа образованных кристаллитов ГН (N) на 1 г образованного гидроксида по уравнению

$$N = 4m/\pi D_{100}^2 p_{001} \rho$$

где *m* – масса ГН, на которую рассчитано количество кристаллитов. Если принять

Рис. 2. Экспериментальные спектры МУР для углеродной матрицы (1), образцов ЧГН (2) и ГН/С-1 (3).

m = 1 г (1/1000 кг), то при добавлении матрицы количество центров кристаллизации возрастает в 3–5 раз.

При этом нужно сделать следующие допущения:

1) кристаллиты ГН моноразмерны и имеют форму дисков с диаметром D_{100} и толщиной D_{001} ;

2) плотность кристаллитов ГН равна плотности массивного ГН бруситовой структуры (размерное изменение параметров решетки не обнаружено), $\rho = 4.15$ г/см³;

3) в процессе формирования нанокристаллитов срастанием их можно пренебречь (выраженного образования агломератов по данным МУР не наблюдалось).

Расчеты показывают, что для ЧГН число центров кристаллизации $N = 5.4 \cdot 10^{15} \text{ r}^{-1}$, а для образцов ГН/С-1 и ГН/С-2 $N = 2.8 \cdot 10^{16}$ и $1.9 \cdot 10^{16} \text{ r}^{-1}$ соответственно.

Хотя число кристаллизационных центров при добавлении матрицы растет, оно пренебрежимо меньше количества кислородных групп (матрица содержит до 4 мас. % кислорода) в составе углеродной матрицы. (В матрице присутствует кислород в составе различных функциональных групп, в основном карбоксильных и карбонильных [14].) На 1 г гидроксида при различных его концентрациях в композите приходится 10^{20} -10²¹ атомов "матричного" кислорода, что на 5-6 порядков больше количества центров кристаллизации ГН при осаждении на углеродной матрице. Следовательно, кислородные группы (их концентрация) практически не влияют на зарождение кристаллитов ГН. Увеличение дисперсности частиц ГН, по-видимому, связано с высокой удельной поверхностью углеродной матрицы. За счет адсорбции ионов [Ni(NH₃)₆]²⁺ на поверхности матрицы их концентрация в приповерхностном слое возрастает и формируются новые центры кристаллизации. Уменьшение размеров кристаллитов ГН также может быть связано с тем, что углеродная матрица, захватывая кристаллиты на своей поверхности, создает пространственные ограничения для их дальнейшего роста. Исследования этого аспекта, а также влияния управляемых режимами получения НК размеров и формы кристаллитов ГН на емкостные свойства электродов будут продолжены.

ЗАКЛЮЧЕНИЕ

Установлено, что средние размеры кристаллитов ГН при осаждении их из аммиачных растворов на поверхность углеродной матрицы примерно в 1.5–2 раза меньше, чем при осаждении без матрицы. Количество центров кристаллизации при добавлении матрицы возрастает в 3–5 раз. Кислородные группы в составе углеродной матрицы практически не влияют на процесс зарождения кристаллитов ГН. Исследования по выявлению факторов, определяющих дисперсность частиц ГН, будут продолжены, поскольку нанокристаллиты на электропроводящей подложке могут применяться в качестве материалов для электродов-ионисторов.

Работа выполнена при финансовой поддержке Минобрнауки РФ (проект № 2014/64), Фонда содействия развитию малых форм предприятий в научно-технической сфере (договор № 566ГУ1/2013) и с использованием оборудования ЦКП КемНЦ СО РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1 Тарасов К. А., Исупов В. П., Бохонов Б. Б., Ермаков А. Е. // Химия уст. разв. 2004. Т. 12, № 3. С. 377–382.
- 2 Балышков А. Ионисторы // Электронные компоненты. Украина. 2005. № 11–12. С. 91–97.
- 3 Watanabe K., Kikuoka T., Kumagai N. // J. Appl. Electrochem. 1995. Vol. 25. P. 219–226.
- 4 Hailiang Wang, Hernan Sanchez Casalongue, Yongye Liang and Hongjie Dai // J. Am. Chem. Soc. 2010. Vol. 132. P. 7472-7477.
- 5 Junyi Ji, Li Li Zhang, Hengxing Ji, Yang Li, Xin Zhao, Xin Bai, Xiaobin Fan, Fengbao Zhang and Rodney S. Ruoff // ACS Nano. 2013. Vol. 7. P. 6237– 6243.
- 6 Gang-Wu Yang, Cai-Ling Xu and Hu-Lin Li // Chem. Commun. 2008. Vol. 48. P. 6537–6539.
- 7 Бакланова О. Н., Лавренов А. В., Княжева О. А., Плаксин Г. В., Лихолобов В. А., Гуляева Т. И., Дроздов В. А. // Химия уст. разв. Т. 19, № 1. С. 23–30.
- 8 Самаров А. В. Синтез и исследование высокопористых углеродных материалов из индивидуальных ароматических соединений: Автореф. дис. ... канд. хим. наук. Кемерово, 2013. 20 с.
- 9 Berkat L., Cattin L., Reguig A., Regragui M., Bernede J. C. // Mater. Chem. Phys. 2005. Vol. 89. P. 11–20.
- 10 Ахметов Н. С. Общая и неорганическая химия. Учеб. для вузов. 4-е изд., испр. М.: Высш. шк., Изд. центр "Академия", 2001. 743 с.
- 10 Вайнштейн Б. К. Современная кристаллография. М.: Наука, 1979. Т. 1. С. 384.
- 11 Patil U. M., Gurav K. V., Fulari V. J., Lokhande C. D., Joo O. S. // J. Power Sources. 2009. Vol. 188. P. 338-342.
- 12 Захаров Ю. А., Исмагилов З. Р., Пугачев В. М., Воропай А. Н., Колмыков Р. П., Додонов В. Г., Манина Т. С., Барнаков Ч. Н., Самаров А. В. // Неорган. материалы. 2015. № 4. С. 1–7.

13 Воропай А. Н. Получение наноструктурированных композитов на основе высокопористых углеродных матриц, наполненных Ni или Ni(OH)₂, и определение факторов, влияющих на их физико-химические свойства:

Автореф. дис. ... канд. хим. наук. Кемерово, 2014. 23 с. 14 S. Kundu, Y. Wang, W. Xia, M. Muhler // J. Phys. Chem. C. 2008. Vol. 112. P. 16869–16878.