УДК 533.5

Влияние неравномерности потока испарения по радиусу пятна облучения на динамику разлета факела при импульсной лазерной абляции в вакууме^{*}

А.А. Морозов

Институт теплофизики им. С. С. Кутателадзе СО РАН, Новосибирск

E-mail: morozov@itp.nsc.ru

При лазерной абляции неравномерность распределения энергии поперек лазерного пучка приводит к неоднородности нагрева и испарения с облучаемой поверхности. Проведено исследование влияния возникающей неоднородности температуры и потока испарения с поверхности на динамику разлета факела при наносекундной лазерной абляции в вакууме. Предполагается, что температура поверхности линейно зависит от энергии лазерного излучения. Проведено прямое статистическое моделирование методом Монте–Карло импульсного разлета газа для лазерного пучка с плоским профилем энергии и гауссова пучка в предположении отсутствия поглощения лазерного излучения в факеле. Для плоского пучка температура поверхности одинакова по всему пятну облучения, тогда как для гауссова пучка она меняется по радиусу пятна. Показано, что для обоих пучков окончательное распределение частиц в факеле практически совпадает. При этом для гауссова пучка факел движется немного быстрее по сравнению с плоским пучком, что приводит к увеличению кинетической энергии частиц на времяпролетном детекторе на 2-4 %.

Ключевые слова: динамика разлета газа, импульсная лазерная абляция, прямое статистическое моделирование Монте–Карло, гауссов пучок, плоский пучок.

Введение

Импульсная лазерная абляция твердых тел широко применяется для напыления тонких пленок, пробоотбора для анализа вещества, для чистки, обработки и структурирования поверхностей, синтеза новых наноматериалов, сварки и резки материалов и т.д. [1, 2]. В большинстве лазеров энергия неоднородна по радиусу, что определяет неоднородность нагрева и испарения по пятну облучения на поверхности материалов. Обычно применяются лазеры с гауссовым распределением лазерного излучения по пространству [1, 2], однако существуют лазерные системы с плоским распределением энергии поперек пучка [3], кроме того, разработаны оптические системы, позволяющие преобразовать гауссов профиль в кольцевой (тороидальный) [4-6] или плоский [6-8] профиль. Плотность лазерного излучения меняется также и во времени, что обуславливает достаточно сложный характер динамики испарения.

^{*} Разработка численного кода выполнена в рамках работы по госконтракту с ИТ СО РАН (121031800218-5), численные расчеты выполнены при финансовой поддержке РФФИ (проект 19-08-01014) на вычислительных мощностях Межведомственного суперкомпьютерного центра РАН.

[©] Морозов А.А., 2022

Морозов А.А.

Динамике разлета факела при наносекундной лазерной абляции за последние 30 лет было посвящено много теоретических работ. При разлете в вакуум плотность сформировавшегося лазерного факела достаточно быстро падает, и в течение 1 мкс разлет переходит в бесстолкновительную стадию. Обычно для исследования таких течений используется прямое статистическое моделирование методом Монте–Карло [9]. В первых численных исследованиях применялся одномерный подход без учета размера пятна [10–13]. В такой постановке все определяется только одним параметром — числом испаренных монослоев Θ . Следует отметить, что поскольку перераспределение энергии, обусловленное столкновениями частиц в факеле, происходит именно за время одномерной стадии разлета, то даже такой простой подход представляет интерес [14, 15] и позволяет получать корректные результаты [16].

В последующих работах проводились расчеты для конечного пятна испарения в предположении, что температура поверхности испарения является одинаковой по всему пятну испарения и не меняется во времени, а соответствующий поток частиц с поверхности является постоянным [17–24]. В такой постановке число параметров равняется всего двум (число испаренных монослоев и радиус пятна испарения), что облегчает вывод обобщающих закономерностей. Фактически такое модельное представление с постоянной температурой поверхности соответствует лазерному пучку с плоским профилем, однако этот подход использовался также для анализа экспериментальных данных для гауссова пучка.

Во многих численных исследованиях неоднородность лазерного излучения принималась во внимание. В работах [25–29] учитывалась временная эволюция лазерного излучения в предположении одинакового значения по радиусу. Были выведены аналитические зависимости, определяющие эффективную длительность испарения и среднюю температуру испарения при гауссовом распределении энергии лазерного излучения [30]. В работах [27, 29] было показано, что учет временной эволюции слабо влияет на энергию и функцию распределения частиц в факеле на больших временах расчета. Столкновения между частицами в факеле как бы «размывают» информацию о меняющейся температуре поверхности во время абляции, и физические характеристики течения газа определяются только средней тепловой энергией при испарении и числом испаренных монослоев.

С другой стороны, существует достаточно много работ, в которых исследуется влияние неоднородности лазерного пучка по радиусу пятна облучения на пространственное распределение температуры в облучаемом теле и на форму получающегося кратера [31-37], выведены аналитические зависимости, определяющие эффективный размер области испарения, среднюю температуру и глубину испарения при гауссовом распределении энергии лазерного излучения [38]. Однако в этих работах не анализируется влияние пространственной неоднородности температуры на динамику разлета формирующегося лазерного факела.

В ряде работ учитываются как временная, так и пространственная неоднородности излучения [33, 39–42]. Показано, что учет неоднородности температуры по радиусу пятна облучения достаточно сильно влияет на форму формирующегося факела и приводит к его заметному ускорению [40]. Обнаружено, что при наносекундной абляции в фоновый газ течение для лазерного пучка с тороидальным профилем сильно отличается от течения для гауссова пучка ввиду формирования системы ударных волн на оси симметрии пучка [42].

Следует, однако, обратить внимание, что в ранее выполненных работах не было проведено детального исследования влияния учета неравномерности нагрева и испарения по радиусу пятна облучения на различные характеристики формирующегося лазерного факела. Особый интерес представляет сравнение разлета факела при использовании гауссова и плоского пучков. Основные результаты по теории динамики импульсного разлета газа в предыдущие годы были получены именно для плоского пучка (в предположении одинаковой температуры по поверхности пятна облучения), и важно понять, как их можно адаптировать к анализу экспериментальных данных для обычно используемого гауссова пучка. Следует отметить, что результаты исследований для гауссова пучка с учетом неоднородности излучения сложно сравнивать между собой и обобщать, поскольку с учетом теплофизических свойств вещества задача становится многопараметрической. При использовании модели с постоянной температурой постановка задачи упрощается и число параметров уменьшается до двух (глубина испарения и размер пятна).

До настоящего времени остается открытым вопрос, насколько существенна погрешность при использовании модели с постоянной температурой для гауссова пучка. Настоящая работа посвящена ответу на этот вопрос применительно только к пространственной неоднородности температуры при наносекундной абляции в вакуум. Проведен сравнительный анализ динамики разлета факела при постоянной температуре поверхности (что соответствует лазерному пучку с плоским профилем) и при гауссовом распределении температуры по поверхности пятна облучения.

1. Постановка задачи

Рассматривается двухмерная осесимметричная задача импульсного испарения в вакуум. Предполагается механизм нормального испарения, соответствующий тепловой модели абляции [43]. Рассматриваются режимы низкой интенсивности лазерного излучения, когда можно пренебречь поглощением лазерного излучения в факеле. В течение лазерного импульса τ температура в каждой точке пятна облучения является постоянной, т.е. временная эволюция температуры поверхности не учитывается.

Для расчета процесса разлета газа в вакуум используется прямое статистическое моделирование методом Монте–Карло [9]. В предположении, что испаряющиеся частицы находятся в тепловом равновесии со стенкой, для скоростей испаряющихся частиц задается полумаксвелловская функция распределения

$$f = \left(\frac{m}{2\pi kT}\right)^{3/2} \exp\left(-\frac{m(u^2 + v^2 + w^2)}{2kT}\right), \quad u > 0,$$
(1)

здесь T — температура поверхности, k — постоянная Больцмана, m — масса атома, u, v, w — компоненты скорости частиц. Рассматривается одноатомный газ. Для описания межмолекулярных взаимодействий используется модель твердых сфер. Считается, что все возвращающиеся частицы поглощаются на поверхности испарения.

1.1. Плоский пучок

Для лазерного пучка с плоским профилем энергии на поверхности пятна радиусом $R_{\rm const}$ задается постоянная по времени температура $T_{\rm const}$. Давление насыщенного пара определяется уравнением Клапейрона–Клаузиуса

$$p_{\text{const}} = p_{\text{b}} \exp\left\{\frac{mL_{\text{V}}}{k} \left(\frac{1}{T_{\text{b}}} - \frac{1}{T_{\text{const}}}\right)\right\},\tag{2}$$

463

где $T_{\rm b}$ — температура кипения при давлении $p_{\rm b}$, $L_{\rm V}$ — теплота парообразования. Отметим, что параметры $T_{\rm b}$ и $p_{\rm b}$ не предполагают механизма взрывного вскипания и используются в качестве нормирующих величин. В течение длительности импульса τ с поверхности задается поток частиц

$$\Psi_{\text{const}} = \frac{1}{4} n_{\text{const}} u_{T,\text{const}} = \frac{p_{\text{const}}}{\sqrt{2k\pi m T_{\text{const}}}},$$
(3)

здесь $u_{T,\text{const}} = \sqrt{8kT_{\text{const}}/(\pi m)}$ — средняя тепловая скорость $n_{\text{const}} = p_{\text{const}}/(kT_{\text{const}})$ — числовая плотность насыщенного пара. Глубина испарения h_{const} однозначно связана с потоком частиц выражением $h_{\text{const}} = m \tau \Psi_{\text{const}} / \rho$, где ρ — плотность твердого тела.

1.2. Гауссов пучок

Задается гауссово распределение энергии лазерного излучения на поверхности мишени

$$I(r) = I_{\max} \exp\left(-\frac{2r^2}{R_{gaus}^2}\right),\tag{4}$$

где $I_{\rm max}$ — плотность энергии лазерного излучения в центре пятна, $R_{\rm gaus}$ — радиус пятна облучения. В общем случае для определения температуры поверхности необходимо решать уравнение теплопроводности для каждой радиальной координаты. В результате радиальный профиль температуры будет зависеть от теплофизических свойств облучаемого вещества, в первую очередь от теплопроводности. Для качественного исследования влияния температурной неоднородности на испаряющей поверхности на динамику разлета в настоящей работе предлагается простой модельный подход. Предполагается, что температура поверхности линейно зависит от энергии лазерного излучения, т.е.

$$T_{\rm gaus}(r) = T_{\rm max} \, \exp\left(-\frac{2r^2}{R_{\rm gaus}^2}\right),\tag{5}$$

где T_{max} — максимальная температура на поверхности. В течение длительности импульса τ температура в каждой точке поверхности является постоянной по времени. При квазистационарном испарении энергия лазерного излучения, поглощенного на поверхности, уходит на нагрев мишени за счет теплопроводности твердого тела и на теплоту парообразования [43]. С увеличением температуры имеет место экспоненциальный рост скорости испарения и, соответственно, увеличения потери энергии на парообразование. В рамках рассматриваемой модели это означает, что доля тепла, уходящего в мишень, должна соответственно уменьшаться, что качественно согласуется с ранее проведенными расчетами на основе тепловой модели лазерной абляции [43].

Из формул (2), (3), (5) можно получить радиальную зависимость потока испаряющихся частиц с поверхности:

$$\Psi_{\text{gaus}}(r) = \frac{p_{\text{b}}}{\sqrt{2k\pi mT_{\text{max}}}} \exp\left(\frac{mL_{\text{V}}}{kT_{\text{b}}} + \frac{r^2}{R_{\text{gaus}}^2} - \frac{1}{\varphi} \exp\left(\frac{2r^2}{R_{\text{gaus}}^2}\right)\right),\tag{6}$$

здесь $\varphi = kT_{\text{max}}/(mL_{\text{V}})$ — максимальная температура поверхности, нормированная на теплоту испарения. Глубина испарения определяется выражением $h_{\text{gaus}}(r) = m \tau \Psi_{\text{gaus}}(r) / \rho$.

1.3. Сопоставление плоского и гауссова пучков

Неоднородность профиля лазерного пучка приводит к неоднородному нагреву пятна облучения и, соответственно, неравномерному испарению вещества. Для того чтобы оценить влияние этой температурной неоднородности на динамику разлета факела, надо корректно сопоставить режим гауссова пучка с режимом плоского пучка. Для этого предположим, что число испаренных частиц для обоих случаев одинаковое, т.е. выпол-

няется равенство $\int_{0}^{\infty} h_{\text{gaus}}(r) 2\pi r dr = h_{\text{const}} \pi R_{\text{const}}^2$. Предположим, что потери лазерной

энергии на отражение от поверхности и уход тепла вглубь мишени одинаковые для обоих пучков. Тогда из равенства потоков падающего лазерного излучения следует условие

равенства общей энергии испаренных частиц: $\int_{0}^{\infty} T_{\text{gaus}}(r) h_{\text{gaus}}(r) 2\pi r dr = T_{\text{const}} h_{\text{const}} \pi R_{\text{const}}^{2}.$

В работе [38] было показано, что при выполнении вышеуказанных условий температура поверхности T_{const} связана с максимальной температурой T_{max} соотношением

$$\tilde{T} = \frac{T_{\text{const}}}{T_{\text{max}}} = 2 \cdot \left(\frac{1}{\sqrt{\varphi \pi} \cdot \exp(1/\varphi) \cdot \operatorname{erfc}(1/\sqrt{\varphi})} - \frac{1}{\varphi} \right).$$
(7)

Соответственно, радиусы пятна облучения для плоского и гауссова пучков связаны между собой соотношением

$$\frac{R_{\text{const}}}{R_{\text{gaus}}} = \left(\pi\varphi\tilde{T}\right)^{\frac{1}{4}} \exp\left(\frac{1}{2\varphi\tilde{T}}\right) \sqrt{\frac{1}{2}} \operatorname{erfc}\left(\frac{1}{\sqrt{\varphi}}\right),\tag{8}$$

а средняя глубина испарения связана с максимальной глубиной испарения h_{\max} выражением

$$\frac{h_{\text{const}}}{h_{\text{max}}} = \frac{1}{\sqrt{\tilde{T}}} \exp \frac{\tilde{T} - 1}{\varphi \tilde{T}}.$$
(9)

Таким образом, представлены соотношения, однозначно определяющие взаимосвязь между простой постановкой задачи с постоянной температурой испаряющей поверхности для плоского профиля лазерного пучка и более сложной постановкой с температурной неоднородностью на поверхности испарения для гауссова пучка с сохранением числа испаренных частиц и общей энергии.

1.4. Параметры задачи

Для анализа и обобщения полученных результатов в целях удобства перейдем к безразмерным переменным. Радиус пятна испарения в безразмерном виде можно представить как $b = R_{const}/(u_{T,const}\tau)$. В качестве меры глубины испарения обычно используется число испаренных монослоев $\Theta = \frac{N_{total}}{N_{ML}} = \Psi \tau \Sigma = \frac{h_{const}\rho\sigma}{4m}$, где $N_{total} = \Psi_{const}S\tau$ — общее число испаренных частиц, $N_{ML} = S/\Sigma$ — число частиц в одном монослое, $S = \pi R_{const}^2$ площадь пятна испарения, $\Sigma = \sigma/4$ — площадь, занимаемая одной частицей на поверхности, σ — полное сечение столкновений. Для практического применения представляет интерес следующий диапазон определяющих параметров: число испаренных монослоев $\Theta = 0,001 \div 100$ и нормированный радиус пятна испарения $b = 10 \div 100$.

Таблица

Вещество	Атомная масса <i>m</i> , а.е.м.	Теплота па- рообразова- ния L _V , МДж/кг	Пороговая температура испарения $T_{\rm vap}$, К	Критическая температура <i>T</i> _C , К	Нормированная температура	
					$\varphi_{\min} = kT_{vap}/(mL_V)$	$\varphi_{\max} =$ = 0,8kT _C /(mL _V)
Ag	107,9	2,33	2098	6410	0,069	0,17
Al	27	10,85	2275	6700	0,065	0,152
Au	197	1,68	2757	7400	0,069	0,149
С	12	59,92	3950	8000	0,046	0,074
Со	58,9	6,52	2817	10400	0,061	0,18
Cu	63,5	4,76	2427	8280	0,067	0,182
Fe	55,8	6,27	2723	9250	0,065	0,176
Мо	95,9	6,24	4363	11150	0,061	0,124
Nb	93	7,77	4545	9880	0,052	0,091
Pb	207	0,86	1620	5400	0,076	0,202
W	184	4,48	5374	13400	0,054	0,108
Zn	65,4	1,76	953	3600	0,069	0,208

Теплофизические свойства различных веществ [30]

Для учета влияния пространственной неоднородности температуры оценим диапазон возможных значений нормированной температуры поверхности: $\varphi = kT_{\rm max}/(mL_{\rm V})$. В таблице представлены данные для различных веществ, используемых в приложениях лазерной абляции. Значения теплоты парообразования и критической температуры взяты из работы [30]. Пороговая температура испарения $T_{\rm vap}$ определялась как значение

температуры, при котором глубина испарения составит $h = \frac{m \tau p_S(T_{\text{vap}})}{\rho \sqrt{2kT_{\text{vap}} \pi m}} = 0,1$ Å (для

времени испарения $\tau = 10$ нс). Такая глубина приблизительно соответствует числу испаренных монослоев $\Theta = 0,05$, и для этого режима разлет газа будет немного отличаться от свободномолекулярного разлета. Максимальная температура испарения определяется критической температурой вещества $T_{\rm C}$. Считается, что переход от режима нормального испарения к взрывному кипению (фазовому взрыву) начинается при температуре около 0,8 $T_{\rm C}$ [44]. Именно на такую температуру автор ориентируется в оценке максимальной температуры испарения $\varphi_{\rm max}$, приведенной в таблице. Как видно, нормированная температура меняется в диапазоне $\varphi = 0,05 \div 0,2$.

На рис. 1 представлены распределения температуры поверхности и глубины испарения по пятну облучения для гауссова пучка для предельных случаев, когда $\varphi = 0.05$ и 0.2.

Видно, что глубина испарения в центре пятна $h_{gaus}(0)$ при переменной температуре в 2,5 раза больше, чем глубина h_{const} при постоянной температуре, тогда как температура $T_{gaus}(0)$ отличается от температуры T_{const} не более чем на 20 %.

Рис. 1. Радиальное распределение температуры поверхности T_{gaus} и глубины испарения h_{gaus} для гауссова пучка при $\varphi = 0,05$ и 0,2. Штриховые линии — T_{gaus} , сплошные линии — h_{gaus} .

2. Результаты расчетов

2.1. Динамика разлета газа

На рис. 2 и 3 представлены поля плотности облака газа для гауссова и плоского пучков для числа монослоев $\Theta = 0,01$ и 3. Для режима с $\Theta = 0,01$ число Кнудсена в начальный момент времени определяется как Kn = $\lambda_{const}/R_{const} = 0,44$ (здесь $\lambda_{const} = 1/(n_{const}\sigma\sqrt{2})$ — длина свободного пробега при плотности n_{const}). Таким образом, течение близко к свободномолекулярному (среднее число столкновений на одну молекулу за все время разлета в расчете получается $N_{col} = 0,08$). Для режима с $\Theta = 3$ начальное число Кнудсена Kn = 0,0015, так что течение на начальной стадии близко к континуальному. Интересно, что на начальной стадии разлета ($t = 2\tau$) поля плотности для $\Theta = 0,01$ и 3 фактически идентичны, однако затем наблюдается большое различие: для $\Theta = 3$ облако сильно вытягивается вперед ввиду обусловленного межмолекулярными столкновениями ускорения газа [22]. Оценим влияние температурной неоднородности поверхности на динамику разлета. Видно, что в начале разлета плотность факела вблизи оси симметрии при расчете

Рис. 3. Поле плотности n/n_{const} облака газа для плоского (1) и гауссова (2) пучков при температуре поверхности $\varphi = 0,1$ для числа монослоев $\Theta = 3$ и радиуса пятна испарения b = 10 в моменты времени $t = 2\tau(a), 10\tau(b), 100\tau(c)$.

с постоянной температурой намного меньше, чем при расчете с неоднородной температурой (например, в момент времени $t = 2\tau$ максимальная плотность для постоянной температуры составляет $n = 0,11 n_{const}$, тогда как для переменной температуры $n = 0,23 n_{const}$). Однако в процессе разлета это разница уменьшается, и уже в стадии бесстолкновительного разлета наблюдается фактически одинаковая форма облака. При этом если для $\Theta = 0,01$ распределение плотности получается действительно идентичным (рис. 2*c*), то для $\Theta = 3$ можно заметить небольшое отличие на фронте разлета (рис. 3*c*). Полученные данные по динамике разлета газа качественно согласуются с результатами расчета [40]. При этом в работе [40] облако с гауссовым распределением температуры по радиусу пятна облучения двигалось заметно быстрее, чем при постоянной температуре. Это связано, повидимому, с более высокой кинетической энергией частиц при испарении с гауссовым распределением.

2.2. Времяпролетные распределения

Основным инструментом для экспериментального исследования процесса разлета продуктов лазерной абляции в вакуум является измерение времяпролетных распределений молекул, пролетающих через маленький детектор, расположенный на нормали к поверхности испарения [45, 46]. Поэтому особый интерес представляет анализ влияния температурной неоднородности поверхности на параметры времяпролетных распределений. Следует отметить, что размер области на рис. 2с и 3с в размерных единицах для реальных приложений лазерной абляции с $R_{\text{const}} \sim 0.1$ мм составляет всего порядка 2 мм, что намного меньше типичного расстояния до времяпролетного детектора. На рис. 4 представлена зависимость кинетической энергии молекул во времяпролетном распределении от числа монослоев при расчете с неоднородной температурой. Энергия нормируется на среднюю энергию частиц при испарении $E_0 = 2kT_{const}$. Обнаружено, что учет неоднородности приводит к заметному увеличению энергии. Например, для $\Theta = 1$ и b = 10получаем энергию 1,65 Е₀ для гауссова пучка и 1,61 Е₀ — для плоского пучка, что соответствует разнице на 2,5 %. Это можно объяснить тем, что в случае гауссова пучка на начальной стадии испарения частицы больше сконцентрированы у оси симметрии (см. рис. 3а), они подвержены большому числу столкновений и, соответственно, сильнее ускоряются [22]. Действительно, расчеты показывают, что для режима $\Theta = 1$ и b = 100 в случае плоского пучка среднее число столкновений на одну молекулу за время разлета составляет $N_{col} = 9.3$, тогда как для гауссова пучка N_{col} = 10,2. Можно сделать вывод, что расчет с переменной температурой обычно соответствует расчету с постоянной температурой для несколько

большего числа монослоев. Так, например, расчет с переменной температурой для $\Theta = 1$ соответствует расчету с постоянной температурой для $\Theta = 1,3$.

Puc. 4. Кинетическая энергия молекул во времяпролетном распределении в зависимости от числа монослоев Θ
 для радиусов пятна испарения b = 10 и 100 для гауссова (штриховые линии) и плоского (сплошные линии) пучков для температуры поверхности φ = 0,1.

Рис. 5. Кинетическая энергия молекул
во времяпролетном распределении
для гауссова пучка в зависимости
от нормированной максимальной температуры
поверхности φ для радиуса пятна испарения
$b = 10$ и числа монослоев $\Theta = 0,1$ (1) и 10 (2).

На рис. 5 представлена зависимость энергии во времяпролетном распределении для гауссова пучка от нормированной 1,02 максимальной температуры поверхности ϕ для числа монослоев $\Theta = 0,1$ и 10. Энергия 1,01 нормирована на энергию частиц во времяпролетном распределении для плоского

пучка ($E_{\text{const}} = 1,179 E_0$ для $\Theta = 0,1$ и $E_{\text{const}} = 1,802 E_0$ для $\Theta = 10$). Видно, что энергия частиц для гауссова пучка превышает энергию для плоского пучка в основном на 2-4 %, при этом для большого числа монослоев наблюдается практически линейная зависимость энергии от максимальной температуры поверхности Ø. В целом такое небольшое отличие хорошо согласуется с ранее полученными данными по слабому влиянию временной эволюции температуры поверхности испарения на динамику разлета газа [27, 29].

Форма распределения скоростей во времяпролетном сигнале анализировалась при помощи обычно используемого распределения Максвелла-Больцмана со сдвиговой скоростью $f(u) \sim u^3 \exp\left(\left(u - V_{\text{fit}}\right)^2 / (2kT_{\text{fit}} / m)\right)$, где V_{fit} и T_{fit} — подгоночные параметры [45, 46]. На рис. 6 представлены полученные зависимости этих параметров от числа монослоев. Для нормировки скорости используется наиболее вероятная тепловая скорость молекул $u_0 = \sqrt{2kT_{\text{const}}/m}$. Для иллюстрации на вставке рис. 6 представлены соответствующие распределения скоростей для числа испаренных монослоев $\Theta = 0,1$ и 10. Видно, что учет неоднородности приводит к небольшому уширению распределения скоростей и соответствующему увеличению параметра $T_{\rm fit}$ и уменьшению параметра $V_{\rm fit}$.

Рис. 6. Параметры распределения Максвелла-Больцмана при анализе времяпролетных распределений в зависимости от числа монослоев Θ для радиуса пятна испарения b = 10 для плоского (1) и гауссова пучков при $\varphi = 0.05(2), 0.1(3), 0.2(4).$ На вставке представлены соответствующие времяпролетные распределения для числа монослоев $\Theta = 0,1$ и 10 для плоского (сплошные линии) и гауссова (штриховые линии) пучков.

Заключение

Проведено исследование влияния неоднородности температуры и интенсивности испарения вещества по радиусу пятна облучения на динамику разлета факела при наносекундной лазерной абляции в вакууме для гауссова пучка в предположении, что температура поверхности линейно зависит от энергии лазерного излучения. Показано, что учет изменения температуры слабо влияет на динамику разлета газа и приводит к увеличению энергии частиц, пролетающих через времяпролетный детектор, на 2–4 %. Можно сделать вывод, что абляция с гауссовым и плоским пучками при одинаковой лазерной мощности должна привести к близкому распределению испаренных частиц по скоростям. Однако нельзя исключать, что результаты могут сильно измениться в случае учета поглощения лазерного излучения в факеле.

Полученные данные могут быть использованы для уточнения ранее известных закономерностей по динамике разлета газа при наносекундной лазерной абляции в предположении постоянной температуры поверхности и более корректного использования этих данных при интерпретации экспериментальных времяпролетных распределений для гауссова пучка. С другой стороны, можно сделать вывод, что подход с постоянной температурой поверхности дает небольшую погрешность и поэтому может быть использован для приближенного анализа газодинамических процессов при наносекундной лазерной абляции в вакууме с любым профилем лазерного пучка.

Список литературы

- Pulsed laser deposition of thin films: applications-led growth of functional materials / Ed. R. Eason. Hoboken, New Jersey: John Wiley & Sons, 2007. 682 p.
- 2. Bäuerle D. Laser processing and chemistry. Berlin: Springer, 2011. 851 p.
- 3. Du K. Ready to work: solid state slab laser // Laser Technik J. 2010. Vol. 7, No. 1. P. 39-43.
- 4. Ganic D., Gan X., Gu M., Hain M., Somalingam S., Stankovic S., Tschudi T. Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100 % // Optics Letters. 2002. Vol. 27, No. 15. P. 1351–1353.
- Laskin A., Laskin V., Ostrun A. Generation of doughnut spot for high-power laser technologies using refractive beam shaping // Proc. SPIE. 2015. Vol. 9356. P. 935609-1–935609-8.
- 6. Sanner N., Huot N., Audouard E., Larat C., Huignard J.-P., Loiseaux B. Programmable focal spot shaping of amplified femtosecond laser pulses // Optics. Letters. 2005. Vol. 30. P. 1479–1481.
- Le H., Penchev P., Henrottin A., Bruneel D., Nasrollahi V., Ramos-de-Campos J.A., Dimov S. Effects of tophat laser beam processing and scanning strategies in laser micro-structuring // Micromachines. 2020. Vol. 11. P. 221-1–221-17.
- Wang D., Fan F., Liu M., Tan T., Li H., Li Y. Top-hat and Gaussian laser beam smoothing of ground fused silica surface // Optics and Laser Technology. 2020. Vol. 127. P. 106141-1–106141-9.
- Bird G.A. Molecular gas dynamics and the direct simulation Monte–Carlo method. Oxford: Clarendon Press, 1994. 458 p.
- NoorBatcha I., Lucchese R.R., Zeiri Y. Effects of gas-phase collisions in rapid desorption of molecules from surfaces in the presence of coadsorbates // J. Chem. Phys. 1988. Vol. 89, No. 8. P. 5251–5263.
- Sibold D., Urbassek H.M. Kinetic study of pulsed desorption flows into vacuum // Phys. Rev. A. 1991. Vol. 43, No. 12. P. 6722–6734.
- 12. Feil H., Baller T.S., Dieleman J. Effects of post-desorption collisions on the energy distribution of SiCl molecules pulsed-laser desorbed from Cl-covered Si surfaces: Monte–Carlo simulations compared to experiments // Appl. Phys. A. 1992. Vol. 55. P. 554–560.
- Gusarov A.V., Smurov I. Influence of atomic collisions in vapour phase on pulsed laser ablation // Appl. Surf. Sci. 2000. Vol. 168. P. 96–99.
- Morozov A.A., Frolova A.A., Titarev V.A. On different kinetic approaches for computing planar gas expansion under pulsed evaporation into vacuum // Phys. Fluids. 2020. Vol. 32. P. 112005-1–112005-9.
- **15.** Petrov V.A., Ranjbar O.A., Zhilyaev P.A., Volkov A.N. Kinetic simulations of laser-induced plume expansion from a copper target into a vacuum or argon background gas based on ab initio calculation of Cu–Cu, Ar–Ar and Ar–Cu interactions // Phys. Fluids. 2020. Vol. 32. P. 102010-1–102010-17.

- 16. Morozov A.A. Analysis of time-of-flight distributions under pulsed laser ablation in vacuum based on the DSMC calculations // Appl. Phys. A. 2013. Vol. 111, No. 4. P. 1107–1112.
- Sibold D., Urbassek H.M. Effect of gas-phase collisions in pulsed-laser desorption: a three-dimensional Monte-Carlo simulation study // J. Appl. Phys. 1993. Vol. 73, No. 12. P. 8544–8551.
- Itina T.E., Tokarev V.N., Marine W., Autric M. Monte–Carlo simulation study of the effects of nonequilibrium chemical reactions during pulsed laser desorption // J. Chem. Phys. 1997. Vol. 106, No. 21. P. 8905–8912.
- 19. Булгакова Н.М., Плотников М.Ю., Ребров А.К. Исследование разлета продуктов лазерного испарения методом прямого статистического моделирования // Теплофизика и аэромеханика. 1998. Т. 5, № 3. С. 421–429.
- 20. Быков Н.Ю., Лукьянов Г.А. Истечение пара в вакуум от источника умеренной интенсивности в режиме короткого импульса // Теплофизика и аэромеханика. 2002. Т. 9, № 2. С. 247–257.
- Konomi I., Motohiro T., Kobayashi T., Asaoka T. Considerations on the determining factors of the angular distribution of emitted particles in laser ablation // Appl. Surf. Sci. 2010. Vol. 256. P. 4959–4965.
- Morozov A.A., Evtushenko A.B., Bulgakov A.V. Gas-dynamic acceleration of laser-ablation plumes: hyperthermal particle energies under thermal vaporization // Appl. Phys. Lett. 2015. Vol. 106, No. 5. P. 054107-1–054107-5.
- Morozov A.A. Dynamics of gas cloud expansion under pulsed laser evaporation into vacuum // J. Phys. Conf. Ser. 2018. Vol. 1105. P. 012116-1–012116-8.
- 24. Morozov A.A., Starinskiy S.V., Bulgakov A.V. Pulsed laser ablation of binary compounds: effect of time delay in component evaporation on ablation plume expansion // J. Phys. D: Appl. Phys. 2021. Vol. 54. P. 175203-1–175203-17.
- Ho J.R., Grigoropoulos C.P., Humphrey J.A.C. Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals // J. Appl. Phys. 1995. Vol. 78, No. 7. P. 4696–4709.
- 26. Itina T.E., Marine W., Autric M. Nonstationary effects in pulsed laser ablation // J. Appl. Phys. 1999. Vol. 85, No. 11. P. 7905–7908.
- Ellegaard O., Schou J., Urbassek H.M. Monte–Carlo description of gas flow from laser-evaporated silver // Appl. Phys. A. 1999. Vol. 69. P. S577–S581.
- 28. Bykov N.Y., Bulgakova N.M., Bulgakov A.V., Loukianov G.A. Pulsed laser ablation of metals in vacuum: DSMC study versus experiment // Appl. Phys. A. 2004. Vol. 79. P. 1097–1100.
- Morozov A.A. Effect of temporal evolution of the evaporation surface temperature on the plume expansion under pulsed laser ablation // J. Phys. Conf. Ser. 2020. Vol. 1677. P. 012143-1–012143-7.
- Morozov A.A. Theoretical determination of the effective duration of evaporation under nanosecond laser ablation // Appl. Phys. A. 2020. Vol. 126, No. 1. P. 35-1–35-7.
- Tosto S. Modeling and computer simulation of pulsed-laser-induced ablation // Appl. Phys. A. 1999. Vol. 68. P. 439–446.
- 32. Dumitru G., Romano V., Weber H.P. Model and computer simulation of nanosecond laser material ablation // Appl. Phys. A. 2004. Vol. 79. P. 1225–1228.
- 33. Mullenix N., Povitsky A. Comparison of 1-D and 2-D coupled models of gas dynamics and heat transfer for the laser ablation of carbon // J. Comput. Theor. Nanosci. 2006. Vol. 3. P. 1–12.
- 34. Shusser M. Two-dimensional effects in laser ablation of carbon // Numerical Heat Transfer A. 2009. Vol. 56. P. 459–477.
- 35. Vasantgadkar N.A., Bhandarkar U.V., Joshi S.S. A finite element model to predict the ablation depth in pulsed laser ablation // Thin Solid Films. 2010. Vol. 519. P. 1421–1430.
- 36. Sinha S. Nanosecond laser ablation for pulsed laser deposition of yttria // Appl. Phys. A. 2013. Vol. 112. P. 855-862.
- 37. Ghalamdaran S., Parvin P., Torkamany M.J., Zadeh J.S. Two-dimensional simulation of laser ablation with 235 nanosecond pulses // J. Laser Appl. 2014. Vol. 26. P. 012009-1-012009-8.
- 38. Морозов А.А. Аналитическая модель определения эффективного размера области испарения при импульсной лазерной абляции // Прикл. механика и техн. физика. 2018. Т. 59. № 5. С. 78–86.
- Garrelie F., Aubreton J., Catherinot A. Monte-Carlo simulation of laser-induced plasma plume expansion under vacuum: comparison with experiments // J. Appl. Phys. 1998. Vol. 83, No. 10. P. 5075–5082.
- 40. Itina T.E., Marine W., Autric M. Mathematical modelling of pulsed laser ablated flows // Appl. Surf. Sci. 2000. Vol. 154–155. P. 60–65.
- 41. Volkov A.N., O'Connor G.M., Glynn T.J., Lukyanov G.A. Expansion of a laser plume from a silicon wafer in a wide range of ambient gas pressures // Appl. Phys. A. 2008. Vol. 92. P. 927–932.
- 42. Stokes M., Ranjbar O.A., Lin Z., Volkov A.N. Expansion dynamics and radiation absorption in plumes induced by irradiation of a copper target by single and multiple nanosecond laser pulses in the doughnut beam mode // Spectrochimica Acta Part B: Atomic Spectroscopy. 2021. Vol. 177. P. 106046-1–106046-18.
- 43. Bulgakova N.M., Bulgakov A.V., Babich L.P. Energy balance of pulsed laser ablation: thermal model revised // Appl. Phys. A. 2004. Vol. 79. P. 1323–1326.

- 44. Miotello A., Kelly R. Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature // Appl. Phys. A. 1999. Vol. 69. P. S67–S73.
- 45. Kelly R., Dreyfus R.W. On the effect of Knudsen-layer formation on studies of vaporization, sputtering, and desorption // Surface Sci. 1988. Vol. 198. P. 263–276.
- **46.** Morozov A.A. Analytical formula for interpretation of time-of-flight distributions for neutral particles under pulsed laser evaporation in vacuum // J. Phys. D: Appl. Phys. 2015. Vol. 48, No. 19. P. 195501-1–195501-11.

Статья поступила в редакцию 14 октября 2021 г., после переработки — 23 декабря 2021 г., принята к публикации 22 марта 2022 г.